Simulation of “Extreme Fluids”

Examples, Challenges and Simulation Techniques for Flow Problems with Complex Rheology

H. Damanik, J. Hron, A. Ouazzi, M. Razzaq, S. Turek
Institut für Angewandte Mathematik, LS III, TU Dortmund
http://www.mathematik.tu-dortmund.de/lsiii
What are „Extreme“ Fluids?

Complex rheology with „extreme“ changes of viscosity:

- Dependence of shear rate, pressure and temperature
 - Generalized Newtonian, resp., non-Newtonian rheology
- Viscoelastic effects
 - Extra-Polymer stress („turbulence“)
- Many interacting objects in the fluid
 - Suspensions as particulate flow
- Special discretization/stabilization required
- Special solution techniques required
- Special software techniques required

Black Box???
Realization in FeatFlow

HPC features:
- Moderately parallel
- GPU computing
- Open source

Non-Newtonian flow module:
- Generalized Newtonian model (Power-law, Carreau,...)
- Viscoelastic model (Giesekus, FENE, Oldroyd,...)

Multiphase flow module (resolved interfaces):
- *l/l* – interface capturing (Level Set)
- *s/l* – interface tracking (FBM)
- *s/l/l* – combination of *l/l* and *s/l*

Numerical features:
- Higher order (Q2P1) FEM in space & (semi-) Implicit FD/FEM in time
- Semi-(un)structured meshes with dynamic adaptive grid deformation
- Fictitious Boundary (FBM) methods
- Newton-Multigrid-type solvers

Hardware-oriented Numerics

Engineering aspects:
- Geometrical design
- Modulation strategy
- Optimization

Here: FEM-based tools for the accurate simulation of (multiphase) flow problems, particularly with complex rheology

S. Turek | Simulation of Extreme Fluidics
Example: Screw Extruder (I)

- Numerical simulation of \textit{(twin)screw extruders} for \textit{polymer processing}
- \textit{Non-Newtonian rheological} models (shear \& temperature dependent) with \textit{non-isothermal} conditions (cooling from outside, heat production)
- \textit{Analysis} of the influence of local characteristics on the global product quality, prediction of hotspots and maximum shear rates
- \textit{Optimization} of torque acting on the screws, energy consumption

S. Turek | Simulation of Extreme Fluidics
Example: Screw Extruder (II)

S. Turek | Simulation of Extreme Fluidics
Example: Screw Extruder (III)

Combination of screw segments

Twin-screw-element library

S. Turek | Simulation of Extreme Fluidics
• **Generalized Navier-Stokes equations**

\[
\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + \nabla \cdot \sigma, \quad \nabla \cdot u = 0,
\]

\[
\rho c_p \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \Theta = k_1 \nabla^2 \Theta + k_2 D : D,
\]

\[
D(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right).
\]

\[
\sigma = \sigma_s + \sigma_p.
\]

• **Viscous stress**

\[
\sigma_s = 2 \eta_s (\dot{\gamma}, \Theta, p) D, \quad \dot{\gamma} = \sqrt{\text{tr} \left(D(u)^2 \right)}.
\]

• **Elastic stress**

\[
\mathbf{f}_1(L, \sigma_p) \sigma_p + \Lambda \nabla \sigma_p + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u).
\]
Constitutive Models (I)

- Viscous stress

\[
\sigma_s = 2 \eta_s (\dot{\gamma}, \Theta, p) D, \quad \dot{\gamma} = \sqrt{\text{tr}(D(u)^2)}.
\]

- Power Law model

\[
\eta_s (\dot{\gamma}, \Theta, p) = \eta_0 (\varepsilon + \dot{\gamma}^2)^{\left(\frac{r}{2}-1\right)}, \quad (\eta_0 > 0, \ r > 1).
\]

- Generalized Cross model

\[
\eta_s (\dot{\gamma}, \Theta, p) = \eta_\infty + \frac{(\eta_0 - \eta_\infty)}{(1 + (\lambda \dot{\gamma})^{r_1})^r} \exp(\alpha p + (a_1 + \frac{a_2}{a_3 + \Theta})), \\
(\eta_0 > \eta_\infty \geq 0, \ r > 1, \ \lambda > 0).
\]
Constitutive Models (II)

