Numerical framework for pattern-forming models on evolving-in-time surfaces

Ramzan Ali, Andriy Sokolov, Robert Strehl and Stefan Turek

Institut für Angewandte Mathematik (LS3)
TU Dortmund

International Conference on Mathematical Methods and Models in Biosciences and Young Scientist School, Balagoevgrad
June 14 – 19, 2015
1. Introduction.
2. PDEs on evolving-in-time surface.
4. Conclusion.
Turing Pattern: Alan Turing (1952) proposed that under certain conditions, chemicals can react and diffuse in such a way that they can produce steady state patterns.
Pattern forming model: (a)

Turing Pattern: Alan Turing (1952) proposed that under certain conditions, chemicals can react and diffuse in such a way that they can produce steady state patterns.

Turing Pattern:
- *Animal coat: spots on leopard*
Turing Pattern: Alan Turing (1952) proposed that under certain conditions, chemicals can react and diffuse in such a way that they can produce steady state patterns.

Turing Pattern:
- **Animal coat:** spots on leopard
- **Sea fish:** patterns around eyes
Pattern forming model: (a)

Turing Pattern: Alan Turing (1952) proposed that under certain conditions, chemicals can react and diffuse in such a way that they can produce steady state patterns.

Turing Pattern:
- Animal coat: spots on leopard
- Sea fish: patterns around eyes
- Human beings: fingerprints
Chemotaxis describes an oriented movement towards or away from regions of higher concentrations of chemical agents and plays a vitally important role in the evolution of many living organisms.
Pattern forming model: (b)

Chemotaxis Pattern:
- **Colonial development of bacteria** (E. Ben-Jacob, J.R. Soc. Interface, 2006).
Chemotaxis Pattern:

- Colonial development of bacteria (E. Ben-Jacob, J.R. Soc. Interface, 2006).
Generalized system

\[
\begin{align*}
\frac{\partial u_i}{\partial t} &= \text{diffusion} \left(D_i^u \Delta u_i + \nabla \cdot \left(\sum_{k=1, k \neq i}^{n} \kappa_{i,k} u_i \nabla u_k \right) \right) - \text{chemotaxis/advection} \left(\sum_{k=1}^{m} \chi_{i,k} u_i \nabla c_k \right) + f_i(u, c), \quad \text{in } \Omega \times T, \\
\frac{\partial c_j}{\partial t} &= \text{diffusion} \left(D_j^c \Delta c_j \right) - \sum_{k=1}^{m} \alpha_{k,j} c_k + \sum_{k=1}^{n} \beta_{k,j} u_k + g_j(u, c), \quad \text{in } \Omega \times T
\end{align*}
\]
\[
\frac{\partial u_i}{\partial t} = D_i^u \Delta u_i + \nabla \cdot \left[\left(\sum_{k=1, k \neq i}^n \kappa_{i,k} u_i \nabla u_k \right) - \left(\sum_{k=1}^m \chi_{i,k} u_i \nabla c_k \right) \right] + f_i(u, c, \rho), \quad \text{in } \Omega \times T,
\]

\[
\frac{\partial c_j}{\partial t} = D_j^c \Delta c_j - \sum_{k=1}^m \alpha_{k,j} c_k + \sum_{k=1}^n \beta_{k,j} u_k + g_j(u, c, \rho), \quad \text{in } \Omega \times T
\]

\[
\frac{\partial^* \rho_l}{\partial t} + \nabla \Gamma(t) \cdot (w_l \rho_l) = D_l^\rho \Delta \Gamma(t) \rho_l + s_l(u, c, \rho), \quad \text{on } \Gamma(t)
\]
Generalized system $+ \Gamma(t)$

\[
\frac{\partial u_i}{\partial t} = D_i^u \Delta u_i + \nabla \cdot \left[\left(\sum_{k=1, \, k \neq i}^{n} \kappa_{i,k} u_i \nabla u_k \right) - \left(\sum_{k=1}^{m} \chi_{i,k} u_i \nabla c_k \right) \right] \\
+ f_i(u, c, \rho), \text{ in } \Omega \times T,
\]

\[
\frac{\partial c_j}{\partial t} = D_j^c \Delta c_j - \sum_{k=1}^{m} \alpha_{k,j} c_k + \sum_{k=1}^{n} \beta_{k,j} u_k + g_j(u, c, \rho), \text{ in } \Omega \times T
\]

\[
\frac{\partial^* \rho_l}{\partial t} + \nabla \Gamma(t) \cdot (w_l \rho_l) = D^\rho_l \Delta \Gamma(t) \rho_l + s_l(u, c, \rho), \text{ on } \Gamma(t)
\]

