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In this paper, we present numerical techniques for one-way coupling of CFD and
Population Balance Equations (PBE) based on the incompressible flow solver FeatFlow

which is extended with a) Chien’s Low-Reynolds number k − ε turbulence model [4],
b) breakage kernel model of Lehr et al. [34, 35], c) coalescence kernel model of Lehr
et al. [34]. The presented implementation ensures a strictly conservative treatment of
sink and source terms – arising due to breakage and/or coalescence – which is enforced
even for geometric discretization of the internal coordinate. Direct enforcement of the
aforementioned property is achieved by formulating the population balance equation with
respect to class holdups. The validation of our implementation which covers a wide
range of computational and experimental problems enables us to proceed into a three
dimensional application for a turbulent pipe flow. The aim of this paper is to highlight
the influence of different formulations of the novel theoretical breakage [29] and coalescence
models on the equilibrium distribution of the population, to reveal some misinterpretations
in the literature and, ultimately, to propose an implementation strategy for the three-
dimensional one-way coupled CFD-PBE model.

1. Introduction

Population balances may be regarded either as an old subject that has its origin in the
Boltzmann equation more than a century ago, or as a relatively new one in light of the
variety of applications in which engineers have recently put population balances to use.
Population balance equations (PBE) are essential to researchers of many distinct areas.
Applications cover a wide range of dispersed systems, such as solid-liquid (crystallization
systems), gas-solid, gas-liquid (aerobic fermentation) and liquid-liquid (food processes)
dispersions. Analysis of separation and reactor equipments and dispersed phase reactors,
they all involve population balance models [40].

In practical applications, a single bubble size model, as reported by numerous researchers
[33, 23], cannot properly describe the interfacial interactions between the phases, and
analytical solutions of the PBE are available just for very few and specific cases. Hence,
the use of appropriate numerical techniques is unavoidable in order to deal with practi-
cal problems. There are several numerical methods satisfying the necessary requirements
with respect to robustness and realizability: the quadrature method of moments [31, 32],
the direct quadrature method of moments (DQMM) [9], parallel parent and daughter
classes (PPDC) [7] and the method of classes [18, 19], which is in the scope of this study.

1



In the literature, there are several noticeable breakup and coalescence models. These
two competing mechanisms for static conditions finally lead the distribution to a certain
dynamic equilibrium. Thus, it is important to have compatible kernels for coalescence and
breakage. If one of these kernels is dominant with respect to the other, the achievement
of an equilibrium distribution can be unrealistic. Therefore, the breakage and coalescence
kernels are usually modeled together. Chen and his co-workers [2] studied the effect of
different breakage and coalescence closures and they showed that incompatible kernels
produce poor results. Certain experimental and theoretical models for breakage and coa-
lescence kernels are regarded as milestones for the evolution of population balances in the
framework of liquid/gas-liquid dispersed phase systems and the evolution of these models
is presented in detail by Jakobsen et al. [15].

Most of the present models for coalescence kernels were derived analogously to kinetic
theory of gases [5, 45, 39, 28]. In kinetic theory of gases, collisions between molecules
are considered while in the process of coalescence, bubble (droplet)–bubble (droplet) and
bubble/droplet–eddy collisions count. Thus, various coalescence models show similar
trends, that is a monotonous increase in the specific coalescence rate with increase in
the bubble/droplet diameter [8]. The coalescence kernel function adopted in this work
is the one propesed by Lehr et al. [35] which is implemented according to the technique
developed by Buwa and Ranade [8].

In the case of breakup, most of the published studies on bubble/droplet breakup are de-
rived from the theories which are outlined by Kolmogorov [16] and Hinze [11]. All these
models have their own advantages and weak points which makes them dramatically dif-
ferent. Nevertheless, they have similar phenomenological interpretations: bubble/droplet
breakage occurs due to turbulent eddies colliding with the bubble/droplet surface. If the
energy of the incoming eddy is higher than the surface energy, deformation of the surface
happens, which may result in breakup of a bubble/droplet into two or more daughter
bubbles/droplets. The colliding eddies that are larger than the bubble/droplet result
in spatial transportation. Thus, collisions between bubble/droplet and eddies which are
smaller than or equal in size to the bubble/droplet, give rise to breakage. The main
differences among the available models are due to their predictions of daughter size distri-
butions (DSD). Some of the models assume a uniform or a truncated normal distribution
which is centered at the half of the bubble/droplet size. In other words these models
are based on the assumption of equal-sized breakage [26, 6, 48]. In contrast, some oth-
ers presume unequal breakup which means a bubble/droplet breaking into a large and a
smaller one [45, 29, 6]. The developed model by Lehr and Mewes [34] is able to combine
the features of these significantly different breakage closures. Their model is based on the
theoretical findings of Luo and Svendsen [29]. The breakage kernel is derived from the
frequency of arriving eddies onto the surface of a bubble and from the probability that
collisions lead to breakage. Accordingly, their model predicts an equal-sized breakage for
relatively small bubbles/droplets and an unequal-sized breakage for large ones. In fact,
their approach appears even intuitively to be reasonable: large bubbles/droplets firstly
collide with large turbulent eddies so that a large and smaller daughter bubble/droplet
exists while for small bubbles/droplets equal-sized breakage is easier due to high inter-
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facial forces (large and small are relative to stable bubble size under given conditions).
A comprehensive comparison of the noticeable coalescence and breakage models is given
by Wang et al. [49]. The comparison shows that the model proposed by Mewes et al.
[35] is generally superior to other available breakup closures what is another fact which
influences the choice of our breakage kernels.

