
parpp3d++
A parallel C++ version of the

pp3d module in FEATFLOW

User guide

Author: Sven H.M. Buijssen

UNIVERSITY OF DORTMUND

INSTITUTE FOR APPLIED MATHEMATICS AND NUMERICS

parpp3d++

Contents

1 Up to the starting line 1

2 Installation 2

2.1 Configuration . 2

2.2 Compilation . 3

3 Syntax of parameter files 3

4 Creating a 3D grid file 11

5 Prescription of inflow and boundary conditions 12

5.1 Prescription of inflow . 12

5.2 Prescription of boundary conditions 12

6 Boundary projection 13

7 Scattered code changes 15

7.1 Changes to parser routine for parameter files 15

7.2 Different solver routines for mixed and pure boundary conditions 15

7.3 Calculation of drag and lift values 16

8 Output files 16

8.1 Statistical output files . 16

8.2 Restart solution files . 18

8.3 Visualisation output files . 18

9 Known bugs 19

9.1 Not simply connected partitions 19

9.2 More cases of inappropriate partitions 19

9.3 Disadvantage of triangulations with high aspect ratios 20

10 Migrating from pp3d 20

10.1 Equivalent options in parameter files 20

10.2 Changes to coarse grid file 21

10.3 indat3d.f and parq3d.f . 21

List of Tables

1 Predefined Makefile settings parpp3d++ ships with 1

2 Equivalent options in parameter files of pp3d and parpp3d++ 21

List of Figures

1 Sample parameter file samples/unitcube.dat 4

1 Sample parameter file samples/unitcube.dat (continued) . . 4

1 Sample parameter file samples/unitcube.dat (continued) . . 5

2 Creating a 3D mesh via extrusion 11

3 Prototypical device used in chemical engineering 13

4 Coarse grid of the geometry (2D cutplane view) 13

5 Sample output file of parpp3d++ 16

6 Sample output file of parpp3d++ (continued) 17

7 Sample output file of parpp3d++ (continued) 17

8 Sample output file of parpp3d++ (continued) 18

parpp3d++

1 Up to the starting line

What is parpp3d++? parpp3d++ is a parallel 3D code for the solution
of incompressible nonstationary Navier–Stokes equations. It is an adapta-
tion, i.e. parallel implementation, of the existing sequential solver pp3d from
the FEATFLOW package and, as such, applies the same numerical methods.
See [10, 3] for mathematical details.

parpp3d++ is not capable of solving 2D flow problems. According efforts
are not ventured either on the basis of the FEAT package. It will not be
before the completion of the currently developed, new FEASTFLOW package
that parallel 2D simulations will be potentiated. For details about its release
date see our website www.featflow.de.

Supported platforms: parpp3d++ has been successfully compiled, de-
ployed and tested in almost every UNIX environment. It does not run, though,
on Windows R© 95/98/ME/NT/2K/XP, MacOS R© nor OS/2 R©. Considering
the fact that the aim of parpp3d++ is High Performance Computing, es-
pecially using the tremendous computing power of multi-processor worksta-
tions, clusters or supercomputers, this restriction to UNIX flavours is quite a
matter of course. Thus, to run parpp3d++ , you need to have a UNIX system.

Prerequisities: For the impatient:

• 30 - 70 MB disk space for sources and object files

• 10 - 5000 MB disk space for visualisation files

• C/C++ compiler (STL support)

• MPI environment (headers + libraries)

The program has only very basic prerequisities.The most important thing is
disk space. You will need 20 MB for the compressed and unpacked sources.
Depending on your compiler and compile flags (whether or not you are
including debug information etc.) an additional amount of up to 50 MB
is needed for object files, libraries and the linked program. During run
time, large quantities of storage space will be consumed if you choose to
have visualisation output. If you choose a small time intervall or a high grid
density (i.e. high multigrid output level) hundreds of megabytes can easily
be stored on your hard drive in a single program run.

Further on, you will need a reasonably featured C as well as C++ compiler
(with at least basic STL support). GNU or KAI Compiler have been well-tested
with, others should do, too.

Finally, you will need an MPI 1.x or above environment (including headers
and libraries).

parpp3d++ ships with pre-defined makefile settings for the cases shown in
table 1. See section 2.1 for how to invoke these settings.

architecture compiler MPI environment comment

Alpha Server Compaq C/C++ 6.3 MPICH 1.1 OS: Linux

Alpha Server Compaq C/C++ 6.3 Digital MPI

Alpha Server gcc/g++ 2.95.2 LAM/MPI ≥ 6.3.x OS: True64

Cray T3E Kai CC 3.3 UNICOS MPT ≥ 1.3.x

Hitachi SR8000 gcc/g++ 2.95.2 Hitachi MPI2

Linux Intel C/C++ 5.01 LAM/MPI ≥ 6.5.x

Linux gcc/g++ 2.95.2 MPICH 1.2.1

Linux gcc/g++ 2.95.4 Score 4.x

SGI R8000/10000 gcc/g++ 2.95.2 LAM/MPI ≥ 6.3.x

Sun UltraSparc gcc/g++ 2.95.2 LAM/MPI ≥ 6.3.x

Sun UltraSparc gcc/g++ 2.95.2 MPICH 1.2.1

Sun UltraSparc gcc/g++ 2.95.2 SUN MPI 4.0

Table 1: Predefined Makefile settings parpp3d++ ships with

Contact: parpp3d@featflow.de

1

parpp3d++

2 Installation

Unlike most modern free software, parpp3d++ does not provide a comfort-
able configure script which determines system type and installed software
and automatically generates a makefile. But this does not mean that you are
on the point of embarking upon big trouble if you have decided to try out
parpp3d++ . In most cases you will have to make only few changes to the
default makefile. Mainly, these will consist of setting up your desired C/C++
compiler as well as the path to your MPI library and MPI header files.

2.1 Configuration

Download parpp3d++.1.x.x.tar.gz from our website and unpack it into
any directory of your choice. A new subdirectory called parpp3d++ will be
created, containing the source code as well as some exemplary parameter
files and corresponding grids.

We will first describe how to set up the makefile for parpp3d++. Change
to the newly created directory, invoke your favorite editor and open
Makefile.in.

% cd parpp3d++

% vi Makefile.in

This file contains all settings that you will have to tune most likely. It is quite
improbable that you will encounter the need to edit the actual Makefiles
yourself.

For your convenience, a variable called TARGET is defined within
Makefile.in which helps you to distinguish between different platforms
and/or compiler/MPI environments (see table 1 for predefined settings). De-
pending on this variable, different compiler and path settings are used. This
way you can keep a single Makefile.in for all your different compute plat-
forms and simply activate the appropriate settings by adjusting just this single
variable.

The variables you are most likely to adjust are

• CCC – indicating the path to your C++ compiler

• CC – indicating the path to your C compiler

• PLATFORMINCLUDES – indicating any non-default include paths, espe-
cially the path where the MPI header files reside

• SPECIALLIBS – indicating any non-default library paths

Most MPI environments provide a MPI compile wrapper command like mpiCC

/ mpicc. If you have set up CCC and CC to use these wrapper com-
mands, you may not have to specify the MPI include and library path in
PLATFORMINCLUDES and SPECIALLIBS, respectively.

When you are trying to compile parpp3d++ for the first time on a new plat-
form, you should inhibit code optimisation by setting OPTFLAGS accordingly.1

Once you have compiled parpp3d++ successfully, add code optimisation,
re-compile by issuing

% make clean; make

and have an extensive coffee break. :-)

Compilation with full optimisation will take at least minutes, if not hours.2

Program-specific compile opions: There are a few compile options
which are specific to parpp3d++ and which can be set using COPTIONS.

• If you would like to have run time statistics about how much time
has been spent in matrix assemblation, prolongation and restriction,
communication routines etc., specify -DCLOCK MEASURE.

• If you would like to see details about the stop criterions applied within
nonlinear and linear solver steps, specify -DMG DEBUG.

• If your MPI environment incorporates MPI-C++-Bindings and you ex-
perience severe compile errors, try specifying -DMPIPP H

• If your compiler complains about an error in function OutOfMemory in
module CProcessApp.cc, specify -DUSE KCC.3

1The precise option depends on your compiler, but in most cases it will be something like
-O0 or +O0.

2Well, I have seen both.
3OutOfMemory handles the out-of-memory execption anywhere in the program. Specifying

-DUSE KCC disables this feature. Consequence: If your problem size gets too big, parpp3d++
will just terminate without an eligible error message.

2

parpp3d++

2.2 Compilation

Having set up Makefile.in according to your system configuration, type

% make

This should build the executable ./parpp3d++.4

If you want to run a quick test, take one of the sample parameter files from
the subdirectory samples, rename it to parpp3d++.dat5 and invoke the MPI
run command. Have a look at the documentation of your MPI environment
for the correct syntax. In most cases, however, it will be a statement similar
to

% mpirun -c 2 ./parpp3d++

or

% mpirun -np 2 ./parpp3d++

4If you prefer a different program name, change the according value PROGNAME in
Makefile.in.

