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Abstract

Numerically challenging, comprehensive benchmark cases are of great importance for
researchers in the field of CFD. Numerical benchmark cases offer researchers frameworks to
quantitatively explore limits of the computational tools and to validate them. Therefore,
we focus on simulation of numerically challenging benchmark tests, laminar and transient
3D flows around a cylinder, and aim to establish a new comprehensive benchmark case by
doing direct numerical simulations with three distinct CFD software packages. Although the
underlying benchmark problems have been defined firstly in 1996, the first case which was
a steady simulation of flow around a cylinder at Re = 20 could be accurately solved first in
2002 by John. Moreover, there is no precisely determined results for non-stationary case, the
simulation of transient flow with time varying Reynolds number. The benchmark problems
are studied with three CFD software packages, OpenFOAM, Ansys-CFX and FeatFlow
which employ different numerical approaches to the discretization of the incompressible
Navier-Stokes equations, namely finite volume method, element based finite volume method
and finite element method respectively. The first benchmark test is considered as the
“necessary condition” for the software tools, then they are compared according to their
accuracy and performance in the second benchmark test. All the software tools successfully
pass the first test and show well agreeing results for the second case such that the benchmark
result was precisely determined. As a main result, the CFD software package with high
order finite element approximation has been found to be computationally more efficient and
accurate than the ones adopting low order space discretization methods.
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1. Introduction

Despite all the developments in computer technology and in the field of numerics, the
numerical solution of incompressible Navier-Stokes equations is still very challenging. Ef-
ficient and accurate simulation of incompressible flows is very important and prerequisite
for the simulation of more complex applications, for instance, polymerization, crystalliza-
tion or mixing phenomena. Numerous open-source or commercial CFD software packages
are available to study these complex applications. Nonetheless, it is often observed that
some of these software tools which produce colorful pictures as results of the simulations,
fail in some benchmark tests subject to laminar flow around obstacles. Therefore, we are
motivated to quantitatively compare performances of well known software packages by
studying benchmark problems for laminar flow in 3D.

A set of benchmark problems had been defined within a DFG High-Priority Research
Program by Schäfer & Turek [1] and these test cases have been studied by many re-
searchers [2, 3]. One of the most studied 3D cases from the mentioned study is the flow
around a cylinder with Reynolds number being 20. Although it is a low Reynolds number
with steady solution problem and it had been formulated many years ago, the exact solu-
tions could have been determined first by John in 2002 [3] and later by Braack & Richter
[2]. Regarding existence of the very precise results for this benchmark test, we expect the
employed software tools to accurately reproduce the results, which is considered as nec-
essary condition for the software packages to continue with solving a second benchmark
test for higher Reynolds numbers.

The second benchmark problem is unsteady and corresponds to a time-varying Reynolds
number. There are not many studies on this benchmark test, one of the most recent stud-
ies is from 2005 by John [4]. However, in John’s study the benchmark computation is
performed to verify the developed methodology and software rather than improving the
benchmark results, and his study is focused on the numerical approaches to the solution
of incompressible Navier-Stokes equations. In this study, we aim to establish a new com-
prehensive benchmark case by doing direct numerical simulations with three distinct CFD
software packages.

The benchmark problems are studied with the open-source software package Open-
FOAM, the widely used commercial code ANSYS-CFX (CFX) and our in-house code
FeatFlow. OpenFOAM (version 1.6) is a C++ library used primarily to crate executa-
bles, known as applications. The applications fall into two categories: solvers that are
each designed to solve a specific problem in continuum mechanics; and utilities that are
designed to perform tasks that involve data manipulation (see http://www.openfoam.com).
From the available solvers, icoFoam which is designed to solve the incompressible Navier-
Stokes equations with a Finite Volume approach, is employed. CFX (version 12.0 Service
Pack 1) is a commercial general purpose fluid dynamics program that has been applied
to solve wide-ranging fluid flow problems with the element based Finite Volume Method.
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The transient solver of CFX is employed for the benchmark computations. FeatFlow
is an open source, multipurpose CFD software package which was firstly developed as
a part of the FEAT project by Stefan Turek at the University of Heidelberg in begin-
ning of the 1990s based on the Fortran77 finite element packages FEAT2D and FEAT3D
(see http://www.featflow.de). FeatFlow is both a user oriented as well as general pur-
pose subroutine system which uses the finite element method (FEM) to treat generalized
unstructured quadrilateral (in 2-D) and hexahedral (in 3-D) meshes.