There are many hydrodynamic variables which affect the efficiency of multiphase reactors.
However, one should be able to resolve the flow field in the reactor in order to calculate
the necessary breakup and coalescence kernels to solve the population balance equations,
that means to solve the transport problems in the internal (size of drops/bubbles) and
external (spatial) coordinates. This attempt will involve an inevitable coupling between
CFD and PBE which can lead to irrational computational cost and many difficulties in
numerics if the problem is not tackled properly.

The dynamics of gas/liquid-liquid dispersed flows has been a topic of research for the
last several decades and many different methods are developed. Numerical simulation of
flow fields in column reactors, which is a cumbersome problem due to high complexity of
the flow field, is possible by adopting the Euler-Euler or Euler-Lagrange approaches. For
practical reasons like high numerical efforts and computational costs which are related to
tracking and calculating the motion of each bubble individually in the flow field, the for-
mer method is restricted to be applied on lean dispersions or when low volume fractions of
the dispersed phase are considered, while the latter method requires comparatively small
efforts in both numerics and computation. Nevertheless, both of the methods lead to the
same results if the problems are handled with adequate computational effort as it has
been reported by Sokolichin et al. [42]. Sokolichin and Eigenberger went on with their
studies and they elucidated the behaviour of flow fields in bubble columns. Numerical
simulations which assume the flow to be laminar are not able to produce mesh indepen-
dent results. The finer the grid, the more vortices are resolved. That is more typical for
turbulent flows. Hence, they performed extensive numerical calculations and conducted
several experiments after which they concluded that turbulence models are more conve-
nient to describe flow fields in bubble columns [43, 44].

Turbulence models which are applicable to produce results with an acceptable accuracy
and reasonable computational cost in general originate from the family of two-equation
eddy viscosity models. The most preferred model in this sense is related to the standard
or modified k-ε turbulence model which has been implemented in several commercial
CFD programs and in-house codes. In most of the present studies which consider imple-
mentation of CFD coupled with PBE, it is prefered to work with commercial codes like
FLUENT [2, 38, 30, 1] or CFX [8, 24, 35, 34, 3], naming just two of the most important
CFD software packages. However, a commercial code is not the only option and open-
source software packages such as FeatFlow (see http://www.featflow.de) extended with
additional modules (such as turbulence model [20], multiphase model [23], subgrid-scale
mixing model [36] or a population balance model in the present case) possess the advan-
tages of higher flexibility and robustness.

The paper is organized as follows. In Section 2 the mathematical model of the population
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balance equation with the breakage and coalescence kernels is described. In Section 3, it
is dealt with the arising standalone implementation of the obtained mathematical model.
Furthermore, the description of its integration into the CFD flow solver is given in Sec-
tion 4. The validation of our implementation together with the CFD coupled application
forms the content of Section 5, which is followed by our conclusions.

2. Mathematical model

The population balance equation for gas-liquid (liquid-liquid) flows is a transport equation
for the number density probability function, f , of bubbles (drops). By definition, f needs
to be related to an internal coordinate, what in most of the cases is the volume of bubbles,
υ. Therefore, the number density, N , and void fraction, α, of bubbles having a volume
between υa and υb are:

Nab =

∫ υb

υa

f dυ, αab =

∫ υb

υa

fυ dυ. (1)

The considered transports account for convection in the physical space (governed by the
flow field ug), while the bubble breakage and coalescence transports the bubbles in the
space of the internal coordinate. Thus, the resulting transport equation is the following

∂f

∂t
+ ug · ∇f = B+ + B− + C+ + C−. (2)

Clearly, in case of modeling turbulent flows according to (temporal) averaging concepts
(2) has to be extended by the arising pseudo diffusion terms in analogy to the approach
of the Reynolds stress tensor

∇ · u′f ′ = −∇ · (νT

σT
∇f), (3)

where σT is the so-called turbulent Schmidt number. In (2) the superscripts ”+” and ”–”
stand for sources and sinks and the terms B and C on the right hand side represent the rate
of change of the number density probability function,

(

df
dt

)

, due to bubble breakup and
coalescence, respectively. In this study, both of these processes are modelled in accordance
with the two most popular models of Lehr et al. [34, 35] adopting some modifications
with respect to an implementation introduced by Buwa and Ranade [8]. According to
these studies:

• the breakage of parent bubbles of volume υ into bubbles of volume υ̃ and bubbles
of volume υ − υ̃ is associated with a rate rB(υ, υ̃)f(υ),

• the coalescence of parent bubbles of volume υ̃ with bubbles of volume υ− υ̃ forming
bubbles of volume υ is associated with a rate rC(υ − υ̃, υ̃)f(υ̃)f(υ − υ̃),

where rB and rC are the so called kernel functions of breakup and coalescence. Substi-
tution of the breakage and coalescence terms into (2) results in the following transport
equation

∂f

∂t
+ ug · ∇f =

∫

∞

υ

rB(υ, υ̃)f(υ̃) dυ̃ − f(υ)

υ

∫ υ

0

υ̃rB(υ̃, υ) dυ̃

+
1

2

∫ υ

0

rC(υ̃, υ − υ̃)f(υ̃)f(υ − υ̃) dυ̃ − f(υ)