- Generalized upper convective constitutive model

\[
f_1(L_k, \text{tr}(\sigma_p), \Lambda, \eta_p)\sigma_p + \Lambda \sigma_p + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u),
\]

\[
\nabla \sigma_p := \frac{\partial \sigma_p}{\partial t} + u \cdot \nabla \sigma_p - \nabla u \cdot \sigma_p - \sigma_p \cdot \nabla u^T.
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>(f_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldroyd-B/UCM</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Giesekus</td>
<td>1</td>
<td>0</td>
<td>(\alpha \sigma_p^2)</td>
</tr>
<tr>
<td>FENE-P/-CR</td>
<td>(f_1(L_k, \text{tr}(\sigma_p)))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>White & Metzner</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Lambda = \Lambda(\dot{\gamma}), \eta_p = \eta_p(\dot{\gamma}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTT</td>
<td>(f_1(\eta_p, \text{tr}(\sigma_p), \Lambda))</td>
<td>(\xi(D\sigma_p + \sigma_p D))</td>
<td>0</td>
</tr>
<tr>
<td>Pom-Pom</td>
<td>(f_1(\text{tr}(\sigma_p), \Lambda))</td>
<td>(F_2(G, \sigma_p, \Lambda))</td>
<td>(F_3(G, \sigma_p^2, \alpha))</td>
</tr>
</tbody>
</table>
Constitutive Models (III)

- **Exemplary model: White-Metzner**

\[
\sigma_p + \Lambda(\dot{\gamma})\sigma_p = 2\eta_p(\dot{\gamma}, \Theta, p)D(u), \quad \dot{\gamma} = \sqrt{2D(u) : D(u)}
\]

- **Larson:**

\[
\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + a\Lambda \dot{\gamma}} \quad \eta_p(\dot{\gamma}, \Theta, p) = \frac{\eta_p}{1 + a\Lambda \dot{\gamma}}
\]

- **Cross:**

\[
\Lambda(\dot{\gamma}) = \frac{\Lambda}{1 + (\dot{\gamma})^{-n}} \quad \eta_p(\dot{\gamma}, \Theta, p) = \frac{\eta_p}{1 + (k\dot{\gamma})^{-m}}
\]

- **Carreau-Yasuda:**

\[
\Lambda(\dot{\gamma}) = \Lambda\left[1 + (\dot{\gamma})^{b}\right]^{\frac{n-1}{b}} \quad \eta_p(\dot{\gamma}, \Theta, p) = \eta_p\left[1 + (k\dot{\gamma})^{a}\right]^{\frac{m-1}{a}}
\]
Numerical Challenges

• Discretizations have to handle the following challenges points
 ➢ Stable FEM spaces for velocity/pressure and velocity/stress interpolation \(\tilde{Q}_2 / P_1^{\text{disc}} \) or \(\tilde{Q}_1 / \tilde{Q}_1 / P_0 \) or \(\tilde{Q}_2 / \tilde{Q}_2 / P_1^{\text{disc}} \)
 ➢ Special treatment of the convective terms: edge-oriented/interior penalty (EO-FEM), TVD/FCT
 ➢ High Weissenberg number problem (HWNP): LCR (Reformulation)
 ➢ Locally adapted meshes due to steep gradients: GDM

• Solvers have to deal with different sources of nonlinearity
 ➢ Nonlinearity: Newton method
 ➢ Strong coupling of equations: monolithic multigrid approach

• Complex geometries (and meshes)
 ➢ FBM + distance based Level Set FEM for free interfaces
Problem Reformulation (I)

Elastic stress \(\rightarrow (u, p, \sigma_p) \)

\[
\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + 2 \nabla \cdot \eta_s D + \nabla \cdot \sigma_p, \quad \nabla \cdot u = 0
\]

(1) \[
f_1(L, \sigma_p) \sigma_p + \Lambda \sigma_p + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u)
\]

Conformation stress \(\rightarrow (u, p, \sigma_c) \) is positive definite by design !!