Studying benchmark problem with these three different software packages which em-
ploy different numerical techniques also give an insight to answer of the following ques-
tions:

1. Can one construct an efficient solver for incompressible flow without employing
multigrid components, at least for the pressure Poisson equation?

2. What is the “best” strategy for time stepping: fully coupled iteration or operator
splitting (pressure correction scheme)?

3. Does it pay to use higher order discretization in space or time?

These questions are considered to be crucial in the construction of efficient and reliable
solvers, particularly in 3D. Every researcher who is involved in developing fast, accurate
and efficient flow solvers should be interested. The authors had put their honest effort
to obtain the most accurate results with the most optimal settings for all the codes;
nevertheless, this benchmark study is especially meant to motivate future works by other
research groups and the presented results are opened to discussion.

The paper continues with the benchmark configuration and the definition of compari-
son criteria. In Section 3, the software packages and the employed numerical approaches
are described. The results are presented within the subsequent section and the paper is
concluded with a discussion of the results.

2. Benchmark Configurations

The solvers are tested in two benchmark configurations with an incompressible Newtonian
fluid whose kinematic viscosity (ν) is equal to 10-3 m2/s and for which the conservation
equations of mass and momentum are written as follows,

∂u

∂t
+ u · ∇u = −∇p+ ν∆u,

∇ · u = 0
(1)
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The Reynolds number is defined as Re = UD/ν where U is the mean velocity of the
imposed parabolic profile on the inflow boundary and D is the diameter of the cylinder.
The benchmark geometry and the corresponding 2D mesh at the coarsest level are shown
in Figure 1. The 3D mesh is obtained by extruding the 2D mesh in the z direction with
4 layers of cells, however the first level mesh for the computations is obtained by two
successive refinements via connecting opposite midpoints of the the coarsest mesh which
yields a mesh of 6144 cells, see Figure 2. Our preliminary studies showed that this mesh
offers a good balance between accuracy and computational cost.

Figure 1: The geometry and the coarsest level mesh (in 2D).

The software tools employ different numerical approaches to the discretization in space
which leads to different numbers of degrees of freedom (DOF) for the same problem. In the
case of OpenFOAM and CFX, the numbers of DOF are comparable while FeatFlow
has a greater number of DOF for the same mesh due to a high order finite element
approximation. Therefore, while comparing the results, reader should keep in mind that
for the same computational mesh, FeatFlow has approximately as many DOF as the
others have at one level finer grid. The number of DOF is always proportional to number
of cells (equivalent to number of vertices for hexahedral meshes with large number of cells)
in all CFD packages. The numbers of DOF are presented with respect to the number of
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Figure 2: The first and second level meshes, with 6144 and 49152 cells respectively.

cells of the corresponding mesh levels in Table 1.

• ndof = 3 · nvt for velocity and ndof = nvt for pressure in case of CFX.
• ndof = 3 · nel for velocity and ndof = nel for pressure in case of OpenFOAM.
• ndof = 24·nvt for velocity and ndof = 4·nel for pressure in case of FeatFlow.

where ndof , nvt and nel denote the number of DOF, the number of vertices
and the number of cells, respectively.