∫

∞

0

rC(υ̃, υ)f(υ̃) dυ̃,

(4)
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Figure 1: Dimensionless daughter size distribution.

which still needs to be closed by the specification of the kernel functions rB and rC.
According to Lehr and Mewes [34] the coalescence kernel function is defined by

rC(υ, υ̃) =
π

4
(d + d̃)2min(u′, ucrit), (5)

with d and d̃ denoting the diameter of bubbles of υ and υ̃. The characteristic velocities
u′ and ucrit are computed as follows

u′ =
√

2ε1/3(dd̃)1/6, (6)

ucrit =

√

Wecritσ

ρldeq
with deq = 2(d−1 + d̃−1)−1, (7)

where ε is the turbulent dissipation rate, σ is the surface tension of the liquid phase, ρl

is the density of the liquid phase, and Wecrit is the critical Weber number being equal to
0.06 for pure liquids [35]. Alternatively, it is also common to assume u′=0.08m/s instead
of considering u′ to be a function of υ and υ̃ as it was done in the study of Lehr and his
colleagues [35]. However, under certain conditions this assumption seems to lead to un-
physical results which are shown and explained in the following section. Additionally, the
chosen coalescence kernel (5) shows similar trends (monotonous increase in the specific
coalescence rate with increase in bubble diameter) in relation to experimental observa-
tions and as most of the other models in the literature [8].

Regarding the breakup kernel there are various different formulations which yield signifi-
cantly different results. For that reason, it is hard to say that one model can highlight all
the features of the given process. A comparison of the most remarkable breakup kernels
in the literature is carried out by Wang et al. [49]. In pursuance of the mentioned study
it is shown that the model presented by Lehr et al. [35] is more comprehensive than any
other model in the literature. The model in question [35] is based on the practical formu-
lation of the theoretical findings reported by Luo and Svendsen [29] which therefore forms
the fundamental basis of many other relevant breakage models. Motivated by the wide
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diversity of available breakage models presented in the literature, we extended our scope
by consideration of a second breakage model developed by Lehr and Mewes [34]. This
model also originates from the pioneering theoretical formulation introduced by Luo and
Svendsen [29], that enables us to compare the same theoretical model from the point of
view of two different practical interpretations. Additionally, both of the breakage models
have the following definition in common

rB(υ, υ̃) = KBΦ(υ, υ̃), (8)

where KB is the total breakage rate and Φ(υ, υ̃) is the probability of breaking bubbles of
volume υ into bubbles of volume υ̃. The choice of our first breakage closure was influenced
by the demonstrated excellent properties of the breakage kernel developed by Lehr and
Mewes [34]. As a result of this work, the total breakage rate KB is defined as

KB = 1.5(1 − αg)
(ρl

σ

)2.2

ε1.8. (9)

The aforementioned excellent properties of the adopted breakage kernel is hidden in the
definition of the daughter size probability distribution function φ(υ, υ̃), which naturally
provides equal and non-equal size distributions for the daughter bubbles (see Fig. 1).
Such a behavior of the distribution function is achieved by the following formula

φ(υ, υ̃) = max

(

ω1/3

ω̃4/3

(

min
(

ω̃7/6, ω̃−7/9
)

− ω−7/9
)

, 0

)

for
ω̃

ω
∈ (0, 0.5〉

with ω̃ = υ̃
π

6

σ1.8

ρ1.8
l ε1.2

and ω = υ
π

6

σ1.8

ρ1.8
l ε1.2

.

(10)

According to the implementation technique developed by Buwa and Ranade [8], the sub-
stitution of the dimensionless bubble volume fBV = ω̃

ω
= υ̃

υ
into (10) results in

φ(υ, υ̃) = max
(

ω−1f
−4/3
BV

(

min
(

(fBV ω)7/6 , (fBV ω)−7/9
)

− ω−7/9
)

, 0
)

for fBV ∈ (0, 0.5) ,
(11)

and makes it possible to analytically integrate the DSD in arbitrary limits. Being consis-
tent with the assumption that the breakup process results in a pair of daughter bubbles
of volume υ̃ and υ − υ̃, this requires symmetry of the function φ(υ, υ̃) = φ(υ, υ − υ̃) for
fBV ∈ (0.5, 1) (see Fig. 1). Finally, the mean probability of breaking a bubble of volume
υ into a bubble between (υ̃ − ∆υ) and (υ̃ + ∆υ) can be obtained as follows

Φ(υ, υ̃) =
υ

2∆υ

∫ υ̃+∆υ
υ

υ̃−∆υ
υ

φ(υ, υ̃) dfBV . (12)

The second adopted breakage kernel is the one proposed by Lehr et al. [35]. Both, the
total breakage rate KB and the breakage probability Φ(υ, υ̃) are defined as a function of
the following time and length scales

T =

(

σ

ρL

)0.6
1

ε0.4
and L =

(

σ

ρL

)0.4
1

ε0.6
. (13)
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Introducing the dimensionless bubble diameter d∗ = d/L and bubble volume υ∗ = υ/L3

gives rise to:

KB =
d∗5/3

2T
exp

(

−
√

2

d∗3

)

(14)

φ(υ, υ̃) =
6

(

L
√

πd̃∗

)3

exp

(

−2.25
(

ln
(

22/5d̃∗

))2
)

1 + erf
(

ln (21/15d∗)
1.5
) for υ̃∗ ∈ (0, 0.5〉 (15)

and φ(υ, υ̃) = φ(υ, υ − υ̃) for υ̃∗ ∈ (0.5, 1) (16)

The phenomenological models involve several parameters in their formulations which are
strictly depending on the operating conditions and the system. Thus, they are specific to
the problem as in the study of Tsouris and Tavlarides [45], whereas in theoretical models
formulations do not consist of these empirical parameters; therefore they are supposed to
be applicable in a wide range of operating conditions. The explained theoretical breakage
closures are chosen due to their applicability in a broad range of operating conditions and
similarities in the outline of their formulations, and to show how the nuances between
these models influence the results of numerical simulations in the validation process.

