Spectral asymptotics of Robin Laplacians on polygonal domains

Magda Khalile

Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, 91405 Orsay, France

Abstract

Let \(\Omega \subset \mathbb{R}^2 \) be a curvilinear polygon and \(Q_\Omega^\gamma \) be the Laplacian in \(L^2(\Omega) \), \(Q_\Omega^\gamma \psi = -\Delta \psi \), with the Robin boundary condition \(\partial_n \psi = \gamma \psi \), where \(\partial_n \) is the outer normal derivative and \(\gamma > 0 \). We are interested in the behavior of the eigenvalues of \(Q_\Omega^\gamma \) as \(\gamma \) becomes large. We prove that there exists \(N_\Omega \in \mathbb{N} \) such that the asymptotics of the \(N_\Omega \) first eigenvalues of \(Q_\Omega^\gamma \) is determined at the leading order by those of model operators associated with the vertices: the Robin Laplacians acting on the tangent sectors associated with \(\partial \Omega \). In the particular case of a polygon with straight edges the \(N_\Omega \) first eigenpairs are exponentially close to those of the model operators. Moreover, if the polygon admits only non-resonant or concave corners, we prove that, for any fixed \(j \in \mathbb{N} \), the \(N_\Omega + j \) eigenvalue \(E_{N_\Omega+j}(Q_\Omega^\gamma) \) behaves as

\[
E_{N_\Omega+j}(Q_\Omega^\gamma) = -\gamma^2 + \mu_j^D + o(1), \quad \text{as } \gamma \to +\infty,
\]

where \(\mu_j^D \) stands for the \(j \)th eigenvalue of the operator \(D_1 \oplus ... \oplus D_M \) and \(D_n \) denotes the one-dimensional Laplacian \(f \mapsto -f'' \) on \((0, l_n)\), where \(l_n \) is the length of the \(n \)th side of \(\Omega \), with the Dirichlet boundary condition.