5The executable assumes that the parameter file has the same basename as the executable
and bears a ’.dat’ suffix. In case you have changed the value PROGNAME in Makefile.in or
renamed the executable to, e.g., ’3dsim’, you ought to have a parameter file called ’3dsim.dat’.

3 Syntax of parameter files

In order to perform a 3D flow simulation with parpp3d++ , you need to
traverse five to six steps:

• Download the program source files,

• compile the sources,

• set up a working parameter file,

• create a grid (triangulation),

• prescribe inflow and outflow conditions (hard-coded) and, possibly,

• perform boundary projections (hard-coded)

The first two steps have been dealt with in previous sections, now we will
discuss the syntax of the program’s parameter file. If you are familiar with
the parameter files belonging to the sequential programs from the FEAT-
FLOW package, you will assert that the options are quite acquainted.6 The
subdirectory samples contains a few ready-to-run configurations, e.g. flow
through a unit cube, flow through a channel around an obstacle, lid-driven
cavity, flow within a steel mould.

As with its sequential predecessors from the FEATFLOW package the main
purpose of the parameter file is to control the numerical solution process:
time stepping schemes to be applied, stabilisation methods, stop criterions,
number of multigrid levels etc. But it is used as well to prescribe path and
file name of the grid file, Reynolds number, restart information and – this is
new in parallel – partitioning information.

On startup, the executable searches the current directory for a parameter file
with the same name as the executable and a .dat suffix. This parameter file
is assumed to be an ordinary ASCII file. If you choose to keep the default
program name, a parameter file called parpp3d++.dat will be searched for.

Options are specified one per line. White spaces are ignored as well as
everything behind the standard C++ comment delimiter (//). The order in
which key words are specified does matter, unfortunately. But, the length
of strings does not matter. This is especially true for path and file names.7

6The key words are just slightly less cryptic! See chapter 10.1 for equivalent key words.
7A note for those of you who know the sequential FEATFLOW programs: There, you have a

limit of 15 characters for path and file names. This definitely had to change, had it not?

3

parpp3d++

// Value // program variable // description //
// -- //

1 // TestLoops // number of subsequent configurations in this file

// --- Simulation and grid -- //
0 // Func // simulation type:

// 0: unit cube
// 2: ASMO
// 3: driven cavity (pursuant to Deville et al.)
// 4: channel flow with two consecutive cylinders
// 5: channel flow with one cylinder (DFG Benchmark 3D-2Z)
// 8: Cast flow (ABB project)
// 9: BMBF project with Agar

Grids/UnitCube/Triaq512
// GridFile // file name of coarse grid

// --- Restart section -- //
0 // Restart // restart flag:

// 0: no restart
// 1: restart on same level
// 2: restart coarser level

1 // RestartITE // starting number for iterations and files
./comp/ // RestartBaseDir // base directory for solution files

none.r1 // RestartSolFile // prefix for the file family that actually
// contain the data for your restart

10 // SolFileFrequency // write solution file every xx iteration
3 // SolFileNumber // number of different solution files to keep

restart.lev3 // SolFilePrefix // prefix for solution files (for restart purposes)
// --- Partition section -- //

1 // PartitionTool // third party partition tool:
// 0: party
// 1: metis - variant 1
// 2: metis - variant 2

0 // PartitionCR // switch whether to
// 0: create or to
// 1: read partition information

./comp/ // PartitionBaseDir // base directory for partition files
benchmark // PartitionFile // partition file

// --- equation parameters and some for discretization -- //
1.0e3 // EpsEqu // viscosity parameter 1/nu

// - 1.0e3 for simulation type 4 & 5
// - 1.0e5 for simulation type 2
// - 3.2e3 for simulation type 3
// - 1.0e6 for simulation type 8

3 // NFine // maximum mg-level
7 // ICUB // cubature formula for calculation of matrices
7 // ICUB RHS // cubature formula for calculation of right hand side
0 // Lump // toggle mass matrix lumping (0: yes, 1: no)

1.0 // UpSam // Samarski upwind parameter

// --- parameters for solving burgers equation -- //
2 // MinFixpItU // min. number of fixpoint iterations (nonlinear)
5 // MaxFixpItU // max. number of fixpoint iterations (nonlinear)

1.0 // OmgIni // initial relaxation parameter (nonlinear)

(continued on next page)

Figure 1: Sample parameter file samples/unitcube.dat

1 // MinIItU // min. number of it. in inner (linear) iteration
5 // MaxIItU // max. number of it. in inner (linear) iteration

1e-1 // EpsUChange // limit for U-changes
1e-8 // EpsUDefect // limit for U-defects
1e-1 // DampUMG // limit for U-defect improvement
0.0 // AMinU // lower limit for optimal U-alpha
2.0 // AMaxU // upper limit for optimal U-alpha

1 // PreSteps_burg // number of presmoothing steps solving burgers-eq.
1 // PostSteps_burg // number of postsmoothing steps solving burgers-eq.
3 // Smoother_burg // type of smoother for burgers-equation:

// 1: jacobi / 2: SOR / 3: ILU / 4: CG
1.0 // MGOmega_burg // omega value used in smoothing process

2 // Solver_burg // exact solver on coarse grid:
// 1: jacobi / 2: SOR / 3: GS / 4: CG (ILU)

100 // SolverMaxIt_burg // max. number of iterations in coarse grid solver
// approved values:
// jacobi: 200 / SOR,GS,CG: 100

0 // Cycle_burg // multigrid cycle used: 0:F 1:V 2:W

// --- parameters for solving pressure poisson equation --------------------------------------- //
2 // MinIItP // min. number of it. in inner (linear) iteration

100 // MaxIItP // max. number of it. in inner (linear) iteration
1e+10 // EpsPChange // limit for P-changes
1e-8 // EpsDivergence // limit for divergence(u)

// (is equal to P-defects * current time step)
1e-1 // DampPMG // limit for P-defect improvement
0.0 // AMinP // lower limit for optimal P-alpha
2.0 // AMaxP // upper limit for optimal P-alpha

2 // PreSteps_press // number of presmoothing steps solving pressure-eq.
2 // PostSteps_press // number of postsmoothing steps solving pressure-eq.
1 // Smoother_press // type of smoother for pressure-equation:

// 1: jacobi / 2: SOR / 3: ILU
1.0 // MGOmega_press // omega value used in smoothing process

3 // SolverType_press // type of multigrid solver used:
// 1: conventional multigrid
// 2: cg method preconditioned with one
// additive multigrid step
// 3: cg method preconditioned with one
// multiplicative multigrid step

4 // Solver_press // exact solver on coarse grid:
// 1: jacobi / 2: SOR / 3: GS / 4: CG (ILU)

10 // SolverMaxIt_press // max. number of iterations in coarse grid solver
// approved values:
// jacobi: 200 / SOR: 500 / GS: 50 / CG: 100

0 // Cycle_press // multigrid cycle used: 0-F 1-V 2-W
2 // ProlType_press // type of pressure prolongation:

// 1: constant prolongation
// 2: linear prolongation

// --- Time iteration parameter --- //
-4 // Method // time step scheme used:

// 1: Chorin (1st order)
// 2: VanKan (2nd order)
// -x: VanKan with |x| initial Chorin steps

1000 // MaxTimeIterations // maximum number of iterations in time
5.0 // TEnd // endpoint in time

(continued on next page)

Figure 1: Sample parameter file samples/unitcube.dat (continued)

4

parpp3d++

1e-4 // EpsNS // lower limit for time derivative
0.001000 // DtStart // time step to start with (not macro time step!)

1 // TStepControlITE // number of iterations between next time step control
0.001 // DtMin // minimum time step

4.0 // DtMax // maximum time step
1.0 // TInitPhase // duration of start phase

0.001 // EPSADI // parameter for time error limit in start phase
0.0001 // EPSADL // parameter for time error limit after start phase

// --- Output format, location and frequency -- //
./postprocess/ // OutputBaseDir // base directory for all output files

0 // AVSOutputLevel // level of refinement that is used for avs output
// (’0’ means no avs output)

benchmark.grid.l3 // AVSGridFile // path and prefix for avs grid output file name
benchmark.l3 // AVSSolutionFile // path and prefix for avs output files

0.0 // DtAVS // time difference for avs output
3 // GMVOutputLevel // level of refinement that is used for gmv output

// (’0’ means no gmv output)
benchmark.grid.l3 // GMVGridFile // path and prefix for gmv grid output file name
benchmark.l3 // GMVSolutionFile // path and prefix for gmv output files

0.1 // DtGMV // time difference for gmv output

// --- Debug section -- //
0 // Debug // toggle "function call tracing"

Figure 1: Sample parameter file samples/unitcube.dat (continued)

Let’s have a look at an exemplary parameter file, unitcube.dat from the
subdirectory samples (see previous page). To increase readability for hu-
mans, a three-columns format has been used. The first column contains the
option value, either numeric or string. The second column specifies the pro-
grams variable (which is, in fact, a kind of key word) this value is assigned
to. The last column has some explanatory comments on the key word.

If you prefer a more Spartanic parameter file, just omit all comments. Be-
cause everything apart from the options in the first column is placed in com-
ments, the first five lines of unitcube.dat in figure 1 could be equivalently
reduced to as less as

1

0

Grids/UnitCube/Triaq512

0

1

which is, however, a nightmare to maintain.

