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1. Motivation

Processor technology is still dramatically advancing and promises further 
enormous improvements in processing data for the next decade. In contrast, much 
lower advances in moving data are expected such that the efficiency of many 
numerical software tools for Partial Differential Equations (PDEs) is restricted by 
the cost for memory access. In last year’s Research Report [7] we outlined the 
numerical concepts pursued at our chair to overcome the pinpointed deficiencies 
while achieving high numerical and parallel efficiency at the same time: adap-
tive Finite Element Method (FEM) approaches and generalised multigrid/domain 
decomposition solvers of ScaRC type, realised in the FEM package FEAST.

The aim of this article is to illustrate how problems 
from Computational Structural Mechanics (CSM) and 
Computational Fluid Dynamics (CFD) can be tackled 
in the FEAST framework. Since this basic library only 
provides facilities to solve scalar problems, the question 
is how to treat multi-field simulations. The main focus of 
the article is concentrated on the design of appropriate 
preconditioners for the resulting saddle point problems 
which have a major impact on the numerical efficiency 
of the underlying iterative algorithms. 

2. Generalised Stokes Equation

The incompressible nonstationary Navier–Stokes 
equations describe the behaviour of a Newtonian 
fluid at constant temperature with constant kinematic 
viscosity enclosed in a volume with Dirichlet and/or 
Neumann boundary conditions. Neglecting in a first step 
the nonlinear convection term and applying a simple 
time-discretisation method with timestep k leads to the 
generalised Stokes equation: 

  
u – vk∆u + �p = f

 ����u = 0
 (1)

A similar equation arises in CSM: One possibility 
to address the problem of nearly incompressible elastic 
material is to introduce, beside the displacements u,  
a second variable p = –∇ · u, which results in a mixed 
formulation. When a Newmark time discretisation 
scheme is applied, it comes to the following generalised 
equation

u – 2µk̃ � · �(u) + �p = f

 ����u +     p = 01
�

 (2)
 

with k̃ := ßk2 and ß coming from the Newmark scheme. 
Due to the similarity between equation (1) and (2) we 
will concentrate only on the Stokes equation from now 
on. Most of the following applies to the elasticity case, 
as well, while differences will be emphasised. 

At present, FEAST and its underlying SPARSEBANDEDBLAS 
library only feature discretisation by bilinear elements. 
Since a straight-forward discretisation with bilinear 
elements for both velocity and pressure (Q1/Q1) would 
violate the so-called Babuška-Brezzi condition [2] 
appropriate stabilisation is needed as described in 
[4,3,1]. In order not to lose the ability of dealing with 
irregular grids we extend the standard stabilisation 
technique by considering directional derivatives 

c(p,�) = ∑ (h�
K)2 (��p, ���)K + ∑ (h�

K)2 (��p, ���)K
K

 
 

where h�
K, h�

K measure the extensions of each element 
K for the local coordinate system (,) (see fig. 1). After 
discretisation the problem is brought down to repeatedly 
solving linear systems of the following type: 

A
BT

B
=C

u
p

f
g  (3)

Figure 1. Local coordinate system for an element
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2.1 Solving Strategies for Saddle Point Problems

Disregarding the matrix C consisting of stabilisation 
terms (and the compressibility constraint in the elasticity 
case) equation (3) is a classic saddle point problem. For 
nonsingular matrices A the velocity u can be eliminated 
formally, yielding the scalar equation 

(BTA–1B – C) p = BTA–1f – g  (4)
 

with the so called pressure Schur complement S = BTA–1 

B – C and right hand side b = BTA–1f – g. To solve this 
equation the following basic iteration can be applied: 

pk = pk–1 + S̃ –1 (b – Spk–1) (5)

In a simple version S̃  is a damped identity matrix, but 
to get reasonable convergence rates S̃  has to be chosen 
as an approximate of the Schur complement matrix 
S, i. e. as a good preconditioner. Furthermore the basic 
iteration (5) has to be integrated in a preconditioned 
Krylov-space method. 