Replace \(\sigma_p \) in (1) with \(\sigma_p = \frac{\eta_p}{\Lambda} (\sigma_c - I) \) \(\rightarrow \) special discretization: TVD

\[
\rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + 2 \nabla \cdot \eta_s D + \frac{1}{\Lambda} \nabla \cdot \eta_p \sigma_c, \quad \nabla \cdot u = 0,
\]

(2) \[rown \sigma_c + F_4(\sigma_c, u) = 0
\]
Problem Reformulation (II)

\[\sigma_c(t) = \int_{-\infty}^{t} \frac{1}{We^2} \exp\left(\frac{-(t-s)}{We}\right) F(s, t) F(s, t)^T \, ds \]

Positive by design, so we can take its logarithm

2 Observations:
- positive definite \(\rightarrow\) special discretizations like FCT/TVD
- exponential behaviour \(\rightarrow\) approximation by polynomials???
Problem Reformulation (III)

Driven Cavity:
as We number changes from $We=0.5$ to $We=1.5$, the stress value jumps significantly

Old Formulation Vs Lcr

- $We=0.5$ - $We=1.5$

Cutline of Stress_11 component at $y=1.0$
Problem Reformulation (IV)

• **Experience:**
 - Stresses grow exponentially
 - Conformation tensor is positive by design

• **Fattal and Kupferman:**
 - Take the logarithm as a new variable \(\sigma_{LCR} = \log \sigma_c \) using the eigenvalue decomposition
 \[
 \sigma_{LCR} = R \log(\lambda_{\sigma_c}) R^T
 \]
 - Decompose the velocity gradient inside the stretching part
 \[
 \nabla u = B + \Omega + N\sigma_c^{-1}
 \]

Remark for PTT only
\[
L = B + \Omega + N\sigma_c^{-1}, \quad L = \nabla u - \xi D
\]

LCR can be applied to all upper convective models
Problem Reformulation (V)

\[f_1(L, \sigma_p) \sigma_p + \Lambda \sigma_p + F_2(\sigma_p, D) + F_3(\sigma_p) = 2\eta_p D(u) \]

\[\nabla \sigma_c + F_4(\sigma_c, u) = 0 \]

\[\nabla u = \Omega + B + N\sigma_c^{-1} \]

\[\left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \sigma_c - (\Omega \sigma_c - \sigma_c \Omega) + 2B\sigma_c = \frac{1}{\Lambda} \left(I - \sigma_c \right) \]

\[\sigma_c = \exp \sigma_{LCR} \]

\[\sigma_{LCR} = R \log(\lambda_{\sigma_c}) R^T \]

\[\left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \sigma_{LCR} - (\Omega \sigma_{LCR} - \sigma_{LCR} \Omega) - 2B = F_4(\sigma_{LCR}, u). \]
Full Set of Equations

- **Generalized Newtonian (VP)**
 \[
 \rho \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u = -\nabla p + \nabla \cdot \left(2\eta_s(\dot{\gamma}, \Theta, p)D(u) \right) + \frac{1}{\Lambda} \nabla \cdot \eta_p e^{\sigma_{LCR}}, \quad \nabla \cdot u = 0,
 \]

- **Non-isothermal effect (T)**
 \[
 \rho c_p \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \Theta = k_1 \nabla^2 \Theta + k_2 D : D,
 \]

- **LCR equation (S)**
 \[
 \left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \sigma_{LCR} - (\Omega \sigma_{LCR} - \sigma_{LCR} \Omega) - 2B = F_4(\sigma_{LCR}, u).
 \]

\[\text{Referred to all upper convective constitutive models}\]
Exemplary Viscoelastic Models

Oldroyd-B/UCM

\[F_4 = \frac{1}{\Lambda} (e^{-\sigma_{LCR}} - I) \]

Giesekus

\[F_4 = \frac{1}{\Lambda} \left(e^{-\sigma_{LCR}} - I - \alpha \varepsilon^{\sigma_{LCR}} - (e^{-\sigma_{LCR}} - I)^2 \right) \]