On the next pages, you will find a complete reference list of key words.
You don’t need to know exactly what each item does. The most vital

key words are as follows: EpsEqu, Func, GMVSolutionFile, GridFile,
MaxTimeIterations, NFine, OutputBaseDir, Partition*, Restart*, TEnd.

Complete list of parameter file key words:

AMaxP float value
Sets an upper bound for the adaptively chosen relaxation parameter
used to update pressure solution in multigrid’s prolongation step.

AMaxU float value
Sets an upper bound for the adaptively chosen relaxation parameter
used to update velocity solution in multigrid’s prolongation step.

AMinP float value
Sets a lower bound for the adaptively chosen relaxation parameter used
to update pressure solution in multigrid’s prolongation step.

AMinU float value
Sets a lower bound for the adaptively chosen relaxation parameter used
to update velocity solution in multigrid’s prolongation step.

AVSGridFile string
Specifies the file name that will contain the grid on level
AVSOutputLevel in AVS format.

AVSOutputLevel integer value
Sets the grid density (grid refinement level) for the visualisation output in
AVS format.
Specifying numbers bigger than 5 will easily lead to an exceeded disk
quota or hard disk capacity. The critical value is depending on the num-
ber of elements of your coarse grid. A level leading to roughly 50.000
to 100.000 elements is sufficient for most visualisation purposes.
Values bigger than NFine are automatically reduced to the value given
for NFine.

AVSSolutionFile string
Specifies the base file name of visualisation output on level
AVSOutputLevel in AVS format. Information on the current time
step and the process number will be appended as well as a suffix .avs

(see section 8.3).
Example: Specifying unitcube will lead to files named
unitcube.t###.p###.avs

5

parpp3d++

Cycle burg integer value
Specifies the type of multigrid cycle to be used for solving linearised
Burgers equations.
0 enables F-cycle, 1 uses V-cycle, 2 invokes W-cycle.

Cycle press integer value
Specifies the type of multigrid cycle to be used for solving Pressure Pois-
son equations.
0 enables F-cycle, 1 uses V-cycle, 2 invokes W-cycle.

DampPMG float value
Specifies the minimal factor the initial pressure defect has to be reduced.
The same remark applies as for EpsPChange.

DampUMG float value
Specifies the minimal factor the initial velocity defect has to be reduced.
DampUMG is one of the stop criterions applied in fixpoint iteration to solve
Burgers equation.

Debug integer value
A switch for debugging purposes only.
If the program terminates unexpectedly, set this option to 1. You will get
a message each time the program enters and leaves important func-
tions. This way you can roughly determine the erroneous routine.

DtAVS float value
Sets the minimum amount of time between to subsequent output files in
AVS format. Please read section 8.3 (page 18) about the time difference
in subsequent visualisation output files.
If you want a visualisation file for every single time step, set this value to
0.0.

DtGMV float value
Sets the minimum amount of time between to subsequent output files in
GMV format. Please read section 8.3 (page 18) about the time differ-
ence in subsequent visualisation output files.
If you want a visualisation file for every single time step, set this value to
0.0.

DtMax float value
Sets an upper bound for the time step size.

DtMin float value
Sets a lower bound for the time step size.

DtStart float value
Sets the initial time step.
By setting TStepControlITE to an exceptional high value, you can use
DtStart even to prescribe a global uniform time step.
Example: Set TStepControlITE to 10000 and you will have equidistant
time steps of size DtStart.

EPSADI float value
Sets the tolerable error for the time derivative during start phase.

EPSADL float value
Sets the tolerable error for the time derivative after start phase.

EpsDivergence float value
Specifies an upper limit for the divergence of the velocity solution.
The reason for this parameter being part of the pressure parameter sec-
tion is quite easy to explain: Keep in mind that in our discrete projection
approach the pressure defect can be controlled by EpsDivergence di-
vided by the current time step (see [10], page 66) and vice versa.

EpsEqu float value
Specifies the reciprocal of the viscosity parameter ε in the Navier–Stokes–
equations.
Warning: This value is not just the viscosity parameter for the
medium you are simulating. So, there is more to do than simply looking
this value up in a table. Instead, you will need characteristic velocity U
and characteristic length L for your configuration as well as the Reynolds
number Re. Then calculate the viscosity yourself using the formula

EpsEqu = U · L/Re

This is because, in science, one usually uses metre as standard unit, but
it would be inappropriate to express dimensions and distances (and in
a way viscosity) in metres if simulating a configuration that is several
orders of magnitude larger or smaller than 1 metre.
So, instead of using kinematic viscosity’s value for ε in the Navier–
Stokes–equations directly, calculate ε by applying the formula above
according to the units that hold for your grid dimensions and inflow
conditions.

EpsPChange float value
Specifies the minimum relative change between initial and acceptable

6

parpp3d++

pressure solution.
This parameter has hardly any effect on solution accuracy or iteration
count if EpsDivergence is set reasonably, i.e. to something like 10−6 −

10−10.

EpsNS float value
Specifies the lower limit for the time derivate of the velocity solution.
In case it turns out that the simulation has a stationary limit, this value
controls when to terminate the program.

EpsUChange float value
Specifies the minimum relative change between initial and acceptable
velocity solution.
EpsUChange is one of the stop criterions applied in fixpoint iteration to
solve Burgers equation.

EpsUDefect float value
Specifies the maximum tolerable value for the velocity defect, measured
in l2 norm.
EpsUDefect is used as stop criterion in fixpoint iteration to solve the
non-linear Burgers equation in every time step as well as in multigrid
routines to solve linearised Burgers equations.

Func integer value
If you choose to incorporate all your different flow configurations in a
single version of parpp3d++ and not to have multiple version of the
program lingering around – one for each different flow configuration –,
this multiswitch activates the hard-coded inflow and outflow conditions
as well as additional configuration-specific tasks like boundary projec-
tions, computation of lift and drag values, pressure differences etc.
We will learn later which parts of the program have to be at least ad-
justed to create a new flow configuration (see chapter 5 - 7).

GMVGridFile string
Specifies the file name that will contain the grid on level
GMVOutputLevel in GMV format.

GMVOutputLevel integer value
Sets the grid density (grid refinement level) for the visualisation output in
GMV format.
Specifying numbers bigger than 5 will easily lead to an exceeded disk
quota or hard disk capacity. The critical value is depending on the num-
ber of elements of your coarse grid. A level leading to roughly 50.000

to 100.000 elements is sufficient for most visualisation purposes.
Values bigger than NFine are automatically reduced to the value given
for NFine.

GMVSolutionFile string
Specifies the base file name of visualisation output on level
AVSOutputLevel in GMV format. Information on the current time
step and the process number will be appended as well as a suffix .gmv

(see section 8.3).
Example: Specifying unitcube will lead to files named
unitcube.t###.p###.gmv

GridFile string
Path and file name of the triangulation file to be used.
If not absolute, the path will be treated as relative to the programs path.

ICUB RHS integer value
Specifies the internal (FEAT) number for the cubature formula to be used
to calculate right hand side vectors.
The same remarks apply as for ICUB.

ICUB integer value
Specifies the internal (FEAT) number for the cubature formula to be used
to assemble matrices.
See the FEATFLOW manual, if you want to learn more about possible
settings. Unless you really know what you are doing, leave this value
unchanged.

Lump integer value (boolean)
Switch to control whether lumping of mass matrix should be enabled (0)
or disabled (1).

MaxFixpItU integer value
Sets an upper limit for the number of fixpoint iterations to be performed
to solve nonlinear Burgers equation in each time step.
Values greater than 10 should be prevented.

MaxIItP integer value
Sets an upper limit for the number of multigrid iterations to be per-
formed to solve Pressure Poisson problems.

MaxIItU integer value
Sets an upper limit for the number of multigrid iterations to be per-
formed to solve linearised Burgers problems.

7

parpp3d++

MaxTimeIterations integer value
Specifies the maximum number of (macro) time steps.
This value is one of the main normal program termination controls. If
either the endpoint in time or the maximum number of time steps is
reached, the program will terminate. So, be especially careful when
setting this value. It will be quite annoying and in most cases even
rather expensive in terms of waste of CPU and quota, if your simulation
terminates unmeantly because of a poorly chosen maximum number of
time iterations.

Method integer value
Specifies the time stepping scheme.
1 will use the Chorin scheme (first order), 2 will invoke Van Kan scheme
(second order).
Negative values are possible, too. In this case, the absolute value gives
the number of initial time steps using Chorin’s method, afterwards the
simulation continues with applying Van Kan’s scheme. This procedere is
especially useful if no restart information is available and a simulation
has to be started from scratch. Usually 4-5 initial Chorin steps give a
sufficient approximation to continue with Van Kan’s scheme.
If a restart is done, the value is ignored and Van Kan’s scheme is used.

MGOmega burg float value
Sets the relaxation parameter ω to be used by the smoothing algorithm
in multigrid to solve linearised Burgers equations.
See [10] for a detailed study on the influence of this relaxation parame-
ter for different smoothing algorithms. Simplistically speaking, a setting
of 0.8 for Jacobi method, 1.3 for SOR method, 0.9 for ILU and 1.3 for
CG method should show satisying results in most cases.