The first benchmark problem is at Re = 20 and has been studied numerically by many
research groups, and very accurate results have been presented. The second benchmark
problem is unsteady, with a time-varying inflow profile which is very challenging and
has not been rigorously studied, consequently the results have not yet been precisely
determined. For the benchmark problems, no-slip boundary condition is employed on the
walls and natural do-nothing boundary conditions are imposed at the outflow plane. The
inflow conditions are set with Um = 0.45m/s and Um = 2.25m/s for the first and the
second benchmark problem with the parabolic velocity profiles from equations (2) and
(3), respectively,

U(0, y, z) = 16Umyz(H − y)(H − z)/H4, V = W = 0 (2)
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Table 1: Number of unknowns.

Levels # of Cells Software # of DOF u # of DOF P total # of DOF

CFX 21828 7276 29104
L1 6144 OF 18423 6144 24567

FeatFlow 174624 24576 199200

CFX 160776 53592 214368
L2 49152 OF 147456 49152 196608

FeatFlow 1286208 196608 1482816

CFX 1232400 410800 1643200
L3 393216 OF 1179648 393216 1572864

FeatFlow 9859200 1572864 11432064

CFX 9647136 3215712 12862848
L4 3145728 OF 9437184 3145728 12582912

FeatFlow 77177104 12582912 89760016

U(0, y, z) = 16Umyzsin(πt/8)(H − y)(H − z)/H4, V = W = 0 (3)

In the benchmark calculations, the dimensionless drag and lift coefficients for the
cylinder are regarded as the comparison criteria which are calculated according to (4).

cD =
2Fw

ρU2DH
, cL =

2FL

ρU2DH
(4)

where FD and FL are defined as,

FD =

∫ (
ρν
∂vt
∂n

ny − pnx

)
dS, FL = −

∫ (
ρν
∂vt
∂n

nx − pny

)
dS (5)

with the following notations: surface of cylinder S, normal vector n on S with x− and
y− component nx and ny, tangential velocity vt on S and tangent vector t = (ny,−nx, 0).

3. Used CFD Software Packages

We studied the benchmark problems with three software packages: open-source soft-
ware package OpenFOAM (OF), commercial code ANSYS-CFX (CFX), and our in-house
code FeatFlow. Each software adopts a different approach to the discretization of the
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Navier-Stokes equations. The first adopts a conventional Finite Volume Method (FVM),
ANSYS-CFX is developed on an element based FVM (ebFVM) and the last adopts a
high order Galerkin Finite Element approach. Their approaches to the discretization of
Navier-Stokes equations are one of the main differences between the codes. Moreover,
their solution approach to the resulting linear and non-linear systems of equations af-
ter discretization is another distinction which influences the computational performance
rather than the accuracy of the results. Nevertheless, in the case of our in-house code, the
space discretization method is also effective regarding the performance of the solvers, the
finite element spaces were chosen such that the linear solvers would be the most efficient.

Table 2: Discretization schemes and solver parameters for OF.

Type Parameters Value Description

Time schemes ddtSchemes CrankNicholson
0.5

Euler blended (0.5) Crank-
Nicholson, improved
stability.

Interpolation
schemes

interpolation-
Schemes

linear Linear interpolation (central
differencing).

Surface normal
gradientschemes

snGradSchemes corrected Explicit non-orthogonal
correction.

Gradient schemes
Divergence schemes

gradSchemes
divSchemes

Gauss linear Second order, Gaussian
integration.

Laplacian schemes laplacianSchemes Gauss linear
corrected

Unbounded, second order,
conservative.

solvers p solver
smoother
tolerance

GAMG
Gauss-Siedel
10−7

Geometric-Algebraic Multi-
grid with Gauss-Siedel
smoother. Convergence
criteria.(*)

solvers U Solver
preconditioner
tolerance

PBICG
DILU
10−6

Preconditioned bi-conjugate
gradient solver with diagonal
based incomplete LU precon-
ditioner. (*)

(L2norm of residual normalized by L2norm of solution, convergence criterion for the linear solver [6].)