Within such a method matrix-vector-multiplications 
with S have to be performed. As S is only given implicitly 
this means three matrix-vector-multiplications and 
“inverting” the matrix A. The latter has to be done 
exactly, otherwise, instead of (4), the “wrong” system 
(BTÃ–1B – C)p = BTÃ–1f – g would be treated. Since 
inverting A exactly is prohibitively expensive and (4) has 
to be solved repeatedly, alternatives have to be found. 

The first approach is to embed the algorithm in an 
outer defect correction method acting on the whole 
system (3). The corresponding basic iteration looks 
like: 

A
BTN–1

S
B

= + – C
un+1
pn+1

un
pn

un
pn

f
g  (6)

Thus the Schur complement method merely acts as 
a preconditioner (formally written as NS

–1), which allows 
the approximate treatment of A–1. The basic iteration (6) 
is again accelerated by using a Krylov-space method.

 
A second approach is to choose in the basic iteration 

(6) the block triangular matrix 

A
BTN 0

–S  (7)
 

as block-preconditioner for the whole system (3). For the 
preconditioned system matrix 

A
BTN–1 BK C  

 
it can easily be shown, that the corresponding Krylov 
subspace span {r, Kr, K2r, K3r, …} has dimension 2, i. e. 
the solution of the preconditioned system would require 
only two iterations of a Krylov-space method (see [5]). 
Of course, the application of N–1, which involves the 
exact computation of A–1 and S–1, is much too expensive, 
such that (7) is actually replaced by

A
BTN ,˜ ˜

˜
0
–S  (8)

 
where Ã and S̃ denote preconditioners for A and S, 
respectively. While the design of S̃ requires a closer 
look at the underlying equations, which will be done in 
the next section, the realisation of Ã is straightforward: 
Considering examplarily the stationary Stokes equation 
in 2D, we have

L1
0A 0
L2

 
where L1 and L2 are the discretisations of scalar 
Laplace operators for the x- and the y-component, 
respectively. So, the preconditioner Ã is simply realised, 
e. g. by independently doing one ScaRC iteration 
for each component. In the elasticity case, however,  
x- and y-direction are coupled, resulting in non-zero off-
diagonal blocks in A. Consequently, we cannot simply 
do two independent ScaRC iterations as in Stokes case, 
but we have to resolve the coupling by embedding 
the ScaRC solves as preconditioner into another outer 
Krylow-space method applied to A. 

Anyway, in both cases the treatment of a multi-
dimensional system is brought down to the solution of 
scalar equations, which enables us to exploit the ScaRC 
solvers’ strengths. 

2.2 Preconditioning of the Schur Complement

In both approaches depicted above to solve the 
system (3) we face the problem that a preconditioner 
S̃  for the Schur complement  S = BTA–1B – C is needed 
(compare (5), (8)). Examining the generalised Stokes 
equation (1) we can deduce the structure of A, namely

A = M + vkL, (9)
 

where M is the (lumped) mass matrix and L the  
Laplacian, both block-structured with zero off-diagonals. 
The “nature” of A clearly depends on the size of the 
timestep k: For very small timesteps the mass matrix 
dominates, while it has, in fact, no influence for very 
large timesteps and even vanishes for the stationary 
Stokes case. Our goal is to construct a preconditioner 
that efficiently covers the whole range of relevant 
timesteps. 