MGOmega press float value
Sets the relaxation parameter ω to be used by the smoothing algorithm
in multigrid to solve Pressure Poisson equations.
See [10] for a detailed study on the influence of this relaxation parame-
ter for different smoothing algorithms. Simplistically speaking, a setting
of 0.8 for Jacobi method, 1.3 for SOR method and 0.9 for ILU should
show satisying results in most cases.

MinFixpItU integer value
Specifies the minimum number of fixpoint iterations to be performed to
solve nonlinear Burgers equation in each time step.

MinIItP integer value
Specifies the minimum number of multigrid iterations to be performed
to solve Pressure Poisson problems.

MinIItU integer value
Specifies the minimum number of multigrid iterations to be performed
to solve linearised Burgers problems.

NFine integer value
Specifies the highest multigrid level number.
A value of 1 means the coarse grid is not refined, 2 means the coarse
grid is refined once and so forth. (Note: Each increment will lead to an
increase in problem size by a factor of 8.)

OmgIni float value
Specifies the initial value for the relaxation parameter ω in nonlinear
iteration.
A value of 1.0 should do in most cases.

OutputBaseDir string
Specifies the path where visualisation output files are stored. A trailing
slash can be omitted.

PartitionBaseDir string
Specifies the path where to look for partition information files and where
to write them to. A trailing slash can be omitted.

PartitionCR integer value (boolean)
Specifies whether partition information should be generated or read
from disk.
If set to 0, partition information will be generated and written to disk
using PartitionBaseDir and PartitionFile.
If set to 1, the value of PartitionTool will be ignored and par-
tition information is read from disk using PartitionBaseDir and
PartitionFile.

PartitionFile string
Specifies the file name that contains partition information.

PartitionTool integer value
Specifies which algorithm to be used for partitioning the coarse grid.
0 for the (non-deterministic) PARTy [8] algorithm,
1 for the (deterministic) METIS [6] algorithm PartGraphRecursive,

8

parpp3d++

2 for the (deterministic) METIS algorithm PartGraphVKway.
The PARTy algorithm relies on a given number of processes that is a
power of 2. As does METIS it uses graph theory to distribute coarse
grid’s elements onto the different processes as uniformly as possible.
There is no guaranty, though, that the resulting PARTy partition will be
identical each time you invoke the library. Every partition will be valid,
but most of the time you will end up with a bunch of different partitions,
not a single one. This especially holds for coarse grids with several
dozens or even hundreds of elements.
Contrary to this, both algorithms from the METIS library will generate
definite partitions if applied under the same conditions.8 Unlike PARTy
both algorithms work for all given (positive) number of processes.
See also section 9.1 and 9.2.

PostSteps burg integer value
Specifies the number of post-smoothing steps used in multigrid to solve
linearised Burgers equations.

PostSteps press integer value
Specifies the number of post-smoothing steps used in multigrid to solve
Pressure Poisson equations.

PreSteps burg integer value
Specifies the number of pre-smoothing steps used in multigrid to solve
linearised Burgers equations.

PreSteps press integer value
Specifies the number of pre-smoothing steps used in multigrid to solve
Pressure Poisson equations.

ProlType press integer value
Sets the prolongation method in multigrid for solving for Pressure Pois-
son equations.
1 enables constant prolongation, 2 means linear prolongation. Linear
prolongation for a Q0 ansatz means interpolating the values in the mid-
points of the elements of the coarser grid to the vertices, prolongating
them (linear) to the finer grid and re-interpolating the new values to the
elements’ midpoints.

RestartBaseDir string
Specifies the path where to look for solution files to use for restart ini-
tialisation. A trailing slash can be omitted.

8This explains the above terms ¨deterministic¨ and ¨non-deterministic¨.

RestartITE integer value
If continuing a simulation, it is rather convenient to initialise the iteration
counter appropriately by adjusting this value.

RestartSolFile string
Specifies the basename of the solution files to use for restart initialisa-
tion.
Remark: These files can be arbitrarily exchanged between different plat-
forms. Just ensure that all platforms use the same partition (for instance
by reading from the same file specified as PartitionFile). This implic-
itly means that the same number of processes is used, too.
Example: You have got a set of solution files from a 4–processor–run
named c3d0.r3.p000.sol, c3d0.r3.p001.sol, c3d0.r3.p002.sol

and c3d0.r3.p003.sol. The value for RestartSolFile would be
c3d0.r3

See also section 8.2.

Restart integer value
This switch indicates whether you want to start from scratch (0) or with
an (approximate) solution from a previous run.
You can continue a simulation with a solution from the same grid refine-
ment level (1) or use a solution that is one level coarser (2). In this case,
it will automatically be prolongated to the current grid refinement level.

Smoother burg integer value
Selects the smoother to be used in multigrid to solve linearised Burgers
equations.
1 means Jacobi method, 2 utilizes SOR method, 3 stands for ILU
method, 4 will invoke CG method.

Smoother press integer value
Selects the smoother to be used in multigrid to solve Pressure Poisson
equations.
1 means Jacobi method, 2 utilizes SOR method, 3 stands for ILU
method.

SolFileFrequency integer value
Specifies how many time step iterations have to be done before the next
solution file will be written.

SolFileNumber integer value
Specifies how many different solutions should be kept.

9

parpp3d++

If SolFileNumber is reached, the first set of files will be overwritten.
Usually, a number between 1 and 5 should do. Larger values should be
chosen very carefully: Having large grid densities you can easily end up
with an exceeded disk quota or hard disk capacity.

SolFilePrefix string
Specifies the basename for solution files to be written to the directory
RestartBaseDir.

SolverMaxIt burg integer value
Sets an upper limit for the number of iterations performed by the coarse
grid solver used in multigrid to solve linearised Burgers equations.

SolverMaxIt press integer value
Sets an upper limit for the number of iterations performed by the coarse
grid solver used in multigrid to solve Pressure Poisson equations.

SolverType press integer value
Controls which solver scheme is used to solve Pressure Poisson equa-
tions.
1 means ordinary multigrid method, 2 utilises CG method with exactly
one iteration of additive multigrid method as preconditioning step, 3

stands for CG method with multiplicative multigrid preconditioner.
For low degrees of parallelism you will hardly notice significant run time
differences from either setting. The performance depends on the mean
aspect ratio of your grid as well as the number of processors. Best results
are generally achieved with multiplicative preconditioned CG method.

Solver burg integer value
Specifies the solver scheme to be used on the coarse grid when solving
linearised Burgers equations with multigrid method.
1 means Jacobi method, 2 will utilise SOR method, 3 stands for ILU
method, 4 will invoke CG method with ILU pre-conditioning.

Solver press integer value
Specifies the solver scheme to be used on the coarse grid when solving
Pressure Poisson equations.
1 means Jacobi method, 2 will utilise SOR method, 3 stands for ILU
method, 4 will invoke CG method with ILU pre-conditioning.

TEnd float value
Specifies the endpoint in time.

Conjointly with EpsNS and MaxTimeIterations this option controls
when to end the program.

TestLoops integer value
The number of configuration sets within the current file.
Most data processing centers give access to their parallel computing
facilities via a queuing mechanism. You have to enqueue your job,
specifying the minimum and/or maximum resources your job wil need.
Depending on attendant circumstances you will have to wait hours or
days before your job is given the permission to run.
By increasing TestLoops you will be able to test different configurations
within a single enqueued job. This comes in quite handy whenever you
are investigating the influence of varying settings for smoothings steps
or stop criterions.

TInitPhase float value
Specifies the duration of the start phase.
Due to the projection method we apply, the solution of the Navier-Stokes
equation gained is not accurate for the very first time steps. A small
initialisation phase, a start phase, is needed in order to tune the flow.
During this phase, a weaker time error limit can and usually will be
used.

TStepControlITE integer value
Gives the number of (macro) time steps which have to be performed
before adaptove time step control is invoked.

UpSam float value
Specifies the parameter α for weighted Samarskij-Upwinding.
The value usually ranges between 0.1 and 2, see page 10 in [3] or [9].

10

parpp3d++

4 Creating a 3D grid file

The geometry and a first coarse triangulation of the domain is prescribed
by a grid file. This file contains the coordinates of all coarse grid’s (inner
and boundary) nodes and the manner in which they are connected to form
hexahedrons which triangulate the domain.

In case of curved surfaces the grid file will only contain a rough polynomial
approximation of this surface, though (see remark 1). Up to now, there is
no convenient way to create 3D grid files directly, e.g. there is no tool to
transform given CAD information into a grid file in FEATFLOW format.9

One option is to create a grid file manually (from scratch). This will require
a reasonable amount of time and spatial imagination. You will have to de-
termine all nodes and their interconnection. The complexity to perform such
a job manually is not merely trivial and will limit the spectrum of domains
to rather simple cases, e.g. domains of (unit) cube or channel type, possibly
with additional obstacles in the interior of these types.