FENE-P/-CR

\[F_4 = \frac{1}{\Lambda} f(R)(e^{-\sigma_{LCR}} - I) \quad \text{or} \quad F_4 = \frac{1}{\Lambda} \left(e^{-\sigma_{LCR}} - f(R)I \right) \]

White-Metzner

\[F_4 = \frac{1}{\Lambda(\dot{\gamma})} \left(e^{-\sigma_{LCR}} - I \right) \]

Linear PTT

\[F_4 = \frac{1}{\Lambda} \left(1 + \varepsilon(\text{tr}(e^{\sigma_{LCR}} - 3))(e^{-\sigma_{LCR}} - I) \right) \]

Exponential PTT

\[F_4 = \frac{1}{\Lambda} \exp(\varepsilon(\text{tr}(e^{\sigma_{LCR}} - 3))(e^{-\sigma_{LCR}} - I)) \]

Pom-Pom

\[F_4 = -\frac{1}{\Lambda} \left([f(\sigma_{LCR}) - 2\alpha]e^{\sigma_{LCR}} + \alpha e^{2\sigma_{LCR}} + (\alpha - 1)I \right) \]
FEM Discretization

- High order $Q_2/Q_2/P_1^{disc}$ for velocity-stress-pressure

- Advantages:
 - Inf-sup stable for velocity and pressure
 - High order: good for accuracy
 - Discontinuous pressure: good for solver & physics

- Disadvantages:
 - Stabilization for same spaces for stress-velocity
 - a single d.o.f. belongs to four elements (in 2D)

Compatibility condition between the stress and velocity spaces via EO-FEM
Variational Formulations

- **Standard Navier-Stokes bilinear forms**

\[
a(u, v) = \int_{\Omega} \frac{1}{\Delta t} u \cdot v \, d\Omega + \int_{\Omega} 2\eta_s D(u) : D(v) \, d\Omega
\]

\[
b(p, v) = -\int_{\Omega} p \, \nabla \cdot v \, d\Omega
\]

- **Nonsymmetric bilinear forms due to LCR**

\[
c(\sigma_{LCR}, v) = \int_{\Omega} \exp(\sigma_{LCR}) : D(v) \, d\Omega
\]

\[
\tilde{c}(\tau, u) = -2\int_{\Omega} B(\nabla u, \sigma_c) : \tau \, d\Omega
\]
Variational Formulations

- **Nonlinear tensor variational form due to LCR**
 \[d(\sigma_{LCR}, \tau) = \int_{\Omega} \left(\frac{1}{\Delta t} + (u \cdot \nabla) \right) \sigma_{LCR} : \tau \, dx \]
 \[- \int_{\Omega} (\Omega \sigma_{LCR} - \sigma_{LCR} \Omega) : \tau \, dx - \int_{\Omega} F_4(\sigma_{LCR}, u) : \tau \, dx \]

- **Nonsymmetric bilinear forms due to LCR**
 \[e(\Theta, \Phi) = \int_{\Omega} \left(\frac{1}{\Delta t} + u \cdot \nabla \right) \Theta \Phi \, dx + \int_{\Omega} k \nabla \Theta \cdot \nabla \Phi \, dx \]
 \[- \int_{\Omega} 2\eta_s [D(u) : D(u)] \Phi \, dx - \int_{\Omega} D(u) : \exp(\sigma_{LCR}) \Phi \, dx \]

- **Source term**
 \[l(u, \sigma_{LCR}, \Theta, p) \]
Problem Formulation

- Set \(X := \left[H^1_0(\Omega) \right]^2 \times \left[L^2(\Omega) \right]^4 \times H^1(\Omega), \ Q := L^2_0(\Omega) \)

\[\tilde{u} := (u, \sigma_{LCR}, \Theta) \quad \tilde{A} := \begin{bmatrix} A & C & 0 \\ \tilde{C}^T & D & 0 \\ E_{fD} & E_{\sigma_{LCR}} & E \end{bmatrix} \]

- Find \((\tilde{u}, p) \in X \times Q\) such that

\[\langle K(\tilde{u}, p), (\tilde{v}, q) \rangle = \langle l(\tilde{v}, q) \rangle \quad \forall (\tilde{v}, q) \in X \times Q \]

\[K = \begin{bmatrix} \tilde{A} & \tilde{B} \\ B^T & 0 \end{bmatrix} \]