OpenFOAM achieves the spatial discretization by using FVM on block structured
meshes with Gaussian integration and linear interpolation. From the available techniques,
temporal discretization is obtained with equidistant implicit Euler blended Crank-Nicolson
time stepping scheme (blending factor = 0.5). Later, pressure and momentum equations
are decoupled by using the PISO algorithm [5]. For the solution of the momentum equa-
tion, PBiCG is employed. PBiCG is a preconditioned bi-conjugate gradient solver for
asymmetric lduMatrices using a run-time selectable preconditioner. DILU preconditioner
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which is a simplified diagonal-based incomplete LU preconditioner for asymmetric ma-
trices was chosen. Then, the pressure equation is solved by using a Geometric-Algebraic
Multigrid solver with a Gauss-Seidel type smoother. The details of the chosen discretiza-
tion schemes and solver tolerances are presented in Table 2.

CFX employs an element based Finite Volume approach to discretize in space and
high resolution scheme is chosen for the stabilization of the convective term. Time dis-
cretization is achieved by Second Order Backward Euler scheme. Tri-linear finite element
based functions are used as interpolation scheme. ANSYS CFX uses a coupled solver,
which solves the hydrodynamic equations (for u, v, w, p) as a single system. First, non-
linear equations are linearized (coefficient iteration), then these linear equations are solved
by an Algebraic Multigrid (AMG) solver. The chosen discretization schemes and solver
parameters are given in Table 3.

Table 3: Discretization schemes and solver parameters for CFX.

Setting Value Description

Transient scheme Second Order Back-
ward Euler scheme

Second order, unbounded, implicit,
conservative time stepping.

Interpolation scheme
Pressure interpolation
Velocity interpolation
Shape function

FE shape functions
Linear-Linear
Trilinear
Parametric

True tri-linear interpolation for ve-
locity and linear-linear interpolation
for pressure.

Advection scheme High resolution Numerical advection scheme with a
calculated blending factor.

Convergence criteria
Residual type
Residual target

MAX
5x10−5

Maximum value of normalized resid-
uals. For details, see [7].

Our in-house developed open source fluid dynamics software package FeatFlow
(here: module PP3D) is a transient 3D Finite Element based code parallelized on the
basis of domain decomposition techniques. Velocity and pressure are discretized with the
high order Q2/P1 element pair and their solution is obtained via a discrete projection
method. Since this pair of elements is quite stable even in case of moderate Reynolds
number flows, no additional stabilization of the advection is required which is very dis-
tinctive regarding the other software packages which employ certain stabilization schemes.
The discretization in time is achieved by the second order Crank-Nicholson method which
provides efficient and accurate marching in time together with the implemented adaptive
time-step-control. The adopted discrete projection approach gives rise to a subsequent
solution of the so called Burgers equations and the Pressure-Poisson equation, which
is solved in order to enforce the incompressibility constraint. Both of these equations
are solved with geometric multigrid solvers: here, SSOR/SOR and UMFPACK/SOR are
employed as the solver/smoother pairs for velocity and pressure, respectively.
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4. Results

The benchmark problems studied with all the codes, and while the problems were being
studied, the question was not: “Is the software tool capable of solving the problem?” but
“How accurate and efficient is the given software tool?”. Therefore, to show the accuracy
of the employed CFD softwares, the benchmark problem at Re = 20 is firstly studied.
The results for this case obtained for 4 different mesh levels are given in Table (4).

Table 4: Results for steady test case (Re=20), reference values: cD = 6.18533 and cL =
0.009401 [2].