3. Implementation of PBE

In this study, the discretization of the population balance equation (4) is carried out
by the method of classes (with piecewise constant approximation functions). The fixed
pivot volume of the classes is initialized by specifying the bubble volume of the smallest
”resolved” class υmin and the discretization factor q, such that

υi = υminq
i−1 with i = 1, 2, ...n (17)

where n is the number of classes. The class width ∆υi is defined by the difference of the
upper υU

i and lower υL
i limit of the given class i:

∆υi = υU
i − υL

i with υU
i = υL

i+1 and υU
i−1 = υL

i . (18)

The limits are fixed and initialized such that in the case of q = 2 the pivot volume υi is
centered in the class

υU
i = υi +

1

3
(υi+1 − υi), υL

i = υi −
2

3
(υi − υi−1). (19)

The discretized transport equation (4) of the i-th class’ number density probability, fi,
results in

∂fi

∂t
+ ug · ∇fi =

n
∑

j=i

rB
i,jfj∆υj −

fi

υi

i
∑

j=1

υjr
B
j,i∆υj

+
1

2

i
∑

j=1

rC
j,kfjfk∆υj − fi

n
∑

j=1

rC
j,ifj∆υj for i = 1, 2, ...n.

(20)
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The choice of fixed bubble pivot volumes and fixed class widths offers the advantage of
expressing the discretized transport equation (20) in terms of class holdups αi instead
of the number probability density, fi = αi

υi∆υi
(see (1)). Doing so enforces only mass

conservation, however the bubble number density may not be conservative. Regarding
the arising inconsistency we subscribe to the argument of Buwa and Ranade [8], who
reported that the difference in the predicted values of interfacial area and Sauter mean
bubble diameter obtained with only mass conservation and obtained with mass and bubble
number conservation was less than 1%. Multiplying equation (20) with υi∆υi results in
conservative source and sink terms, since the overall gas-holdup cannot be changed due
to coalescence or breakup procedures1. Additionally, any sink (source) term of a given
rate associated to a particular breakup or coalescence procedure induces a source (sink)
term with the same rate but in a different class. This enables us to assemble only the
sink terms while the same contribution is applied to the corresponding source term in the
resulting class. Let us for example consider a breakup of bubbles of class i into bubbles
of classes j and k. Such a procedure will result in the following right hand sides

i : −
(

υjr
B
i,j∆υj

fi

υi

)

υi∆υi −
(

υkr
B
i,k∆υk

fi

υi

)

υi∆υi = −rB
i,jαi

υj∆υj

υi
−rB

i,kαi
υk∆υk

υi

j : +
(

υjr
B
i,jfi∆υi

)

υj∆υj = rB
i,jαi

υj∆υj

υi

k : +
(

υkr
B
i,kfi∆υi

)

υk∆υk = rB
i,kαi

υk∆υk

υi
∑

0,

where υk = υi − υj.

However, if we consider the coalescence of bubbles/droplets of the j’th and the k’th
class to form bubbles/droplets of the i’th class, to show the conservation of void fraction
is a little bit more tricky. The losses in the k’th and j’th classes due to coalescence with
each other are as follows:

j : −
(

fjr
C
j,kfk∆υk

)

υj∆υj = −rC
j,kαjfk∆υk

k : −
(

fkr
C
k,jfj∆υj

)

υk∆υk = −rC
k,jαkfj∆υj

The gain in the i’th class due to coalescence of the k’th and j’th classes is:

i : 1
2

(

rC
j,kfjfk∆υj + rC

k,jfkfj∆υk

)

υi∆υi

If we assume that the discretization is equidistant, that means ∆υi = ∆υj = ∆υk, and
recalling that υi = υj + υk then the following relation is obtained

1

2

(

rC
j,kfjfk∆υj + rC

k,jfkfj∆υk

)

(υj + υk)∆υi = rC
j,kαjfk∆υk + rC

k,jαkfj∆υj

which shows that the sink and source terms of coalescence are also conservative in terms
of void fraction. In this study, geometric grids (for the internal coordinate) with varying
discretization constants are employed. Therefore, instead of calculating individual sink
and source terms due to coalesence, only sink terms for each possible pair of classes are
calculated and their sum is added to the resultant bubble class. Accordingly, conservation
of mass is enforced from the point of view of coalescence, too.