(Non-)Classical saddle point problem
Compatibility Conditions

- Compatibility condition

\[
\begin{align*}
\sup_{u \in [H_0^1(\Omega)]^3} \int_\Omega \nabla \cdot u \ q \ dx & \geq \beta_1 \| q \|_{0, \Omega} \quad \forall q \in L_0^2(\Omega) \\
\sup_{\sigma \in [L^2(\Omega)]^4} \int_\Omega \sigma : \nabla u \ dx & \geq \beta_2 \| u \|_{1, \Omega} \quad \forall u \in [H_0^1(\Omega)]^2
\end{align*}
\]
• Edge-oriented stabilization for

- Equal order finite element interpolation for velocity and stress

- Convective dominated problem

\[\langle J \tilde{u}, \tilde{v} \rangle = \sum_{\text{edge } E} \max(\gamma u \eta_p h_E, \gamma \tilde{u} h_E^2) \int_E [\nabla \tilde{u}][\nabla \tilde{v}] ds \]

with \(\tilde{u} = (u, \sigma, \Theta) \), \(\tilde{v} = (v, \tau, \Phi) \) and \([\nabla \tilde{u}][\nabla \tilde{v}] = \sum_i [\nabla \tilde{u}_i][\nabla \tilde{v}_i] \)

Then: Efficient Newton-type and multigrid solvers can be „easily“ applied
Nonlinear Solver

- Damped Newton results in the solution of the form

\[R(x) = 0, \quad x = (u, \sigma_{LCR}, \Theta, p) \]

\[x^{l+1} = x^l + \omega^l \left[\frac{\partial R(x^l)}{\partial x} \right]^{-1} R(x^l) \]

- Inexact Newton: Jacobian is approximated using finite differences

\[\left[\frac{\partial R(x^l)}{\partial x} \right]_{ij} \approx \frac{R_j(x + \varepsilon e_i) - R_j(x - \varepsilon e_i)}{2\varepsilon} \]
Jacobian Matrix

- The Jacobian matrix takes the form

\[
J = \begin{bmatrix}
\frac{\partial R(x^n)}{\partial x} \\
\end{bmatrix} = \begin{bmatrix}
A & \tilde{B}^T \\
B & 0 \\
\end{bmatrix}
\]

- Generalized non-isothermal non-Newtonian problem

\[
A = \begin{bmatrix}
A_u & \tilde{C}^T & \tilde{H}^T \\
C & A_\sigma & 0 \\
H & 0 & A_\phi \\
\end{bmatrix}
\]

Modified saddle point problem
• Monolithic multigrid solver

 ➢ Standard geometric multigrid approach

 ➢ Full Q_2, P_1^{disc} restrictions and prolongations

 ➢ Local MPSC via Vanka-like smoother

\[
\begin{bmatrix}
\tilde{u}^{l+1} \\
p^{l+1}
\end{bmatrix} =
\begin{bmatrix}
\tilde{u}^l \\
p^l
\end{bmatrix} + \omega^l \sum_{T \in T_h} [J_{|T}]^{-1} \begin{bmatrix}
R_u(\tilde{u}^l, p^l) \\
R_p(\tilde{u}^l, p^l)
\end{bmatrix}_{|T}
\]

Fully implicit Monolithic FEM-Multigrid Solver

S. Turek | Simulation of Extreme Fluidics
Linear Solver

Vanka-like Smoother

S. Turek | Simulation of Extreme Fluidics
Algorithm 1: Smoothing steps

Input: Predefined constant: $\omega > 0$, Number of smoothing steps: NSM

1. for $j = 1$ to NSM do
2. for $K \in \Omega_h$ do
3. \[
 x_{I(K)} \leftarrow x_{I(K)} + \omega C_K^{-1}(b - Ax)_{I(K)}
\]
4. Return x
5. end
Dynamic ALE-Mesh Adaptation