# of Cells Software cD cL %Err cD %Err cL

L1 CFX 6.06750 0.01255 1.91 33
6144 OF 6.13408 0.01734 0.83 84

FeatFlow 6.13973 0.00956 0.74 1.8

L2 CFX 6.13453 0.00817 0.82 14
49152 OF 6.19702 0.01099 0.19 17

FeatFlow 6.17433 0.009381 0.18 0.21

L3 CFX 6.17481 0.00928 0.17 1.3
393216 OF 6.19362 0.01001 0.13 6.5

FeatFlow 6.18260 0.009387 0.04 0.15

L4 CFX 6.18287 0.009387 0.04 0.15
3145728 OF 6.18931 0.00973 0.06 3.5

FeatFlow 6.18465 0.009397 0.01 0.05

The qualitative results were indistinguishable even for the coarsest level calculations
for the Re = 20 test case, thus only a sample snapshot of the results which has been
obtained on the finest grid by FeatFlow is given in Figure (3).

The expected agreement of the results for the first benchmark test motivated us to go
on with the second benchmark problem which is the challenging part of our benchmarking
studies. The second benchmark problem has a fixed simulation time, T = 8 s, whereas
the first benchmark problem is simulated towards the steady state solution. There is
no precise unique definition of the stopping criteria for all the softwares for the first
case. Therefore, while the software tools are compared with respect to their accuracy
in both cases, their computational performance has been tested in the later case, as
well. The coarse grid computations were performed sequentially and fine grid ones were
done in parallel, based on domain decomposition method. Both sequential and parallel
computations were performed on identical compute nodes: Dual-core AMD OpteronTM

Processor 250 2.4 GHz with 8 GB total memory. To decrease the latency time due
to memory bandwidth limitation each partition is submitted to one node. The nodes
were interconnected via 1GHz ethernet connection, regarding the number of nodes it is
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Figure 3: Snapshot for the Re = 20 test case with 3145728 cells.

a sufficiently fast connection. However, it has to be mentioned that the performance of
the software packages will increase for higher number of partitions by using infiniband
connected nodes.

In the second benchmark test, the flow is simulated for 8 seconds, a half period of
the imposed inflow condition. The simulations start with zero inflow and zero initial
condition at t = 0 s and finish at t = 8 s with zero inflow again, see Equation (3). Due to
the transient inflow condition, adaptive time stepping technique is a good candidate for
this problem. However, in preliminary studies with this technique, numerical oscillations
are observed in the results which are obtained by CFX and OpenFOAM. The oscillations
were nor visible in qualitative results neither in the drag coefficient results. However, when
the results of a sensitive variable such as cL are plotted, the numerical oscillations appear,
see Figure (4). The results are obtained on a mesh with 393216 cells by OpenFOAM for
two different values of maximum Courant numbers, maxCo, and with different tolerance
values of linear solvers. Tolerance values of the velocity solver, uTol, are set to 10−5 or
10−6 and tolerance values of the pressure solver, pTol, are set to 10−6 or 10−7.

Therefore, a fixed time step size is used in the simulations although it leads to excess
of computational costs. The benchmark calculations are performed on several levels of
refined meshes to obtain mesh independent results and to show convergence of the solvers
with respect to the mesh size. The chosen time step sizes are maximum values for which
the solution is independent of the chosen time step size. The comparison criteria are
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Figure 4: Numerical oscillations due to adaptive time stepping algorithm (v1:
maxCo=0.25, uTol=10−5 pTol=10−6; v2: maxCo=0.5, uTol=10−5 pTol=10−6; v3:
maxCo=0.5, uTol=10−6 pTol=10−7).

maximum drag coefficient and minimum lift coefficient. Since the lift coefficient is more
sensitive than the drag coefficient, the lift coefficient results are more representative in
accuracy. When all the results are considered, it is clear that FeatFlow has the best
convergence behavior, namely showing quadratic convergence, with respect to the mesh
size. This result was foreseen by the authors due to the employed quadratic finite element
functions. And converged results with respect to mesh size are already obtained on the
3rd level mesh by FeatFlow. In Figure 5, it is clearly shown that level 3 and level 4
results are identical and consequently the finest level results are considered as the reference
through this study. Moreover, it is worth to mention that these results are the closest to
one reported by John [4].

Figure 5: FeatFlow results for the second benchmark: drag coefficient (left), lift coef-
ficient(right).