1Note that we assume incompressible conditions.
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4. Integration of PBE into CFD

Before proceeding to the description of the developed numerical algorithm, let us recall the
problems related to the integration of PBE into a CFD solver. The main problem which
has to be clarified at the very first place is based on the identification of the coupling effects
between the individual parts of the model (see Fig. 2). Besides the internal coupling of the
Navier-Stokes equation (C1 and C2) in case of turbulent flow simulations supported by
two-equation eddy viscosity models such as k − ε models, additional coupling has also to
be taken into account (C5). At the same time, as a consequence of multiphase modeling,
one has to be aware of even more complex coupling effects due to buoyancy (C7) and
enhanced turbulence effects (C8). Furthermore, the turbulence and the multiphase model
is coupled by means of the flow field with the Navier-Stokes equation (C5 and C7). Last
but not least, internal coupling takes place in all the three subproblems (C1, C3 and C4)
resulting in a rather interlocking structure. To cope appropriately with the described
strongly coupled system is quite challenging, and may result in unavoidably increased
computational cost. Therefore, in this work the coupling effects are impoverished by not
taking into account the influence of the turbulence induced by the secondary phase (also
known as bubble induced turbulence in gas-liquid systems) and by neglecting the buoyancy
forces. Accordingly, the description of a one-way coupled implementation follows which
is valid for a) pressure driven and b) shear induced turbulence dominating systems.

Figure 2: Sketch of the coupling effects inside the complete model.

In this work the motion of fluid flow is governed by the Reynolds Averaged Navier
Stokes (RANS) equations of the following form

∂u

∂t
+ u · ∇u = −∇p + ∇ ·

(

(ν + νT )[∇u + ∇uT ]
)

,

∇ · u = 0,
(21)

where ν depends only on the physical properties of the fluid, while νT (turbulent eddy
viscosity) is supposed to emulate the effects of the unresolved velocity fluctuations u′.
According to Chien’s Low-Reynold Number modification of the k − ε model the eddy
viscosity has the following definition

νT = Cµfµ
k2

ε̃
with ε̃ = ε − 2ν

k

y2
, (22)
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where k is the turbulent kinetic energy, ε is the dissipation rate and y is the closest
distance to the wall. Clearly enough, for computations of k and ε the above PDE system
is to be complemented by two additional mutually coupled convection-diffusion-reaction
equations [25]. For our purposes, it is worthwhile to introduce a linearization parameter
γ = τ−1

T = ǫ̃/k, which is related to the turbulent time scale τT and which makes it possible
to decouple the transport equations as follows [27]

∂k

∂t
+ ∇ ·

(

ku − νT

σk
∇k

)

+ αk = Pk, (23)

∂ε̃

∂t
+ ∇ ·

(

ε̃u − νT

σε

∇ε̃

)

+ βε̃ = γC1f1Pk. (24)

The involved coefficients in (23–24) are given by

α = γ +
2ν

y2
, β = C2f2γ +

2ν

y2
exp(−0.5y+), Pk =

νT

2
|∇u + ∇uT |2,

fµ = 1 − exp(−0.0115y+), f1 = 1, f2 = 1 − 0.22 exp−
(

k2

6νε̃

)2

.

(25)

The discretization in space is performed by a finite element method on unstructured
grids. The incompressible Navier-Stokes equations are discretized using the nonconform-
ing Q̃1/Q0 element pair, whereas standard Q1 elements are employed for k and ε̃. After an
implicit time discretization by the Crank-Nicolson, Fractional-step θ scheme or Backward
Euler method, the nodal values of (v, p) and (k, ε̃) are updated in a segregated fashion
within an outer iteration loop.

For n=1,2,... main time-stepping loop tn −→ tn+1

For k=1,2,... outermost coupling loop

• Solve the incompressible Navier-Stokes equations

For l=1,2,... coupling of v and p

For m=1,2,... flux/defect correction

• Solve the transport equations of the k − ε model

For l=1,2,... coupling of k and ε

For m=1,2,... flux/defect correction

• Solve the population balance equation

For l=1,2,... coupling of αi for i = 1, ..., n

For m=1,2,... flux/defect correction

Figure 3: Developed computational algorithm consisting of nested iteration loops.
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The iterative solution process is based on the hierarchy of nested loops according to the
approach described in [23] and is presented in Fig. 3. At each time step (one n−loop step),
the governing equations are solved repeatedly within the outer k-loop which contains the
two subordinate l-loops responsible for the coupling of variables within the corresponding
subproblem. The embedded m-loops correspond to iterative flux/defect correction for the
involved convection-diffusion operators. In the case of an implicit time discretization,
subproblem (23–24) leads to a sequence of algebraic systems of the form [21, 22, 47]

A(u(k), γ(l), ν
(k)
T )∆u(m+1) = r(m),

u(m+1) = u(m) + ω∆u(m+1),
(26)

where r(m) is the defect vector and the superscripts refer to the loop in which the cor-
responding variable is updated. Flux limiters of TVD type are activated in the vicinity
of steep gradients, where nonlinear artificial diffusion is required to suppress nonphysical
undershoots and overshoots. The predicted values k(l+1) and ε̃(l+1) are used to recompute
the linearization parameter γ(l+1) for the next outer iteration (if any). The associated
eddy viscosity νT is bounded from below by a certain fraction of the laminar viscosity
0 < νmin ≤ ν and from above by νT,max = lmax

√
k, where lmax is the maximum admissible

mixing length (the size of the largest eddies, e.g., the width of the domain). Specifically,
we define the limited mixing length l∗ as

l∗ =

{

Cµfµ
k3/2

ε̃
if Cµfµk

3/2 < ε̃lmax

lmax otherwise
(27)

and calculate the turbulent eddy viscosity νT from the formula

νT = max{νmin, l∗
√

k}. (28)

The resulting value of νT is used to update the linearization parameter

γ = τ−1
T = Cµfµ

k

νT

. (29)

The above representation of νT and γ makes it possible to preclude division by zero and to
obtain bounded nonnegative coefficients (required by physical reasons and computational
stability) without manipulating the actual values of k and ε.