Introducing level set function ϕ

where $\Gamma(t) = \{ x \in \Omega | \phi(t, x) = 0 \}$.
Numerical challenges

- Treatment of time-dependent solutions.
- Nonphysical oscillations due to chemotaxis/surface convection.
- Catch patterns, depending on initial guess and domain.
- Treatment of equations, which are defined on (evolving in time) surfaces.
Numerical setup

discretization

- standard θ -scheme for temporal discretization
- hierarchical multilevel refinement of the spatial grid
- conforming bilinear/trilinear finite elements
- level set method to treat PDEs on surfaces
- FCT/TVD techniques to overcome non-physical oscillations
Numerical setup:

\[
\frac{\partial^* \rho_l}{\partial t} + \nabla \Gamma(t) \cdot (w_l \rho_l) = D^\rho_l \Delta \Gamma(t) \rho_l + s_l(u, c, \rho), \quad \text{on} \quad \Gamma(t) \times T
\]

\[
\frac{\partial^* \rho}{\partial t} = \frac{\partial \rho}{\partial t} + v \cdot \nabla \rho + \rho \nabla \Gamma \cdot v
\]
Numerical setup: level set

\[
\begin{align*}
\frac{\partial^* \rho_l}{\partial t} + \nabla \Gamma(t) \cdot (w_l \rho_l) &= D_l^\rho \Delta \Gamma(t) \rho_l + s_l(u, c, \rho), \quad \text{on } \Gamma(t) \times T \\
\frac{\partial^* \rho}{\partial t} &= \frac{\partial \rho}{\partial t} + v \cdot \nabla \rho + \rho \nabla \Gamma \cdot v
\end{align*}
\]

\(w\) velocity of chemo, \(v\) velocity of surface and the level-set function:

\[
\phi(x) = \begin{cases}
< 0 & \text{if } x \text{ is inside } \Gamma \\
0 & \text{if } x \in \Gamma \\
> 0 & \text{if } x \text{ is outside } \Gamma
\end{cases}
\]

if \(\phi\) is a signed distance, then \(|\nabla \phi| = 1|\).
Implicit, FEM, level-set based numerical scheme:

\[
[M(\vert \nabla \phi^m \vert)] + \Delta t \left[L(D(\vert \nabla \phi^m \vert)) - K(w^m) \right] - \Delta t \left[N(v^{m+1}) + R(\vert \nabla \phi^m \vert) \right] P^{m+1}
\]

\[
= M(\vert \nabla \phi^m \vert) P^m + \Delta t s^m(\vert \nabla \phi^m \vert).
\]
Equation on surfaces (Discrete)

Implicit, FEM, level-set based numerical scheme:

\[
[M(|\nabla \phi^{m+1}|)] + \Delta t \ L(D|\nabla \phi^{m+1}|) - \Delta t \ K(w^m|\nabla \phi^{m+1}|) \\
- \Delta t \ N(v^{m+1}|\nabla \phi^{m+1}|) + \Delta t \ R(|\nabla \phi^{m+1}|) P^{m+1} \\
= M(|\nabla \phi^m|)P^m + \Delta t s^m(|\nabla \phi^m|).
\]

\[
C(\cdot) = \underbrace{K(w^m|\nabla \phi^{m+1}|)}_{\text{convection due to chemo}} + \underbrace{N(v^{m+1}|\nabla \phi^{m+1}|)}_{\text{surface convection}} - \underbrace{R(|\nabla \phi^{m+1}|)}_{\text{normal to the boundary}}
\]
Implicit, FEM, level-set based numerical scheme:

\[
[M(\vert \nabla \phi^{m+1} \vert)] + \Delta t L(D\vert \nabla \phi^{m+1} \vert) - \Delta t K(w^m|\nabla \phi^{m+1}|)
\]

\[
- \Delta t N(v^{m+1}|\nabla \phi^{m+1}|) + \Delta t R(|\nabla \phi^{m+1}|) P^{m+1}
\]

\[
= M(|\nabla \phi^m|) P^m + \Delta t s^m(|\nabla \phi^m|).
\]

\[
C(\cdot) = K(w^m|\nabla \phi^{m+1}|) + N(v^{m+1}|\nabla \phi^{m+1}|) - R(|\nabla \phi^{m+1}|)
\]