The old results for cDmax and cLmin had been given within the intervals, [3.2000, 3.3000]
and [0.0020, 0.0040] respectively, by Turek et al. [1], and cDmax has been determined as
3.2968 by John [4]. These old results are not sufficient and accurate enough to establish
an inclusive benchmark study. Besides, to evaluate the results of benchmark calculations
with respect to only cDmax and cLmin is not much elucidating on the accuracy of the re-
sults. Hence, additional to the comparison of cDmax and cLmin values, we also compare the
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Figure 6: A closer look at the Figure 5: drag coefficient (left), lift coefficient(right).

solution regarding L2Err and L∞Err which denotes the L2 norm of the error normalized
by L2 norm of the reference solution and the L∞ norm of error, respectively, are obtained
through the following calculation steps:

1. An equidistant discrete time step is specified for which L2Err is
independent of the step size.

2. The reference solution and the other solutions are interpolated
(linear interpolation) to the specified discrete time step.

3. L2 norm and L∞ norm of the differences between reference solu-
tion and other solutions are calculated.

Results of the benchmark calculations are plotted in the Figures (5–9) and values of
the comparison criteria, L2Err, L∞Err and relative errors due to the comparison criteria
are given in Tables 5–10.

In Figure (11), we present the results of the benchmark calculations for the finest
level, and it is obvious that the results are in agreement. An interesting finding is that
the FeatFlow results at level 2 are as accurate as results of CFX or OpenFOAM at the
finest level, see Table (11, 12).

Table 5: FeatFlow results. (∗: clock time x number of nodes)

Case # of Cells cDmax cLmax cLmin Tstep (s) Time∗ (s)

FFL1 6144 3.2207 0.0027 -0.0095 0.010 3220 x 2

FFL2 49152 3.2877 0.0028 -0.010892 0.010 17300 x 4

FFL3 393216 3.2963 0.0028 -0.010992 0.010 35550 x 24

FFL4 3145728 3.2978 0.0028 -0.010999 0.005 214473 x 48
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Table 6: Error calculations for FeatFlow results.

Case
%Err %L2Err %L∞Err

cDmax cLmin cD cL cD cL

FFL1 2.34 13.6 2.09 13.8 7.71 0.152

FFL2 0.31 0.91 0.29 1.05 1.01 0.013

FFL3 0.05 0.09 0.06 0.28 0.23 0.003

Figure 7: OpenFOAM results for the second benchmark: drag coefficient (left), lift coef-
ficient (right).

Figure 8: A closer look at the Figure 7: drag coefficient (left), lift coefficient(right).

Table 7: OpenFOAM results. (∗: clock time x number of nodes)

Case # of Cells cDmax cLmax cLmin Tstep (s) Time∗ (s)

OFL2 49152 3.3963 0.0029 -0.0128 0.0025 4850

OFL3 393216 3.3233 0.0028 -0.0118 0.0010 76300 x 4

OFL4 3145728 3.3038 0.0028 -0.0112 0.0005 593500 x 24

5. Conclusions

The results obtained by this benchmark computations definitively replace the existing
reference results for the second test case. FeatFlow results at mesh level 3 could be
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Table 8: Error calculations for the OpenFOAM results.

Case
%Err %L2Err %L∞Err

cDmax cLmin cD cL cD cL

OFL2 3.0 16 2.61 14.5 10.0 0.21

OFL3 0.8 7.3 0.67 5.91 2.56 0.08

OFL4 0.2 1.8 0.16 1.47 0.61 0.02

Figure 9: CFX results for the second benchmark: drag coefficient (left), lift coeffi-
cient(right).

Figure 10: A closer look at the Figure 9: drag coefficient (left), lift coefficient(right).