The second option you have is to extrude a given 2D grid file, i.e. create
multiple copies of the 2D grid file, arrange them in layers with differing co-
ordinates with respect to the third dimension and triangulate neighbouring
layers (see figure 2). Most likely, this will be your usual way to create a 3D
grid file. The 2D grid file has to be created using a conventional grid gener-
ator like GiD [5] and exported or converted into FEATFLOWs twodimensional
grid format [1] (parametrisation file plus triangulation file). For the extrusion
process you will then rely on a small tool from the FEATFLOW package called
tr2to3. See [4] or [11] for documentation on the use of tr2to3.

Both possibilities to create a 3D grid are explained in full detail in [4].

Remark 1: Usually, curved surfaces within your domain are merely ap-
proximated in a very rough way by the coarse grid triangulation. The grid
refinement algorithm uses the idea of bisection and refines a given grid uni-
formly. Without additional (hard-coded) node adjustments refined grids will
not resolve more details of your geometry than the coarse grid.

So, in case of curved surfaces node adjustments or, to state it more precisely,
boundary projections are necessary. How to do this is explained in section 6.

9All programs from the FEATFLOW package, including parpp3d++ use this grid format.

Figure 2: Creating a 3D mesh via extrusion

Remark 2: Most of the time, a postprocessing step is needed if you have
created a 3D grid with tr2to3. Most coordinates within the grid are exported
by tr2to3 in floating point notation. Unfortunately, in Fortran – the program-
ming language tr2to3 is written in – there are two manners to code numbers
in floating point notation: with a capital ’E’ (for exponent) or ’D’ (for ex-
ponent with double precision). All sequential programs from the FEATFLOW

package are written in Fortran. Thus, they can handle grid files both with ’D’
or ’E’ syntax. parpp3d++ is written in C++ and C++, or more precisely
my parser routine, can’t handle the ’D’ syntax.

This means, if you create a 3D grid with FEATFLOW’s tr2to3 , you will have
to open it with your favourite editor and perform a global search and re-
place operation on all capital ’D’ to turn them into ’E’ (turning ’2.50D0’ into
’2.50E0’).

11

parpp3d++

5 Prescription of inflow and boundary con-

ditions

So far, we have gone through the first four of those six steps listed at the
beginning of chapter 3 that are necessary to set up parpp3d++ for a new
simulation. Next on our itinerary is how to prescribe inflow velocities and
profiles and how to distinguish between Dirichlet and Neumann boundaries.

5.1 Prescription of inflow

All those forces that propel the flow, whether it be a tangential force at a
boundary surface like, for instance, a lid-driven cavity flow or a configuration
with a distinct inflow and outflow boundary with a medium running through
the domain, are prescribed in a method called Solution of class ParGrid

in the file named Bound.cc in the main directory of parpp3d++ .

The method takes four (floating point number) arguments, the three coordi-
nate values of a (velocity) node as well as the current simulated point in time.
Freshly extracted from the distribution tarball, it consists of several dozens
of code lines. But this is just because of eight different configurations al-
ready been set up. These can be used as a starting point to become familiar
with the program and the manner in which inflow is prescribed. In fact, the
method consists merely of a single if-clause to distinguish between the three
(spatial) components of the inflow profile10: inflow in x-, y- and z-direction.
The x component is handled first, the y component second and finally the z
component. Comment lines within the code clearly indicate each section.

Within each section there is a switch-case-environment to determine inflows
for different configurations. It is quite convenient to have, once compiled,
a single binary that contains all your recent configurations ready-to-run and
be able to switch between them by changing an option in a parameter file
(see description of FUNC, page 7). Besides, it happens rather often that the
inflow pattern of a new configuration is very similar to one of the already set
up inflows and hardly needs more than a copy-and-paste operation.

To add a new configuration insert an additional case statement, calculate
the inflow velocity depending on the point in space and time and return
this value. Let us assume you want to have inflow in x direction with a
mean velocity of 1, a parabolic profile and no inflow in the remaining spatial

10Time dependency is treated in each of the spatial branches.

components. Furthermore, the width and height of the inflow surface (y- and
z-direction) is assumed to be 1. Then, the inflow function looks like

U(0, y, z, t) = 16yz(1 − y)(1 − z), V = W = 0

The following minimum definition of ParGrid::Solution is sufficient:

double ParGrid::Solution(double X, double Y, double Z, double T)

{

if (CoeffRhs == COEFF_RHSV1 || CoeffRhs == COEFF_L2V1) {

// Prescribe inflow in x direction

if (X < 1e-8) // no (X==0) if you can help it!

// think of rounding errors

return 16.0 * Y * (1-Y) * Z * (1-Z);

}

return 0.0;

}

5.2 Prescription of boundary conditions

Boundary conditions are defined in the same file as inflow conditions and, as
with those, the definition is based on coordinates. You can choose to keep
the boundary conditions for all of your configurations in a single file, too.
Just activate one of them by specifying the appropriate value for FUNC (see
page 7) in your parameter file.

So, in your sample file Bound.cc from the distribution tarball you will find a
method called SquareGrid 3D::BoundaryCondition. It takes an unsigned
integer as a flag for the boundary conditions to apply (same value as FUNC)
as well as four floating point numbers (three coordinates plus point in time)
as arguments. Return value is an integer which indicates whether a node
(given by its coordinates) belongs for a given point in time to a Dirichlet (1)
or Neumann (0) boundary.

Example: Let us start with the simplest possible case: a box of arbitrary width
and height, but fixed length of 1. It does not matter here where the actual
inflow (sub-)surface is located, just assume that the outflow surface will be
the rear end of the box, at x=1. Then, the following definition will do:

12

parpp3d++

int SquareGrid_3D::BoundaryCondition(unsigned int Func, double X,

double Y, double Z, double T)

{

const int neumann = 0;

const int dirichlet = 1;

double dist = 0.001;

if (X > 1.0 - dist) // avoid ’==’ statements with coordinates

return neumann;

return dirichlet;

}

One marginal note on this definition: Any obstacle in the interior of the
domain (which, as an obstacle, has obviously Dirichlet boundary condition) is
implicitly treated already! You are free, though, to explicitly define boundary
conditions for them, too. Have a look at the definition of boundary conditions
for the DFG Benchmark 3D-2Z configuration (Func = 5), for instance, which
consists of a channel flow around a cylinder.

6 Boundary projection

Apart from the creation process of a coarse grid and, sometimes, find-
ing optimal run-time parameters for a configuration11, boundary projec-
tions is the most annoying part of preparing the code for a new simula-
tion. As mentioned earlier, the coarse grid not always already resolves
all details of a given geometry. Especially in the case of curved struc-
tures within a domain, special precautions have to be taken to guarantee
that refined grids approximate a given geometry more thoroughly. This is
done by defining an algorithm that projects boundary points (within your
grid) to the real boundary (of your domain). To explain the mechanism, let
us examine the boundary projections for one of the sample configurations
parpp3d++ ships with: a small device used in chemical engineering to mix
different species. The domain consists of a stretched hexagon, extruded in
z-direction and additional cylinders at the left and right end. In the inte-
rior, nine cylindrical obstacles are to be found (see figure 3). The coarse
grid used (Grids/BMBF CE/9shifted.round.tri) approximates all of these
curved surfaces polygonally (see figure 4).

Figure 3: Prototypical device used in
chemical engineering

Figure 4: Coarse grid of the geom-
etry (2D cutplane view)

More or less cylindrical structures are created using the definition of the
method Task::BoundaryProjection listed below which takes no arguments
and is called only once for every grid refinement level during the initialising
phase of parpp3d++ . In fact, nothing else is done but defining the midpoint
and radius of each cylinder and assuring that each boundary point resides
on the edge of its corresponding cylinder. (In this listing, the code lines that
actually perform the projection have been omitted for the inner cylinders 2
to 9. They are identical to the projection used for the upper cylinder in the
first column.)

11In the meaning of resulting in fastest run times.

13

parpp3d++

void Task::BoundaryProjection()

{

int INPR, IEL;

double PX, PY, PZ, PXM, PYM, RAD;

double DISTXY = 0;

for (int IVT=1; IVT <= NumVertices; IVT++) {

INPR=(*InfoVertEdge)(IVT);

// 0: inner point

// >0: point on boundary component with this very number

if (INPR != 0) {

// For all boundary points ...

IEL = (*ElemVert)(3,IVT);

PX = (*VertCoord)(1,IVT);

PY = (*VertCoord)(2,IVT);

PZ = (*VertCoord)(3,IVT);

// left cylindrical inflow area

PXM =-2.952;

PYM = 2.952;

RAD = 0.25;

DISTXY = sqrt(pow(PX-PXM, 2) + pow(PY-PYM, 2));

if (fabs(PZ - 0) > 1e-3 && fabs(PZ - 0.1) > 1e-3 &&

PX <= -2.77522 && fabs(PY - 2.952) <= 0.25 &&

DISTXY <= RAD) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

if ((fabs(PZ - 0) <= 1e-3 || fabs(PZ - 0.1) <= 1e-3) &&

PX <= -2.77522 && fabs(PY - 2.952) <= 0.25 &&

DISTXY <= RAD && IEL == 0) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

// Upper hole, 1st column

PXM = 1.0;

PYM = 4.0;

RAD = 0.5;

DISTXY = sqrt(pow(PX-PXM, 2) + pow(PY-PYM, 2));

if (fabs(PZ - 0) > 1e-3 && fabs(PZ - 0.1) > 1e-3 &&

fabs(PX - PXM) <= 1.5 * RAD && fabs(PY - PYM) <= 1.5 * RAD &&

DISTXY <= RAD) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

if ((fabs(PZ - 0) <= 1e-3 || fabs(PZ - 0.1) <= 1e-3) &&

fabs(PX - PXM) <= 1.5 * RAD && fabs(PY - PYM) <= 1.5 * RAD &&

DISTXY <= RAD && IEL == 0) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

// mid hole, 1st column

PXM = 1.0;

PYM = 2.5;

RAD = 0.5;

[...]