- convection due to chemo
- surface convection
- normal to the boundary

use AFC, for a simplified scalar transport-like problem
AFC technique

- **Standard Galerkin**
 + second order
 - num. artifacts

- **Discrete Upwinding**
 + fail safe
 - first order

- **AFC**
 + mixed order
 + fail safe

\[M \partial u_t = C(u)u \]

\[M^L \partial u_t = (C + D)(u)u = \tilde{C}(u)u \]

\[M^L \partial u_t = \tilde{C}(u)u + \tilde{f}(u) \quad \tilde{f} = \sum_{j \neq i} \alpha_{ij} f_{ij} \]

antidiff. flux, flux limiter
solve

\[
\frac{\partial^* \rho}{\partial t} + \alpha \rho = D \Delta_{\Gamma(t)} \rho \quad \text{on} \quad \Gamma(t),
\]

resp.,

\[
\frac{\partial \rho}{\partial t} + v \cdot \nabla \rho + \rho \nabla_{\Gamma} \cdot v + \alpha \rho = D \Delta_{\Gamma(t)} \rho \quad \text{on} \quad \Gamma(t),
\]

where \(\alpha = 0.2 \) and

\[
\phi(x, t) = |x| - (1.0 + b t \sin(5 \gamma)),
\]

with \(b = 10 \) and \(\gamma = \text{atan2}(x_2, x_1) \).
PDE on evolving Γ, 2D

Figure: Evolution of the level set.
Figure: Comparision of SG, TVD and FCT.
Solve

$$\partial_t \rho + \mathbf{v} \cdot \nabla_{\Gamma} \rho = 0$$

where $\Gamma = \{ \mathbf{x} : |\mathbf{x}| = 1 \}$. The following initial condition

$$\rho(\mathbf{x}, t) = \begin{cases} 10 & \text{if } |\mathbf{x} - (0, 0, 1)^T| \leq 0.3, \\ 0 & \text{else}. \end{cases}$$

and the advective velocity vector-field

$$\mathbf{v} = \{x_1, 0, -x_3\}^T$$

are taken.
Mesh of sphere, Jens Acker.

Figure: Γ, level 1.
Mesh refinement 2

Figure: \(\Gamma, \) level 2.
Mesh refinement 3

Figure: Γ, level 3.
Figure : Γ, level 4.
Mesh refinement 5

Figure: \(\Gamma \), level 5.
Mesh refinement 6

Figure: Γ, level 6, 835 618 d.o.f. and 786 432 cells.
Stationary surface Γ, 3D

(a) initial solution

(b) pure Galerkin method

(c) TVD

(d) FCT

Figure: Numerical results for the transport problem, $\Delta t = 0.001$.
Schnakenberg model:

\[
\frac{\partial \rho_1}{\partial t} = \Delta_\Gamma \rho_1 + \gamma (a - \rho_1 + \rho_1^2 \rho_2),
\]
\[
\frac{\partial \rho_2}{\partial t} = D \Delta_\Gamma \rho_2 + \gamma (b - \rho_1^2 \rho_2).
\]
Turing-type system on Γ

Schnakenberg model:

\[
\frac{\partial \rho_1}{\partial t} = \Delta_{\Gamma} \rho_1 + \gamma(a - \rho_1 + \rho_1^2 \rho_2),
\]
\[
\frac{\partial \rho_2}{\partial t} = D \Delta_{\Gamma} \rho_2 + \gamma(b - \rho_2^2 \rho_2).
\]

where $a = 1.0$, $b = 1.0$, and

\[\rho_1(x, t = 0) = 1.0 + \text{rand} \ast 10^{-2}, \quad \rho_2(x, t = 0) = 1.0 + \text{rand} \ast 10^{-2},\]
Turing-type system on Γ

(a) mesh

(b) initial condition
Turing-type system on Γ

(c) mesh

(d) ρ_1
The Koch-Meinhardt reaction-diffusion model

\[
\frac{\partial \rho_1}{\partial t} = \alpha_1 \rho_1 (1 - r_1 \rho_2^2) - \rho_2 (1 - r_2 \rho_1) + D^1 \Delta_{\Gamma(t)} \rho_1 ,
\]

\[
\frac{\partial \rho_2}{\partial t} = \beta_1 \rho_2 \left(1 + \frac{\alpha_1 r_1}{\beta_1} \rho_1 \rho_2\right) + \rho_1 (\gamma_1 - r_2 \rho_2) + D^2 \Delta_{\Gamma(t)} \rho_2 ,
\]

introducing level set function \(\phi \)
The Koch-Meinhardt reaction-diffusion model

\[
\frac{\partial \rho_1}{\partial t} = \alpha_1 \rho_1 (1 - r_1 \rho_2^2) - \rho_2 (1 - r_2 \rho_1) + D^{\rho_1} \Delta \Gamma(t) \rho_1 ,
\]

\[
\frac{\partial \rho_2}{\partial t} = \beta_1 \rho_2 \left(1 + \frac{\alpha_1 r_1}{\beta_1} \rho_1 \rho_2 \right) + \rho_1 (\gamma_1 - r_2 \rho_2) + D^{\rho_2} \Delta \Gamma(t) \rho_2 ,
\]

introducing level set function \(\phi \)

