TU Dortmund





Empfohlene Literatur


Introduction to CFD

012600, WS1516
Dozentinnen und Dozenten
Vorlesung, 2+1
Ort und Zeit
M/1011 Mo 10:00 2h
Modul-Zugehörigkeit (ohne Gewähr)
DPL:F:-:1 – Mathematik für andere Fächer (Service)
DPL:B:-:2 – Mathematik, Diplom (auslaufend)
MAMA:-:7:MAT-708 – Introduction to Computational Fluid Dynamcis
TMAMA:-:7:MAT-708 – Introduction to Computational Fluid Dynamcis
WIMAMA:-:7:MAT-708 – Introduction to Computational Fluid Dynamcis
Beginn der Veranstaltung
Erforderliche Voraussetzungen
some background in physics, calculus and numerical methods

Lecture content: This introductory course deals with mathematical modeling and numerical simulation of various flow phenomena which play an important role in everyday life and are subject to extensive research in both academia and industry. The flow models to be considered give rise to partial differential equations which express the conservation of mass, momentum and energy. Their derivation, mathematical behavior, and the choice of boundary conditions will be presented before proceeding to the numerical solution tools, the main topic of this course. An introduction to classical finite difference, finite volume, and finite element methods will be given and the properties of the resulting schemes will be analysed in detail. The limitations of standard discretization techniques will be exposed and a number of state-of-the-art numerical algorithms (stabilized and high-resolution schemes for convection-dominated flows, nonlinear iteration schemes, projection / Schur Complement methods for the incompressible Navier-Stokes equations, operator-splitting tools and iterative solution of strongly coupled PDE systems) will be introduced to give a flavor of modern CFD tools available for a numerical investigation of complex applications

Empfohlene Literatur
  • Pieter Wesseling: An Introduction to Multigrid Methods, John Wiley & Sons Ltd., 1992
  • V. Girault, P. A. Raviart: Finite Element Methods for {N}avier--{S}tokes Equations, Springer, 1986
  • J. Donea, A. Huerta: Finite Element Methods for Flow Problems, John Wiley & Sons Ltd., 2003


Nummer der Übung
M/E19 Fr 08:00 2h