// lower hole, 1st column

PXM = 1.0;

PYM = 1.0;

RAD = 0.5;

[...]

// Upper hole, 2nd column

PXM = 3.0;

PYM = 4.904;

RAD = 0.5;

[...]

// mid hole, 2nd column

PXM = 3.0;

PYM = 3.404;

RAD = 0.5;

[...]

// lower hole, 2nd column

PXM = 3.0;

PYM = 1.904;

RAD = 0.5;

[...]

// Upper hole, 3rd column

PXM = 5.0;

PYM = 4.0;

RAD = 0.5;

[...]

// mid hole, 3rd column

PXM = 5.0;

PYM = 2.5;

RAD = 0.5;

[...]

// lower hole, 3rd column

PXM = 5.0;

14

parpp3d++

PYM = 1.0;

RAD = 0.5;

[...]

// right cylindrical outflow area

PXM = 8.856;

PYM = 2.952;

RAD = 0.25;

DISTXY = sqrt(pow(PX-PXM, 2) + pow(PY-PYM, 2));

if (fabs(PZ - 0) > 1e-3 && fabs(PZ - 0.1) > 1e-3 &&

PX >= 8.67922 && fabs(PY - 2.952) <= 0.25 &&

DISTXY <= RAD) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

if ((fabs(PZ - 0) <= 1e-3 || fabs(PZ - 0.1) <= 1e-3) &&

PX >= 8.67922 && fabs(PY - 2.952) <= 0.25 &&

DISTXY <= RAD && IEL == 0) {

(*VertCoord)(1, IVT) = PXM + RAD/DISTXY * (PX-PXM);

(*VertCoord)(2, IVT) = PYM + RAD/DISTXY * (PY-PYM);

}

} // end if INPR condition

} // end for IVT-loop

return;

}

7 Scattered code changes

Chapter 5 and 6 dealt with changes to the code that are mandatory for
every new configuration. Let us now have a closer look at more voluntary
exercises.

7.1 Changes to parser routine for parameter files

The file CProcessApp.cc in the main directory of parpp3d++ contains a
method called CProcessApp::ReadData. This method is a parser routine for
parameter files. If you add a new configuration, you should add a new
case statement within the first switch environment. For the user’s con-
venience, the number this configuration has been assigned to (see option
FUNC, page 7) and that is used internally by parpp3d++ can be mapped
here to whatever descriptive text you like. For an example investigate the
line starting with ¨type of hand-coded simulation¨ in the head section of the
sample output file of parpp3d++ in figure 5.

7.2 Different solver routines for mixed and pure
boundary conditions

In most cases, there exists a distinct inflow and an outflow area within your
geometry. So, the emerging velocity problem has mixed boundary condi-
tions. This is the normal case. If there is no flow through the geometry,
however, the velocity problem bears pure Dirichlet boundary conditions (a
driven cavity for instance, pre-set up configuration no. 3). The pressure is
not uniquely defined, then – only up to a constant. In order to come to a
properly defined problem in such a case, the mean value of the pressure at
the outflow boundary is set to zero.

A simple switch statement in the methods Task::Chorin, Task::Fractional
and Task::CrankNicolson (file TimeStep.cc) selects the solver routines de-
pending on the configuration number FUNC. Add a new case for your con-
figuration where appropriate.

15

parpp3d++

7.3 Calculation of drag and lift values

There may be cases where there are some obstacles within the geometry and
you might want to calculate drag and lift values for them. This has already
been done with parpp3d++ before, so you do not have to start from scratch
for getting this feature.

The procedure is as follows: Edit the method Task::SetDragLiftInfo in
Bound.cc and pinpoint those faces that make up the obstacle. As with inflow
prescription and boundary projections a coordinate-oriented approach is
used. Three configurations are already set up. Each of these uses a minimal
hexahedral box surrounding the obstacle. The computed solution for those
boundary faces that lay inside this box will be drawn on to calculate drag
and lift values in each time step.

If only drag and lift values for one obstacle are of interest, all that is left to do
is printing the calculated values. Modify the section dealing with the printing
of drag and lift values in method Task::DiscreteProjection, to be found
in the file TimeStep.cc.

If there is more than one obstacle and you want drag and lift values to be
calculated for all of them, you need to introduce new data structures (of the
same type as MDragBound[MaxLevel] and MElemDragBound[MaxLevel] and
an additional counter (NumDragBound) for every obstacle. Scrutinize the code
lines for the channel configuration with two consecutive cylinders in method
Task::SetCoeffInfo in file Bound.cc and use them as a guideline.

8 Output files

8.1 Statistical output files

During a normal program run quite a few output files are generated. There
will be at least a set of files containing statistics about the calculations being
perfomed. Each of the parallel processes has its own output file. Their file
names are created according to the following rules: They will consist of the
program’s file name followed by a ".out.p###". Herein, the ’#’ will be re-
placed by the process numbers, possibly prepended by zeros. So, a 4-node-
run with parpp3d++ will lead to output files named parpp3d++.out.p000,
parpp3d++.out.p001, parpp3d++.out.p002, parpp3d++.out.p003. Each
of them will list the options from the parameter file. Further, each will con-
tain the number of elements, vertices and faces on each grid refinement level
the corresponding process has been assigned by the partitioning algorithm.
Progress and timing statistics about the assemblation of all matrices needed
are included, too. As soon as the initialisation phase has been completed,
all but the first process cease printing statistics. Only parpp3d++.out.p000

shows from this point on information on the program’s progress. Figure 5
contains a sample listing:

SIMULATION No.1

INPUT DATA SECTION

number of parallel processes : 4

type of hard-coded simulation : project chemical engineering

coarse grid file : Grids/BMBF_CE/9shifted.round.tri

base directory for restart files : ./comp/

write restart file every : 10 iteration(s)

number of restart files to keep : 3

prefix restart files : 9shifted.round.lev3

partition information is : created by 3rd party library <party>

base directory for partition files : ./comp/

partition file : 9shifted.round.procs4

viscosity parameter nu, given in 1/nu: 100.0

maximum mg-level : 3

element type : non-parametric, mean value,

rotated tri-linear finite element

boundary condition : 1

cubature formula for matrix assembl. : 7

cubature formula for right hand side : 7

enable mass matrix lumping : yes

method of stabilisation : upwind

samarski upwind parameter : 1.00

parameter for velocity computation

- min. number of fixpoint iterations : 1

- max. number of fixpoint iterations : 2

- value for opt. omega : 1.0

(continued on next page)

Figure 5: Sample output file of parpp3d++

16

parpp3d++

- min. number of multigrid/cg steps : 1

- max. number of multigrid/cg steps : 5

- limit for changes : 1.00e-01

- limit for defects : 1.00e-06

- limit for defect improvement : 1.00e-01

- lower limit for opt. alpha :-1.0

- upper limit for opt. alpha : 1.0

- number of pre-smoothing steps : 2

- number of post-smoothing steps : 2

- smoother used : ilu

- omega for smoother : 8.00e-01

- coarse grid solver used : cg

- max. iterations coarse grid solver : 250

- multigrid cycle used : f-cycle

parameter for pressure computation

- min. number of multigrid/cg steps : 2

- max. number of multigrid/cg steps : 25

- limit for changes : 1.00e+10

- limit for divergence of velocity : 1.00e-10

- limit for defect improvement : 1.00e-01

- lower limit for opt. alpha : 0.0

- upper limit for opt. alpha : 1.0

- number of pre-smoothing steps : 8

- number of post-smoothing steps : 8

- smoother used : ilu

- omega for smoother : 8.00e-01

- solver scheme used : cg method preconditioned with one

multiplicative multigrid step

- coarse grid solver used : cg

- max. iterations coarse grid solver : 150

- multigrid cycle used : f-cycle

- pressure prolongation is performed : linear

projection scheme used : Van Kan with 4 initial Chorin steps

number of time iterations : 1

simulation length : 25.00 sec

lower limit for time derivate : 2.00e-04

time step to start with : 8.33e-04 sec

iterations between time step control : 1

minimum time step : 1.00e-06 sec

maximum time step : 1.00e+00 sec

duration of starting time : 0.10 sec

accuracy for acceptance in start : 1.00e-03

accuracy for acceptance after start : 1.00e-04

base directory for output files : ./postprocess/

write solution in avs format : no

write solution in gmv format : no

OUTPUT DATA SECTION

Reading grid file from disk. Done.