Initial \(\Gamma(t) \) is

\[
\Gamma_r(t = 0) = \{ x | \phi(x, t = 0) = |x| - r \}.
\]
PDEs coupled with evolution of $\Gamma(t)$

(e) mesh

(f) $\rho_1(x, t = 0)$
PDEs coupled with evolution of $\Gamma(t)$

(g) ρ_1 at $t = 0.2$

(h) level set ϕ at $t = 0.2$
PDEs coupled with evolution of $\Gamma(t)$

(i) ρ_1 at $t = 1.0$

(j) level set ϕ at $t = 1.0$
PDEs coupled with evolution of $\Gamma(t)$

(k) ρ_1 at $t = 2.0$

(l) level set ϕ at $t = 2.0$
Conclusions

- two different kinds of pattern forming models
- an AFC stabilized finite element solver of reaction-diffusion-convection equations in 2D and 3D domains
- solve PDEs on stationary and evolving-in-time surfaces
- positivity preserving schemes
- solve Turing Pattern on surfaces
Thank you

Applying integration by parts

\[\int_{\Omega} D\nabla_{\Gamma\rho} \cdot \nabla_{\Gamma\varphi} |\nabla\phi| = - \int_{\Omega} \nabla_{\Gamma} \cdot D\nabla_{\Gamma\rho} \varphi |\nabla\phi| + \]

\[+ \int_{\Omega} \nabla_{\Gamma} \cdot (D\nabla_{\Gamma\rho} \varphi) |\nabla\phi| \text{ in } \Omega \]

together with the condition

\[\int_{\Omega} \nabla_{\Gamma} \cdot (D\nabla_{\Gamma\rho} \varphi) |\nabla\phi| = \int_{\partial\Omega} D\nabla_{\Gamma\rho} \cdot n_{\Omega} \varphi |\nabla\phi| = 0 \]

(where \(n_{\Omega} \) is an outside normal to \(\partial\Omega \)) we get

\[(|\nabla\phi|\Delta_{\Gamma\rho}, \varphi)_{L^2(\Omega)} = -(|\nabla\phi|\nabla_{\Gamma\rho}, \nabla_{\Gamma\varphi})_{L^2(\Omega)} = \]

\[= -(|\nabla\phi| \left(I - \frac{\nabla\phi \otimes \nabla\phi}{|\nabla\phi|^2} \right) \nabla_{\Gamma\rho}, \nabla_{\Gamma\varphi})_{L^2(\Omega)} = \]

\[P_{\Gamma} \]
Applying

\[\int_{\Omega} \left| \nabla \phi \right| \nabla \Gamma \cdot (w \rho) \varphi = - \int_{\Omega} \left| \nabla \phi \right| w \rho \cdot \nabla \Gamma \varphi + \int_{\partial \Omega} \left| \nabla \phi \right| w \cdot n_{\partial \Omega} \rho \varphi, \]

and assuming

\[\int_{\partial \Omega} \left| \nabla \phi \right| w \cdot n_{\partial \Omega} \rho \varphi = 0, \]

we get

\[\int_{\Omega} \left| \nabla \phi \right| \nabla \Gamma \cdot (w \rho) \varphi = - \int_{\Omega} \left| \nabla \phi \right| w \rho \cdot \nabla \Gamma \varphi. \]
Treatment of the Γ-convection $\nabla_\Gamma \cdot (w\rho)$

Applying

$$\int_\Omega |\nabla \phi| \nabla_\Gamma \cdot (w\rho) \phi = - \int_\Omega |\nabla \phi| w \rho \cdot \nabla \phi + \int_{\partial \Omega} |\nabla \phi| w \cdot n_{\partial \Omega} \rho \phi,$$

and assuming

$$\int_{\partial \Omega} |\nabla \phi| w \cdot n_{\partial \Omega} \rho \phi = 0,$$

we get

$$\int_\Omega |\nabla \phi| \nabla_\Gamma \cdot (w\rho) \phi = - \int_\Omega |\nabla \phi| w \rho \cdot \nabla \phi.$$