Advantages:
• Constant mesh/data structure \rightarrow GPU
• Increased resolution in regions of interest ("r-adaptivity")
• Anisotropic ‘umbrella’ smoother (with snapping/projection) or GDM
• Straightforward usage on general meshes in 2D / 3D

Quality of the method depends on the construction of the monitor function
• Geometrical description (solid body, interface triangulation)
• Field oriented description (steep gradients, fronts) \rightarrow numerical stabilization

Validation: 2.5D Rising bubble – light setup
Testing: 3D Rising bubble - hard setup
Test: Oscillating Cylinder

- Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder
- Compare results for FBM, adapted FBM and adapted FBM + boundary projection/parametrization

Nodes concentrated near liquid-solid interface
Nodes projected and parametrized on boundary plus concentration of nodes near boundary

S. Turek | Simulation of Extreme Fluidics
Oscillating Cylinder Results

Drag Coefficient C_D for Classic FBM, FBM+adapt, FBM+param+adapt.

- Classic FBM
- FBM+adapt
- FBM+param+adapt
Viscous Liquid Jets

J. M. Nóbrega et al.: The phenomenon of jet buckling: Experimental and numerical predictions

Corn syrup-air system

24x24x48 mesh

Interface triangulation:

T_0: ~100,000 triangles

T_N: ~300,000 triangles

$F_i = - \sum_{T \in T_h, \Omega} \sigma_{h} \cdot \nabla \alpha_{h,i} \, d\Omega$.

Rendering: Raphael Münster / Blender

S. Turek | Simulation of Extreme Fluidics
Benchmark Problem

- **Coarse grid and mesh information**

- **n.o.f. for different problems**

<table>
<thead>
<tr>
<th>Level</th>
<th>n.o.f. u</th>
<th>n.o.f. p</th>
<th>n.o.f. T</th>
<th>n.o.f. S</th>
<th>VP</th>
<th>VPT</th>
<th>VSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1144</td>
<td>390</td>
<td>572</td>
<td>1716</td>
<td>1534</td>
<td>2106</td>
<td>3250</td>
</tr>
<tr>
<td>1</td>
<td>4368</td>
<td>1560</td>
<td>2184</td>
<td>6552</td>
<td>5928</td>
<td>8112</td>
<td>12489</td>
</tr>
<tr>
<td>2</td>
<td>17056</td>
<td>6240</td>
<td>8528</td>
<td>25584</td>
<td>23296</td>
<td>31824</td>
<td>48880</td>
</tr>
<tr>
<td>3</td>
<td>67392</td>
<td>24960</td>
<td>33696</td>
<td>101088</td>
<td>92352</td>
<td>126048</td>
<td>193449</td>
</tr>
<tr>
<td>4</td>
<td>267904</td>
<td>99840</td>
<td>133952</td>
<td>401856</td>
<td>367744</td>
<td>501696</td>
<td>769600</td>
</tr>
<tr>
<td>5</td>
<td>1068288</td>
<td>399360</td>
<td>534144</td>
<td>1602432</td>
<td>1467648</td>
<td>2001792</td>
<td>3070080</td>
</tr>
</tbody>
</table>
Newtonian Problem (VP)

Navier-Stokes Re=20

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.112646</td>
<td>2.965870e-2</td>
<td>1/6</td>
<td>5.540999</td>
<td>9.447473e-3</td>
<td>5/2</td>
</tr>
<tr>
<td>2</td>
<td>3.134342</td>
<td>3.005275e-2</td>
<td>1/7</td>
<td>5.566928</td>
<td>1.046885e-2</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>3.140327</td>
<td>3.015909e-2</td>
<td>1/7</td>
<td>5.576088</td>
<td>1.056787e-2</td>
<td>5/2</td>
</tr>
<tr>
<td>4</td>
<td>3.141893</td>
<td>3.018665e-2</td>
<td>1/7</td>
<td>5.578652</td>
<td>1.060398e-2</td>
<td>5/2</td>
</tr>
<tr>
<td>5</td>
<td>3.142292</td>
<td>3.019366e-2</td>
<td>1/7</td>
<td>5.579313</td>
<td>1.061503e-2</td>
<td>5/2</td>
</tr>
</tbody>
</table>