Computing partition information. Done.

Writing partition information to disk. Done.

Information on the grid process no. 0 uses in multi grid:

level | #elements | #vertices | #faces

-------+-----------+-----------+---------

1 | 188 | 360 | 708

2 | 1504 | 2135 | 5088

3 | 12032 | 14445 | 38400

Time needed for grid refining: 0h 00m 01.6s

Time needed for pure refining: 0h 00m 00.6s

Assembling laplace matrix. Done.

Assembling mass matrix. Done.

Calculating projection matrix. Done.

Time needed for assembling matrices: 8.92576s

(continued on next page)

Figure 6: Sample output file of parpp3d++ (continued)

Calculating anisotropy degree:

level | ar_max | sv_max | kv_max ar_mean | sv_mean | kv_mean

-------+------------+------------+------------ ------------+------------+-----------

1 | 1.39e+01 | 3.04e+00 | 3.04e+00 7.77e+00 | 1.21e+00 | 1.11e+00

2 | 1.41e+01 | 1.91e+00 | 1.91e+00 7.84e+00 | 1.09e+00 | 1.05e+00

3 | 1.44e+01 | 1.41e+00 | 1.41e+00 7.86e+00 | 1.04e+00 | 1.02e+00

Calculating anisotropy variation (while calculating volumes):

level | av_max | av_min | av_mean

-------+------------+------------+------------

1 | 3.15e+00 | 1.00e+00 | 1.31e+00

2 | 3.09e+00 | 1.00e+00 | 1.16e+00

3 | 3.06e+00 | 1.00e+00 | 1.08e+00

Creating structures containing information about

Dirichlet, Neumann and artificial boundaries. Done.

Degrees of freedom for

* burgers equation : 451488

* pressure poisson equation : 47360

Total number of unknowns in space: 498848

Elapsed computing time: 0h 00m 15.9s

Computing progress:

* Time iteration no. 1 at 0.000833333 sec:

Performing step with Chorin method.

Current macro time step: 8.3333e-04

| relative change | defect in velocity | conv.rate in multigrid | mg-steps | nonlinear

it. | u1 u2 u3 | u1 u2 u3 | u1 u2 u3 | u1 u2 u3 | conv.rate

-----+----------------------------+----------------------------+----------------------------+----------+-----------

| | 0.00e+00 0.00e+00 2.64e-06 | | |

1 | 0.00e+00 0.00e+00 3.53e-01 | 0.00e+00 0.00e+00 2.46e-07 | 0.00e+00 0.00e+00 1.03e-04 | 1 1 1 | 9.31e-02

(Stop criterion for burgers equation has been fulfilled.)

Time needed for solving burgers equation: 0h 00m 17.4s

Projection step using cg method preconditioned with 1 multiplicative multigrid step:

divergence (l2) | conv.rate in mg | mg-steps

-----------------+-----------------+----------

5.53e-11 | 4.01e-01 | 16

(Stop criterion for pressure poisson equation has been fulfilled.)

Time needed for solving pressure poisson equation: 0h 00m 13.4s

Time needed for current time step: 0h 00m 30.9s

Time needed for current macro time step: 0h 00m 30.9s

Time derivate of u (l2norm, problem size scaled): 4.6310e+02

Writing solution (in raw format for restart purposes) to disk. Done.

Elapsed simulated time: 0h 00m 00.0s (8.3333e-04s)

Elapsed computing time: 0h 00m 47.2s

--

Time statistics:

==================

Computational time so far: 0h 00m 47.2s

Time needed to solve the non-linear momentum and the pressure poisson problem:

| cpu time | % of time solving equations | % of total time

---------------------------+----------------+-----------------------------+-----------------

momentum equations | 0h 00m 17.4s | 56.53 % | 36.92 %

pressure poisson equations | 0h 00m 13.4s | 43.47 % | 28.40 %

(continued on next page)

Figure 7: Sample output file of parpp3d++ (continued)

17

parpp3d++

Time distribution during this computation:

| total time | comm. time

---------------------------+----------------+------------

grid refining | 0h 00m 00.6s | 0.00 %

matrix assemblation | 0h 00m 22.2s | 0.00 %

equation solving | 0h 00m 17.1s | n.a.

other (i/o etc.) | 0h 00m 07.1s |

- - - - - - - - - - - - - + - - - - - -+- - - - - - - -

matrix-vector multipl. | 0h 00m 09.6s | 76.04 %

computing norms | 0h 00m 00.5s | 22.36 %

- - - - - - - - - - - - - + - - - - - -+- - - - - - - -

smoothing | 0h 00m 11.1s | 19.32 %

computing defects | 0h 00m 02.0s | 66.31 %

restriction | 0h 00m 00.0s | 47.99 %

prolongation | 0h 00m 00.2s | 6.37 %

solve coarse problem | 0h 00m 00.0s | 17.57 %

--

SIMULATION No.1 COMPLETED

Figure 8: Sample output file of parpp3d++ (continued)

8.2 Restart solution files

At the end of each program run parpp3d++ automatically stores restart in-
formation on your hard disk. Additionally, every few time steps intermediate
restart information is saved as well. You can control this frequency be setting
SOLFILEFREQUENCY accordingly.

Each process creates a file where that part of the velocity and pressure solu-
tion12 is stored that resides in the memory space of this process. That means,
restart information can only be successfully used (for a continuation
on the same grid refinement level or a restart on a one level finer grid) if
the same partitioning is guaranteed!13

The restart solution file names are created according to the following rule:
They will consist of the string given as SOLFILEPREFIX in the parameter file fol-
lowed by a ".r#.p###.sol". The first ’#’ represents the counter for restart
solution files. This counter is incremented every SOLFILEFREQUENCY (macro)
time steps, modulo the value given as SOLFILENUMBER.

The trailing three ’#’ are replaced by the process number, possibly
prepended by zeros – as with the statistical output files.

12Plus point in time and current time step information.
13This is the reason why partitioning information is always stored to a file.

It has to be stated here, though, that partitions for a fixed number of processes are always
identical, if created by the third party library METIS. This, however, holds not for PARTy partitions.
The algorithm seems not deterministic, resulting in more or less different partitions at each
invokation.

If you want to actually restart from a set of restart solution files – let us assume
they are named restart.lev2.r2.p###.sol – then just set RESTARTSOLFILE

to restart.lev2.r2. The program will determine the correct names for
each process.

8.3 Visualisation output files

Finally, parpp3d++ can produce output to be used in a postprocessing step
as input data for a visualisation program. parpp3d++ ships with standard
support for the data formats of AVS [2] and GMV [7]. Considering the huge
amounts of disk space that can easily be consumed by exporting visualisation
data, parpp3d++ does not export any by default. Unless AVSOUTPUTLEVEL

or GMVOUTPUTLEVEL is set to a value greater than zero, no output file in
AVS or GMV format, respectively, is created.

If you have opted for any of these two formats (by setting AVSOUTPUTLEVEL

or GMVOUTPUTLEVEL to a positive integer), a set of output files is created
every DTAVS or DTGMV seconds, respectively. This time difference, how-
ever, is not stricty kept. It is just a lower limit for the creation of visualisation
output files. The reason is quite simple: A typical time-depending 3D flow
simulation requires (at a typical problem size of 106 - 108 unknowns) at least
a hundred, if not several hundred time steps. To not waste any resources,
time steps are chosen adaptively and are increased to the limit while main-
taining numerical accuracy.14 As soon as the simulated time exceeds the
time difference limit stated by DTAVS or DTGMV, respectively, the next set of
visualisation output files is generated.

What does this mean, a set of visualisation output files? Is there no single
visualisation output file for each point in time? No, there is not! On most
supercomputers, computing time is limited (mostly, to several hours of con-
tinously running a program). Transferring all data to a single process and
subsequently exporting it to a single file (in each time step) would leave most
of the processes idle for an unreasonable amount of time. Instead each pro-
cess writes his part of the solution to the (local) hard disk – as with statistics
and restart solution files.

The merging of the visualisation output files is done in a postprocess-
ing step. Two command line tools ship with parpp3d++ that will do the

14In order to accomplish this, implicit time stepping schemes are used. These allow larger
time steps than explicit schemes at the same numerical accuracy. (The price are systems of
(non-)linear equations which are more difficult to solve.)

18

parpp3d++

job: mergeavsfiles and mergegmvfiles (residing in a subdirectory called
Tools.) Both are quite simple programs that only require a C++ compiler
with STL support – very much the same requirements as for parpp3d++ . You
should be able to compile them with minor changes to the Makefile, if any.

The syntax of both program’s invocation is identical. The first argument is
the base name of a set of visualisation output files. If you have a set of files
named unitcube.t###.p###.avs just specify unitcube.

As second argument they take the starting t-number of your sequence, i.e.
the number behind the .t and before .p of a valid set of files. In most cases
this will be 1.15

The third argument is the number of different time steps and the last ar-
gument tells the number of processes you have used, i.e. the number of
fragments an output file consists of after a program run of parpp3d++ .

Example: You have done a 4-node-run which ended up in visualisation out-
put files at 10 different times:

unitcube.t001.p000.gmv, . . . unitcube.t001.p003.gmv,
...