In the following, remarks concerning the treatment of the convection and sink terms
in the polulation balance equation will be given from the point of view of positivity
preservation. Since the continuous transport equation (4) is positivity preserving for non-
negative initial and boundary conditions the same property needs to be satisfied by its
discrete counterpart (20). This can be achieved by an implicit treatment of the sink terms
resulting in the following set of equations

(

ML +
(

θK − B−

i − C−

i

)

∆t
)

αnew
i =

(

ML −
(

(1 − θ) K + B+
i + C+

i

)

∆t
)

αold
i

for i = 1, 2, ...n,
(30)

with being ML the lumped mass matrix, K the discretized convection operator, B and C
the discretized breakage and coalescence terms. In case of an implicit time discretization,
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such as Crank Nicholson or Fractional-step θ time stepping, subproblem (30) leads to the
algebraic system of the form [21, 22, 47]

A(u(n), ν
(n)
T , B

±(l)
i , C

±(l)
i )∆α

(m+1)
i = r(m),

α
(m+1)
i = α

(m)
i + ω∆α

(m+1)
i ,

(31)

where r(m) is the defect vector and the superscripts refer to the loop in which the corre-
sponding variable is updated (see the algorithm in Fig 3).

5. Numerical examples

The numerical calculations in scope of this study will be classified into two subsections.
The content of the first subsection presents the validation problems, which are supported
by experimental and computational results available in the literature. The content of the
second subsection deals with a detailed study which couples PBE and CFD in case of a
turbulent pipe flow which involves two immiscible fluids.

5.1. Validation problems

In order to validate the implementation of the presented model it is assumed to have
a homogenous stirred tank reactor in which the turbulent dissipation rate and volume
fractions of classes do not show spatial variations. Therefore, transportation of bubbles
(droplets) with respect to the spatial coordinate can be neglected and the problem is
independent of the flow field. If the values of dissipation rate and gas holdup are fixed
for a certain dispersed system, the equilibrium size distribution will be unique regard-
less of the initial conditions. In pursuance of the described validation technique the case
studies described by Wilkinson [50], Grienberger [10] and Schrag [41] will be taken into
consideration. Additionally, since the implemented model does not involve any empirical
parameters, it should be valid in a wide range of operating conditions. Thus, several
other comparisons between our numerical calculations and experimental studies are done.
These experimental studies have been chosen such that broad ranges of turbulent dissi-
pation rates and volume fractions of the secondary phase, which the model is sensitive
at most to, are covered. Accordingly, it is possible to demonstrate that the implemented
model is applicable for various operating conditions and for different two-phase systems.

The validation process given in this section begins with the problem addressed by Wilkin-
son [50]. The experimentally measured bubble size distribution corresponding to the
mentioned reference study is characterized by the following parameters:

• water-nitrogen system with total gas holdup α = 0.13,

• average superficial gas velocity ug = 0.04ms−1,

• average dissipation rate estimated as ε = gug = 0.3924m2s−3.

It should be noted, that Wilkinson’s data on bubble size distribution corresponds to
the average over the whole reactor, so it does not necessarily reflect the true equilibrium
of the bubble breakage and coalescence. Our comparison has been performed on the
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basis of the bubble number fraction normalized with the group width, E(d), for both
adopted breakage models. In order to obtain mesh independent solutions (with respect
to the internal coordinate υ) the computations were performed for different values of
the discretization constant q in a range of 1.05 to 2.0 (see Fig.4). Thus, the number of
initialized classes varied between 20 to 100 to cover the required range of bubble sizes.
The small differences between the distributions computed on the coarsest (q = 2.0) and
finest (q = 1.05) mesh leads us to the conclusion that qualitatively good results can be
already obtained by means of coarse grid computations. As it can be seen from Fig. 5,
our computational predictions are in a good agreement with the experimental results of
Wilkinson [50] and correlate well with the computational results obtained by Buwa and
Ranade [8] (especially in the case of the breakage kernel of Lehr and Mewes [34]) for the
same problem and for the same model.

We recall that, in order to obtain the equilibrium between bubble breakup and coalescence
for the population balance equation, one might reduce the original system of PDE’s to
a system of ODE’s (neglecting the spatial variation). Then, the steady state solution of
such a reduced (0-dimensional) system (stirred tank reactor model) corresponds to the

Figure 4: Steady state bubble size distribution for the following parameters α = 0.13 and
ε = 0.3924m2s−3. Right: Breakage kernel of Lehr and Mewes [34]. Left: Breakage kernel
of Lehr et al. [35].