To reach this goal we exploit the additive 
decomposition (9) of A by designing the preconditioning 
operator correspondingly. To this end we consider the 
distinct parts of the Schur complement S. The reactive 
part 

BTMl
–1B

 
can be interpreted as a discretisation matrix steeming 
from a mixed formulation of the (continuous) Poisson 
problem. So, the preconditioning operator is chosen as 
Lp, the Laplacian matrix corresponding to the discrete 
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pressure space. The continous operator associated with 
the diffusive part

BTL–1B
 

is spectrally equivalent to the identity [6], so Ml,p, 
the lumped pressure mass matrix, is an optimal 
preconditioner. This also holds for the elasticity case, 
where we have, instead of vkL, the matrix 2µk̃K with 
K being the discretisation of  · (u). We now linearly 
combine the two parts corresponding to (9) and thus 
obtain the desired Schur complement preconditioner:

S̃–1 = Lp
–1 + vkMl,p

–1  (10)

This preconditioner seems not to cover the matrix 
C, which appears in the Schur complement. The entries 
of the stabilisation part of C are of magnitude O (h2), 
so it can usually be neglected. Difficulties arise, if the 
time step k is about the size of h2 or smaller. Then, the 
influence of the stabilisation matrix – compared to that 
of the diffusive part – cannot be neglected anymore and 
C has to be implemented into the preconditioner, as 
well. In the elasticity case, the part of C coming from 
the compressibility constraint is simply a pressure mass 
matrix and thus can be covered by the diffusive part of 
the preconditioner (10). 

To validate the described preconditioner we 
performed numerical tests on three prototypical grids 
of different complexity (see fig. 2). The first is an ideal 
orthogonal grid, the second contains a deformed near-
triangle element while the last has stretched elements of 
aspect ratio 10, which are not parallel to the coordinate 
axes.

 
The tests cover the whole range of practically relevant 

time steps (k  10-6, 106). As S̃ -1 is constructed for the 
distinct parts of the Schur complement S its efficiency for 
the intermediate interval of k  10-3, 10 is of particular 
interest – most notably because in a fully non-stationary 
simulation the typical time step will be contained in this 
interval. Fig. 3 shows for the three different grids the 
number of arithmetic operations needed per degree of 
freedom (d.o.f.). 

Apparently, the preconditioner S̃ -1, embedded 
in a Krylow space method, is capable to handle the 

Figure 2. Prototypical coarse grids

Figure 3. Operations per degree of freedom for k  10-6, 106 for the 
prototypical grids
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Figure 5. Car in a wind tunnel: simulated pressure (Stokes flow)
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complete range of time steps and does not deteriorate 
significantly on irregular grids: the amount of arithmetic 
operations per d.o.f. is, in fact, only doubled. Beyond 
that, Table 1 shows that the solver scheme proposed 
succeeds in maintaining the high performance of FEAST. 
In contrast to the usual behaviour of FEM software the 
MFLOP/s rates do not cripple with increasing problem 
size, instead they rise up to and then remain at roughly 
270 MFLOP/s. 

We also did a more complex simulation of a car-like 
shape in a wind tunnel. The coarse grid consists of 36 
macros including stretched and near-triangle elements 
(see fig. 4). Also on this irregular grid the algorithm 
achieves rates of more than 200 MFLOP/s (see Table 1). 
The resulting flow field can be seen in fig. 5. 

The numerical examinations show that the described 
preconditioner meets the requirements we established 
above. Thus, we have a powerful solver mechanism 
for time-dependent saddle point problems at hand. It 
is robust with respect to grid irregularities and time 
step sizes and it shows high numerical efficiency while 
achieving high MFLOP/s rates at the same time. 

Table 1. MFLOP/s rates for the overall solver scheme (values time-averaged as they are almost constant for all time steps). Sequential computation 
on an AMD Opteron 250 with 2,4 GHz.

Figure 4. Car in a wind tunnel: macro grid

d.o.f. Grid 1 Grid 2 d.o.f. Grid 3 d.o.f. car-like shape 

12,675 259 166 25,059 144 28,518 60 

49,923 293 228 99,267 205 112,326 99 

198,147 273 257 395,139 244 445,830 154 

789,507 261 264 1,576,707 258 1,776,390 216 

3,151,875 251 262 6,299,139 267 7,091,718 228 
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