...
unitcube.t010.p000.gmv, . . . unitcube.t010.p003.gmv

To merge these files, invoke the following:

% mergegmvfiles unitcube 1 10 4

A sequence of files called unitcube.t001.gmv, ..., unitcube.t010.gmv

will be generated. The input files can then be safely removed.
(Visualisation output files in AVS format are treated in the same way.)

15You can start at an arbitrary number of your sequence. Even traversing your sequence
reversely is possible.

9 Known bugs

9.1 Not simply connected partitions

parpp3d++ needs simply connected partitions, i.e. if you select two arbitrary
elements that have been assigned to the same process, there must always
exist a sequence of face-neighbouring elements in between that all reside on
the same process.

If the degree of parallelism is very high or, alternatively, the coarse grid
consists only of very few elements such that the number of elements that is
assigned to each process adds up to 5–6 or less, then there is a (moderate)
risk that METIS [6] partitions will not be simply connected. You will notice
some weird convergence problems when parpp3d++ tries to solve the Burg-
ers problem of the first time step or possibly a dead lock of the program.
Use a PARTy [8] partition instead in these cases.

9.2 More cases of inappropriate partitions

Closely connected is another problem with some partitions. Parallel jobs
with more than 64 processes may show similar convergence problems when
solving Burgers equations. Possibly, you will not encounter any problems
within the first few time steps, but, suddenly, (in fact with slightly increasing
time step) the linearised subproblems of Burgers type will diverge. In these
cases, the coarse grid features too high aspect ratios. It will depend on the
partition (mainly the degree of decomposition, i.e. the number of parallel
processes, but even on the specific manner of dividing the coarse grid into
parallel blocks of elements) whether the core components of the solver en-
gine, namely multi grid’s smoothing algorithm and the coarse grid’s problem
solver, will or will not be able to handle the high aspect ratios. Use better
shaped elements instead or experiment with different partitions and varying
degree of parallelism in these cases.

19

parpp3d++

9.3 Disadvantage of triangulations with high aspect
ratios

Grids with a high mean aspect ratio16 have additional disadvantages. Not
only is there a chance that the partitioning libraries PARTy and METIS will re-
turn partitions that are inappropriate for parpp3d++ (see previous section).
Moreover, the multigrid methods used to solve the differing subproblems of
high dimensional systems of linear equations highly depend on the ¨smooth-
ing property¨ of the iterative solvers that are applied internally. These solvers
of blocksolving type do not appreciate high aspect ratios. With increasing
degree of parallelism the iteration counter with deflect more and more before
a given accuracy for the solution is reached. Especially the solver engine for
Pressure Poisson equations reacts very sensitively on an increasing amount
of ¨distorted¨ elements [3]. Stepping from one to 64 processes, for instance,
can lead to 5-10 times more mean iteration steps solving the Pressure Pois-
son equations. Because this part of the simulation accounts for at least half
of overall run times, this effect has a significant influence on run times. The
numerical deterioration of the solving algorithm with increasing number of
parallel processes gives unpleasant parallel efficiencies and gets worse the
higher mean aspect ratios are.

So, if possible avoid grids with mean aspect ratios higher than 15–20.

16The ratio of element height to width or breadth, respectively.

10 Migrating from pp3d

10.1 Equivalent options in parameter files

For those users who are familiar with the sequential programs from the FEAT-
FLOW package and the abbreviated keywords used in their parameter files
we supply the (conversion) table 2.

pp3d parpp3d++
AMAXP AMaxP
AMAXU AMaxU
AMINP AMinP
AMINU AMinU
CMESH GridFile
CSTART RestartSolFile
DMPPMG DampPMG
DMPUD DampUMG
DTAVS DtAVS
DTGMV DtGMV
DTMAX DtMax
DTMIN DtMin
EPSADI EPSADI
EPSADL EPSADL
EPSNS EpsNS
EPSP EpsDivergence
EPSUD EpsUDefect
EPSUR EpsUChange
IAVS AVSOutputLevel
ICYCP Cycle press
ICYCU Cycle burg
IGMV GMVOutputLevel
ILMAXP MaxIItP
ILMAXU MaxIItU
ILMINP MinIItP
ILMINU MinIItU
IMASS Lump

continued on next page

20

parpp3d++

pp3d parpp3d++
INLMAX MaxFixpItU
INLMIN MinFixpItU
INSAV SolFileFrequency
INSAVN SolFileNumber
ISLP Solver press
ISLU Solver burg
ISMP Smoother press
ISMU Smoother burg
NITNS MaxTimeIterations
NLMAX NFine
NSLP SolverMaxIt press
NSLU SolverMaxIt burg
NSMP PreSteps press / PostSteps press
NSMU PreSteps burg / PostSteps burg
OMGINI OmgIni
RE EpsEqu
RLXSMP MGOmega press
RLXSMU MGOmega burg
TIMEIN TInitPhase
TIMEMX TEnd
TSTEP DtStart
UPSAM UpSam

Table 2: Equivalent options in parameter files of pp3d and parpp3d++

Remark: The relaxation parameters for the iterative solvers used when
dealing with the coarse grid problem (RLXSLU and RLXSLP in FEATFLOW

syntax) are hard-coded within the methods CCoarseGrid::SolveExact and
CCoarseGrid::SolveConstExact, respectively.

10.2 Changes to coarse grid file

pp3d and parpp3d++ can handle the same coarse grid files - with one
exeption: If any floating point number within a coarse grid file is given in
floating point notation, make sure you use only an ’E’ for the exponent.
Fortran can handle a ’D’ as well (which stands for double precision), C++
or more precisely my parser routine can’t (as already stated in remark 2 on
page 11). So instead of ’2.50D0’, please use ’2.50E0’.

This means, if you create a 3D grid with FEATFLOW’s tr2to3 , you will have to
open it with your favourite editor and perform a global search and replace
operation on all capital ’D’ to turn them into ’E’.

10.3 indat3d.f and parq3d.f

In pp3d inflow and boundary conditions are prescribed in the files
indat3d.f and parq3d.f. As explained in chapter 5 and 6 these necessary
code adjustments have been merged within the file Bound.cc in parpp3d++ .

21

parpp3d++

References

[1] Acker, J. Integration of GiD into FeatFlow. http://www.mathematik.

uni-dortmund.de/lsiii/php/showpdffile.php?Acker2003, 2003.

[2] Advanced Visual Systems. AVS/Express. http://www.avs.com/.

[3] Buijssen, S. H.M. Numerische Analyse eines parallelen 3-D-
Navier-Stokes-Lösers. Master’s thesis, Universität Heidelberg, Octo-
ber 2002. http://www.mathematik.uni-dortmund.de/lsiii/php/

showpsfile.php?Buijssen2002.

[4] Buijssen, Sven H.M. 3D Grid Generation. Handout Feat-
Flow Springschool 2002, http://www.mathematik.uni-dortmund.

de/lsiii/php/showpsfile.php?Buijssen2002a, March 2002.

[5] International Center for Numerical Methods in Engineering. GiD - The
personal pre and post processor. http://gid.cimne.upc.es.

[6] Karypis, George and Kumar, Vipin. Metis - a software package for
partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices, 1998. http://www-users.

cs.umn.edu/~karypis/metis/index.html.

[7] Ortega, Frank. General Mesh Viewer. http://www-xdiv.lanl.gov/

XCM/gmv/.

[8] Preis, Robert and Diekmann, Ralf. The party partitioning - library,
user guide - version 1.1. Technical report, Heinz Nixdorf Institut,
Paderborn, 1996. http://www.uni-paderborn.de/fachbereich/AG/
monien/RESEARCH/PART/party.html.

[9] Tobiska, L. Full and weighted upwind finite element methods. In
Schmidt, J. W. and Späth, H. , editors, Splines in Numerical Analysis,
1989. Internationales Seminar ISAM 1989 in Weissig.

[10] Turek, S. Efficient solvers for incompressible flow problems: An algorith-
mic and computational approach. Springer, 1999.

[11] Turek, S. and Becker, Ch. FEATFLOW - Finite element software for
the incompressible Navier–Stokes equations. User manual, Universität
Dortmund, 1999.

Index

aspect ratio, 19
disadvantages, 20

AVS, 5, 6

GMV, 6, 7
grid file, 3

differences with respect to pp3d, 21
grid generation, 11

installation, 2
invocation, 3

makefile
Makefile.in, 2
predefined settings, 1
settings, 2

mergeavsfiles, 19
mergegmvfiles, 19
METIS, 8, 9, 18–20

parameter file
equivalent options to pp3d, 20
reference list of key words, 5
syntax, 3

partitioning, 8, 19
algorithms, 8
METIS, 8
PARTy, 8
possible problems, 19

PARTy, 8, 9, 18–20
pp3d, 20

changes, 20
equivalent parameters, 20
migrating from, 20

prerequisities, 1
program invocation, 3

restart, 9, 18
files, 9

22

parpp3d++

supported platforms, 1

tr2to3, 11, 21
triangulation file, 3

differences with respect to pp3d, 21

visualisation
output files, 18
with AVS Express, 5, 6
with GMV, 6, 7

23