Figure 5: Steady state bubble size distribution for the following parameters α = 0.13
and ε = 0.3924m2s−3. Comparison of our mesh independent solution with reference data
(Wilkinson [50] – experimental, Buwa and Ranade [8] – computational). Right: Breakage
kernel of Lehr and Mewes [34]. Left: Breakage kernel of Lehr et al. [35].
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Figure 6: Computed equilibrium distribution for the breakage models versus experimen-
tally measured distribution [10, 41]. Experiment A: α = 0.2 and ε = 0.785m2s−3. Exper-
iment B: α = 0.08 and ε = 0.196m2s−3. Right: Breakage kernel of Lehr and Mewes [34].
Left: Breakage kernel of Lehr et al. [35].

required equilibrium distribution. In Fig. 6, experimentally measured data of this type
[10, 41] are presented and compared to our computational predictions. The experiments
were conducted with air-water multiphase flow for different volume fractions, α1 = 0.2
and α2 = 0.08, and for the same value of superficial gas velocities jg1 = 0.08ms−1 and
jg2 = 0.02ms−1 which corresponds to dissipation rates of 0.785m2s−3 and 0.196m2s−3,
respectively. The representative quality of the results was chosen to be the “normalized
number of bubbles per fraction width“, E(d). We obtained a good agreement between the
results of our numerical calculations and the presented experimental results (see Fig. 6).
This comparison leads us to conclude that the model by Lehr et al. [35] is a more suitable
candidate for implementation into our CFD code.

Before progressing to couple PBE with CFD, it is necessary to verify our implementation
for high and low turbulent dissipation rates. Thus, two more studies are examined: the
first example has been taken from the study by Laakkonen et al. [24] for high dissipation
rate values, and the latter one has been taken from the study of Olmos and his colleagues
[37] for low values of dissipation rate.

In the first study, the local bubble size distributions (BSDs) had been measured/modelled
for dense air–water and CO2–n-butanol dispersions under hydrodynamic conditions char-
acterized by high turbulent dissipation rates. The experimental [13] and simulation results
obtained in the reference study of Laakkonen et al. [24] together with our simulation re-
sults corresponding to simulation time of 50s are summarized in Tab. 1.

Table 1: Sauter mean diameters (mm)

Case Hu et al. Laakkonen et al. Our study

air-water 0.447 0.359 0.358
air-1-propanol 0.316 0.207 0.205
air-diethylene glycol 0.598 0.251 0.250

The results are in good agreement with the reference study, in fact they are almost iden-
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tical. Nevertheless, we want to give some remarks here. The obtained equilibrium BSDs
and the Sauter mean diameters are strongly dependent on the stopping criteria of the
iterative scheme. This means that the final Sauter mean diameters may slightly change
by changing the criteria for convergence resulting in different simulation times (smaller
criterion longer simulation and vice versa). Accordingly, the graphs plotted in Fig. 7 show
the evolution of the Sauter mean diameter for two different time frames.
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Figure 7: Case: air-1-propanol a) for 50 seconds b) 500 seconds

In Fig. 7(a), the convergence criteria – defined as the maximum relative change of gas
holdup of all classes – is of the order of 10−7 while in Fig. 7(b), its value has been set
to 10−8. It is apparent from the graph corresponding to long time simulation, that the
Sauter mean diameter is still changing. Such a behaviour has been already described in
the literature by Kostoglou [17], where the steady equilibrium state even for large time
scales was not observed. According to the mentioned study and our observations the
results tabulated in the original study of Laakkonen would have been more meaningful if
the time scales had been specified.

In the second case study, mild and low turbulent dissipation rates are considered. The
experimental and numerical results from the study by Olmos et al. [37] and the results
of our numerical calculations are compared. The comparisons show that our calculations
overestimate the experimental results of d32 with a reasonable error and predict the same
behaviour as it is stated in experiments. However, for very low turbulent dissipation
rates and small gas holdups, predictions of the model get poorer. Instead of calculating
the hydrodynamic variables with a 3D CFD code, as it was done in Olmos’s study, the
turbulent dissipation rate is assumed to be constant and uniform in the whole domain
approximated by the assumption adopted by the study of Lehr and Mewes [34]

ε = jgg, (32)

where jg is the superficial gas velocity and g is the magnitude of gravitational accelera-
tion. So, rather than performing a detailed calculation for the flow field we only had a
rough assumption for the turbulent dissipation rate, nevertheless the obtained results are
satisfactory. On the other hand, obtaining hydrodynamic variables with a 3D CFD code
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Figure 8: Comparison between experimental and calculated results by Olmos [37] and
this study.

will further improve the results.

All these explained studies validate and verify our implementations. However, there are
also some important contradictions between our findings and the reference studies of Lehr
and Mewes [34] and Lehr et al. [35]. In both of the studies, it is claimed that for high
superficial gas velocities and gas holdups, a bimodal BSD is observed (that is a BSD with
two peaks which are for small and large bubbles). Fig. 9 shows the accumulated gas
holdups for one of the cases which involve the bimodal BSD.

Figure 9: Simulation result of Lehr et al. [35] including a bimodal distribution.

In Fig. 9, it is apparent that the largest bubbles are in the largest classes. This result
may be acceptable but the following question should be also considered: if the size of the
largest class in the discretization had been even larger, the evolution of the BSD would
have continued and there would have occured unphysically large bubbles. The results of
our simulations show that if the model of Lehr et al. [35] is considered and ucrit equals to
0.08m/s then the obtained BSDs have the same features as in the reference study. Ac-
cordingly, the BSDs always tend to consist of the largest possible classes, even if the size
of the largest classes is unphysically large. Also, the approximation for ucrit = 0.08m/s
holds reasonably only for the small bubbles, as it was verified by experimental results
in the same study [35], and generalization of this approximation to large bubbles causes
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unrealistic results such as having bimodal BSD.
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Figure 10: a) bimodal BSD b) bimodal integrated gas holdups

In Fig. 10, it is shown that for the first few seconds, it is possible to have a bimodal BSD
which is not in equilibrium, and by time a certain fraction of the gas holdup travels to
larger and larger classes to form unreasonably large bubbles. The main idea is if ucrit is
approximated by 0.08m/s then the coalescence dominates the breakage and as a result
certain fractions of bubbles coalesce until they reach the largest classes allowing the BSD
to reach an equilibrium. However, if ucrit is evaluated according to (7), this decreases the
rate of coalescence of large bubbles and a true dynamic equilibrium is obtained.

