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Summary. In the simulation of the NC-shape grinding process, a finite element
model of the grinding machine is included. To enhance the accuracy and efficiency of
the finite element computation, a posteriori error estimation and resulting adaptive
mesh refinement techniques are used. In this note, a dual weighted a posteriori error
estimate for a linear second order hyperbolic model problem is derived. Numerical
results illustrate the performance of the presented approach.

1 Introduction

To model the interaction between the grinding process and the machine struc-
ture is indispensable in the simulation of the NC-shape grinding process. The
coupling of separate machine and process simulations is a common simulation
approach. We use an empiric force model in conjuction with a geometric-
kinematical simulation to model the process [7]. The machine model is de-
scribed in [15]. It is based on a finite element simulation, in which the spindle
and the grinding wheel are explicitly considered. The remaining parts of the
grinding machine are modelled by elastic bearings. The simulations are cou-
pled by the exchange of the predicted grinding force, which is used as Neu-
mann type boundary condition in the finite element simulation, and of the
displacement of the grinding wheel, which changes the contact conditions in
the geometric-kinematical simulation. Because of the varying length scales,
the diameter of the grinding wheel is about 100 mm and the depth of cut is
less than 1 mm, adaptive finite element algorithms are an appropriate tool to
obtain an efficient simulation.
In general, a posteriori error estimates for second order hyperbolic problems
are possible for two different discretisation approaches. One of them uses space
time Galerkin methods for discretisation and applies similar techniques for er-
ror control as in the static case ([2, 3, 10, 12]). The other one is based on finite
differences in time and finite elements in space. Here, separate error estima-
tors are used for the space and time direction ([9, 11, 16]) or error estimates
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for the whole problem ([1, 6]) are derived.
Starting from the weak formulation of the wave equation, a space time
Galerkin discretisation is introduced in Section 2. In the next Section, the
goal-oriented a posteriori error estimate is derived and an adaptive refine-
ment algorithm based on it is discussed. Numerical results, which illustrate
the performance of the developed approach, are presented in Section 4. The
article concludes with a discussion of the results and an outlook.

2 Continuous Formulation and Space Time Galerkin

Discretisation

Based on the weak formulation of the linear wave equation, a space time
nonconforming Petrov Galerkin scheme with continuous basis functions in
time is introduced. We consider the linear wave equation

ρü− div(κ∇u) = f (1)

on the domain Ω ⊂ R
2 and the time interval I = [0, T ] with the initial

conditions u(0) = us and u̇(0) = vs as well as homogeneous Dirichlet boundary
conditions. For notational simplicity, the density ρ is set equal to 1. The
parameter κ describes the elasticity coefficient.
Rewriting equation (1) as a first order system, multiplying by suitable test
functions, and spatial integration by parts lead to the weak formulation:

∀ϕ = (ψ, χ) ∈ U × V : A(w,ϕ) = 0 (2)

Here, w = (u, v) ∈ U × V is the weak solution and

U :=
{

u|u ∈ L2(I;H1
0 (Ω)), u̇ ∈ L2(I;L2(Ω))

}

,

V :=
{

v|v ∈ L2(I;L2(Ω)), v̇ ∈ L2(I;H−1(Ω))
}

are the appropriate trial spaces, which are continuously embedded into
C

(

I;L2(Ω)
)

. The bilinear form A is given by

A(w,ϕ) := ((u̇− v, ψ)) + ((v̇, χ)) + (a(u)(χ)) − ((f, χ))

+(u(0) − us, ψ(0)) + (v(0) − vs, χ(0))

with ((ψ, χ)) :=
∫ T

0

∫

Ω
(ψχ) dx dt and a(u, χ)) :=

∫ T

0
(κ∇u,∇χ) dt.

The time interval I is decomposed into M subintervals Im := (tm−1, tm] with
0 = t0 < t1 < . . . < tM−1 < tM = T and km := tm − tm−1. The finite element
trial space in time stepm, V m

h , is based on the spatial mesh T
m
h and on bilinear

basis functions. In time, piecewise linear continuous basis functions are used
for the trial space and piecewise constant functions for the test space:

Vkh :=
{

vkh ∈ C(I;H1
0 (Ω))

∣

∣

∣
vkh|Im

∈ P̃1(Im, V
m
h ), vkh(0) ∈ V 0

h

}

Wkh :=
{

vkh ∈ L2(I;H1
0 (Ω))

∣

∣vkh|Im
∈ P0(Im, V

m
h ), vkh(0) ∈ V 0

h

}
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The space P̃1(Im, V
m
h ) is a slight modification of the space of linear polyno-

mials (see [14]). Eventually, the discrete problem is to find wkh = (ukh, vkh) ∈
Vkh × Vkh with

∀ϕkh = (ψkh, χkh) ∈Wkh ×Wkh : A(wkh, ϕkh) = 0. (3)

3 A Posteriori Error Estimation

In this section, the a posteriori error estimate is derived. In the first step an
abstract result from [5] is applied on the present situation. Then, the error
estimate is transformed into a computable estimate by well-tested approxi-
mations. Afterwards, it is used as basis for an adaptive refinement process.