Table 9: CFX results. (∗: clock time x number of nodes)

Case # of Cells cDmax cLmax cLmin Tstep (s) Time∗ (s)

CFXL2 49152 3.3336 0.0028 -0.0106 0.010 22320

CFXL3 393216 3.3334 0.0028 -0.0118 0.005 61530 x 4

CFXL4 3145728 3.3084 0.0028 -0.0113 0.005 115300 x 24

already considered as mesh independent results and regarding the results obtained at
mesh level 4, we can conclude that fully converged solution of the second benchmark test
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Table 10: Error calculations for the CFX results.

Case
%Err %L2Err %L∞Err

cDmax cLmin cD cL cD cL

CFXL2 1.1 3.63 1.52 7.81 5.31 0.10

CFXL3 1.1 7.27 0.98 6.31 3.75 0.10

CFXL4 0.3 2.73 0.29 2.24 1.20 0.03

Figure 11: The finest level results for the second benchmark test: drag coefficient (left),
lift coefficient(right).

Figure 12: A closer look at the Figure 11: drag coefficient (left), lift coefficient(right).

is achieved, which has been the primary goal of the study. Moreover, we got an insight
to answers of our questions in the beginning of the study with the obtained results.

1. We have observed that multigrid techniques slightly increase the performance of the
segregated solvers in the solution of viscous Burger’s equation due to the chosen
small time steps. However, in the case of coupled solvers or the solution of the
pressure-Poisson problem, there is a drastic difference between the performance of
conventional (single grid) iterative methods and multigrid techniques. Consequently,
it seems to be impossible to obtain efficient solvers for laminar incompressible flow
problems unless suitable multigrid techniques are employed.
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Table 11: The finest level results and FeatFlow results at level 2. (∗: clock time x
number of nodes)

Case # of Cells cDmax cLmax cLmin Tstep (s) Time∗ (s)

FFL2 49152 3.2877 0.0028 -0.0109 0.0100 17300 x 4

FFL4 3145728 3.2978 0.0028 -0.0110 0.0050 214473 x 48

OFL4 3145728 3.3038 0.0028 -0.0112 0.0002 593500 x 24

CFXL4 3145728 3.3084 0.0028 -0.0113 0.0050 115300 x 24

Table 12: Comparison of FeatFlow results at level 2 with OpenFOAM and CFX at
level 4. (∗: clock time x number of nodes)

Case
%Err %L2Err %L∞Err Time* (s)

cDmax cLmin cD cL cD cL

FFL2 0.31 0.91 0.29 1.05 1.01 0.01 17300 x 4

OFL4 0.18 1.82 0.16 1.47 0.61 0.02 593500 x 24

CFXL4 0.32 2.73 0.29 2.24 1.20 0.03 115300 x 24

2. Fully coupled implicit solvers (CFX) offer the advantage of using larger time step
sizes, however, to be able to reach the desired accuracy, they require more nonlinear
iterations. Thus, the overall computational cost has not been changed significantly.
In the light of our calculations, there is not much difference between these two
approaches in the solution of unsteady incompressible laminar flows; however, this
question requires further investigation.

3. Using higher order discretization schemes in space leads to denser linear system of
equations which can be solved more efficiently on state of the art computers. And
since, FeatFlow is more accurate and efficient in the test cases (see Table (12)),
we can conclude that it pays to use higher order discretization in space and time.

Regarding the comparison of the software tools, the most prominent conclusion can
be drawn form Table (12): FF calculation at level 2 on 4 nodes has a similar accuracy of
other codes at level 4 on 24 nodes. While FF requires ≈5 hours of computation for these
calculations, CFX and OF require much more.

As a conclusion, in the Re = 20 case, we succeeded to obtain fully converged results
with all three softwares, and although the second benchmark test was particularly chal-
lenging, a reliable reference solution has been obtained. Regarding the computational
performance of the employed software packages, this benchmark should be considered as
still open and a motivation for CFD software developers to join. All data files and the
corresponding plots of the results obtained through this study can be downloaded from
“http://www.featflow.de/en/benchmarks.html” website.
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