5.2. Coupling with CFD

Up to our knowledge there are not published benchmarked computational results for full
three dimensional problems combining CFD and PBE, thus we restricted our focus to the
geometrically most simple 3D problem which involved a turbulent pipe flow. This problem
offers the advantage of validation of the flow field and distribution of turbulent quantaties,
such as the dissipation rate of the turbulent kinetic energy, ε, which the coalescence and
breakage models are most sensitive to. Therefore, in this section, we aim to reconstruct
the underlying turbulent flow field as a prerequisite for a subsequent population balance
modeling in the framework of dispersed flow. For this reason, the open-source software
package FeatFlow extended with Chien’s Low-Reynolds number k − ε model was uti-
lized to perform the flow simulations, which has already been successfully validated for
channel flow problems (Reτ = 395) [20]. The flow considered here is characterized by
the Reynolds number, Re = dw

ν
= 114, 000 (w stands for the bulk velocity), what was

influenced by the study of Hu et al. [14] focused on one dimensional dispersed pipe flow
modeling. All computational results presented in this section are obtained by means of an
extruded (2D to 3D) unstructured mesh employing 1344 hexahedral elements in each of
its layers. The computationally obtained radial distributions of the temporally/spatially
developed velocity and turbulent quantities are given in Fig. 11. The turbulent flow field
– obtained as described above – was subjected to subsequent three dimensional dispersed
flow simulations in a 1m long pipe of diameter 3.8cm. Unfortunately, one has also to
say that the computational results following in this section are not compared against
any reference data. Hence, our investigation gives just an insight into three dimensional
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population balance modeling without justified confidence of the obtained results. The
considered primary phase was water which contains droplets of an other immiscible liq-
uid phase with similar physical properties to water (such as density and viscosity). This
assumption together with the fact that the flow is not driven by buoyancy but by the
pressure drop enabled us to

• neglect the buoyancy force,

• approximate the dispersed phase velocity with the mixture velocity.
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Figure 11: Radial profiles of the axial velocity component (left), turbulent dissipation
rate (middle) and turbulent viscosity (right).
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Figure 12: Equilibrium droplet size distribution.

The CFD-PBE simulations involved 30 classes initialized by the discretization factor
q = 1.7, which according to the previous 0D convergence studies turned out to be fine
enough to reach mesh independent solutions. The feed stream was modeled as a circular
sparger of a diameter of 2.82cm containing droplets of a certain size (din = 1.19mm) and
of a certain holdup, αin = 0.55. Such an inflow holdup condition after reaching developed
conditions ensures a flat total holdup distribution of a value αtot = 0.30. Moreover,
according to the such developed conditions – as a result of equilibrium between coalescence
and breakup – an equilibrium droplet size distribution is reached. This distribution in
terms of class holdups vs. droplet size is plotted in Fig. 12. To visualize2 the evolution of
the droplet size distribution in the pipe, Sauter mean diameters of the droplets are plotted

2On the figures only the one third slice of the computational domain is depicted with rescaled axis

x : y : z = 10 : 1 : 1.
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(see Fig. 13). Both, the Sauter mean diameter and the droplet size distributions reached
the equilibrium in a short distance with respect to length of the pipe. Additionally,
as expected, larger droplets are formed in the middle of the pipe (where ε is relatively
small), while close to the wall smaller droplets are more preferred (where ε is relatively
high). This fact can be better understood by means of visualization of the representative
small/large droplet class-holdup distributions, in Fig. 14. In the mentioned figure the
holdup distributions of classes 10, 17 and 23 are depicted3.

6. Conclusions

In this work, the population balance equation describing two phase dispersed flows was
integrated into our in-house CFD software package FeatFlow enriched with the low
Reynolds k–ε turbulence model. The models of two breakage and one coalescence kernels
were implemented and validated for simple 0D examples. The obtained results are in good
agreement with the computational and the experimental results previously reported (Fig.
4, Fig. 5). Finally, a 3D computational study was performed for the case of turbulent pipe
flow. The extensive computational costs for the calculation of the hydrodynamic variables
coupled with PBE may require alternative approaches in future. First of all, the use of
PPDC or DQMM may reduce the computational cost for solving the transport equation of
PBE in the internal coordinate, while parallelization of the implemented model in terms
of domain decomposition will enable us to obtain results in considerably shorter time.
Moreover, instead of solving all the transport equations on the same mesh, a coarser one
may be used to obtain mesh independent solution for the PBE. For this purpose, one
can take advantage of multigrid techniques implemented in FeatFlow. Additional to
our concerns of computational performance, we consider to extend our implementation by
adopting two-fluid and/or multifluid approaches and taking into account buoyant forces
in order to have a more comprehensive model.
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Figure 13: Sauter mean diamter distribution cuts of the dispersed phase in different
distances.
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Figure 14: Holdup distributions of certain classes.
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