Functionals of interest of the form J(w) :=
∫ T

0
J1(w(t)) dt are considered,

where J1 is an arbitrary three times continuously differentiable functional.
The Lagrangian is defined by L(w, z) := J(w) − A(w)(z). We say (w, z) ∈
(U × V ) × (V × U) is a stationary point of L, if

∀(δw, δz) ∈ (U × V ) × (V × U) : L′(w, z)(δw, δz) = 0.

The discrete stationary point (wkh, zkh) ∈ (Vkh ×Vkh)× (Wkh ×Wkh) is given
analogously. Following the results in [5, 13], we obtain the abstract error
representation

J(w) − J(wkh) =
1

2
L′(wkh, zkh)(w − w̃kh, z − z̃kh) + Rkh

=
1

2
ρ(wkh)(z − z̃kh) +

1

2
ρ⋆(wkh, zkh)(w − w̃kh) + Rkh,

with arbitrary w̃kh ∈ Vkh×Vkh and z̃kh ∈Wkh×Wkh. In the proof, we have to
pay attention to the fact that a nonconforming Petrov Galerkin discretisation
scheme is used. Here, the primal and the dual residual are given by

ρ(w)(ϕ) := L′
z = −A(w,ϕ)

ρ⋆(w, z)(ϕ) := L′
w = J ′(ϕ) −A(ϕ, z),

respectively. The remainder term Rkh is bounded above by the third power
of the error.
The weights, which represent the interpolation error, are approximated by
w − w̃kh ≈ Πkhwkh and z − z̃kh ≈ Πkhzkh. Here, the operator Πkh is given
by Πkh := ikh − id, where ikh is a patchwise interpolation of higher order
[4]. The operator Πkh approximates the interpolation error in space and time.
The spatial counterpart is defined by Πh := ih − id and the temporal one by
Πk := ik − id. Eventually, we obtain the computable error representation

J(w) − J(wkh) ≈
1

2
[ρ(wkh)(Πkhzkh) + ρ⋆(wkh, zkh)(Πkhwkh)] .
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Using the identity
Πkhϕkh = ikΠhϕkh +Πkϕkh,

which holds true for tensor product trial functions, the error estimate is split
into a temporal part ηk and a spatial part ηh:

J(w) − J(wkh) =
1

2
[ρ(wkh)(Πkzkh) + ρ⋆(wkh, zkh)(Πkwkh)]

+
1

2
[ρ(wkh)(ikΠhzkh) + ρ⋆(wkh, zkh)(ikΠhwkh)]

=: ηk + ηh.

The spatial residual terms are integrated by parts to localise the error estimate
as basis for an adaptive refinement process. This process consists of several
steps. In the first step, a space time refinement strategy decides, whether a
refinement in spatial or temporal direction or in both directions is performed.
We use an equlibration strategy, which was developed in [14]. The temporal
refinement strategy is a simple fixed fraction strategy [4]. In space, a more
complex global fixed fraction strategy [14] is used. There, all refinement in-
dicators of all mesh cells are compared. After the adaptive refinement, the
meshes are regularised to ensure a suitable structure, which includes only
single hanging nodes in space and time and a patch structure property [8].

4 Numerical Results

The domain of the spindle grinding wheel system contains several re-entrant
corners. Furthermore, the material is varying throughout the domain. A model
example for this difficulties is an L-shape domain with varying material, which
is considered here. The data of the example is choosen as:

Ω × I := ([−0.5, 0]× [−0.5, 0.5])∪ ([0, 0.5]× [−0.5, 0])× [0, 1]

κ := 1 + min{1, 10(x1 − 0.05)+}

f := 100Ix1≥
1

4
∧t∈([0, 1

4
]∪[ 1

2
, 3

4
])

J(w) :=
1

|I||B|

∫

I

∫

B

u(x, t) dx dt, B := B∞
1

8

(

−
1

4
,
1

4

)T

In Fig. 1, the spatial meshes of different time steps are depicted. In the begin-
ning, the cells in the area of the acting force are refined. Along the outgoing
wave, the mesh is refined. The inner edge of the L-shape domain is especially
well resolved. At the end, the domain of interest B gets more and more re-
fined. The second impulse is not considered, since the arising wave does not
reach B. In Fig. 2, the development of the error in the functional of interest
is shown over the complete number of mesh cells. The calculation with dy-
namic meshes is most efficient, followed by the calculation with an adaptively
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Fig. 1. Meshes for different time steps (n = 1, n = 50, n = 100, n = 150)
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Fig. 2. Convergence of the adaptive method
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refined mesh, which is kept constant during one refinement cycle. The graph
of the calculation without temporal mesh regularisation shows the need of
the algorithm to ensure the proper convergence of the adaptive method. The
effectivity indices are in the range of 1.

5 Conclusions and Further Work

In this article, we have presented a new approach to goal-oriented error esti-
mation for the linear wave equation. It leads to well adaptively refined meshes
and enhances the efficiency of the finite element discretisation.
The extension of the presented approach to nonlinear second order hyperbolic
problems will be considered in a separate article. The mesh refinement and
regularisation algorithms will be enhanced further and elaborately analysed.
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