Level independent solver

Stokes vs. Navier-Stokes
Power Law Problem (VP)

\(\varepsilon = 10^{-2}, r = 1.5 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.26420</td>
<td>-0.01339</td>
<td>4/2</td>
</tr>
<tr>
<td>3</td>
<td>3.27728</td>
<td>-0.01341</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>3.27956</td>
<td>-0.01338</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>3.28007</td>
<td>-0.01337</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\(\varepsilon = 10^{-4}, r = 1.5 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.26433</td>
<td>-0.01342</td>
<td>4/2</td>
</tr>
<tr>
<td>3</td>
<td>3.27739</td>
<td>-0.01342</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>3.27968</td>
<td>-0.01339</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>3.28019</td>
<td>-0.01338</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\(\varepsilon = 10^{-2}, r = 3 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13.74280</td>
<td>0.35070</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>13.77355</td>
<td>0.34963</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>13.78220</td>
<td>0.35062</td>
<td>3/1</td>
</tr>
<tr>
<td>5</td>
<td>13.78445</td>
<td>0.35112</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\(\varepsilon = 10^{-4}, r = 3 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13.73800</td>
<td>0.35052</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>13.76875</td>
<td>0.34941</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>13.77740</td>
<td>0.35040</td>
<td>3/1</td>
</tr>
<tr>
<td>5</td>
<td>13.77970</td>
<td>0.35091</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[\eta_s(\dot{\gamma}, \Theta, p) = \eta_0(\varepsilon + \dot{\gamma}^2)^{\frac{r-1}{2}}, (\eta_0 > 0, r > 1). \]
Cross Model Problem (VP)

\[\eta_s(\dot{\gamma}, \Theta, p) = \eta_x + \frac{(\eta_0 - \eta_x)}{(1 + (\lambda \dot{\gamma})^\gamma)} \exp(\alpha p + (\frac{a_1 + a_2}{a_3 + \Theta})) \]

\[\eta_x = 10^{-3}, \quad a_1 = a_2 = 0, \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.31313</td>
<td>0.02478</td>
<td>3/1</td>
</tr>
<tr>
<td>3</td>
<td>6.32337</td>
<td>0.02504</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>6.32619</td>
<td>0.02509</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>6.32691</td>
<td>0.02510</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[r = 0, \ r_i = 1, \ \alpha = 0.1, \ \eta_0 = 10^{-1} \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>534.29750</td>
<td>6.53247</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>535.48500</td>
<td>6.55813</td>
<td>3/3</td>
</tr>
<tr>
<td>4</td>
<td>535.77950</td>
<td>6.56464</td>
<td>3/3</td>
</tr>
<tr>
<td>5</td>
<td>535.84800</td>
<td>6.56621</td>
<td>2/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15.16395</td>
<td>0.13886</td>
<td>4/3</td>
</tr>
<tr>
<td>3</td>
<td>15.18516</td>
<td>0.13963</td>
<td>4/3</td>
</tr>
<tr>
<td>4</td>
<td>15.19108</td>
<td>0.13978</td>
<td>4/3</td>
</tr>
<tr>
<td>5</td>
<td>15.19262</td>
<td>0.13982</td>
<td>3/3</td>
</tr>
</tbody>
</table>

Level and model independent solver

S. Turek | Simulation of Extreme Fluidics
Cross Model problem (VTP)

Non heated cylinder

\[\eta_s(\dot{\gamma}, \Theta, p) = \eta_\infty + \frac{(\eta_0 - \eta_\infty)}{(1 + (\dot{\gamma})^n)^r} \exp(\alpha p + (a_1 + \frac{a_2}{a_3 + \Theta})) \]

\[\eta_\infty = 10^{-3}, \quad a_1 = 0, \quad a_3 = 1, \quad k_1 = k_2 = 10^{-2}, \]

\[r = 0.1, \ r_1 = 1, \ \alpha = 0, \ \eta_0 = 10^{-1}, \ a_2 = 0. \]

Level and model independent solver

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>74.29465</td>
<td>1.31636</td>
<td>2/2</td>
</tr>
<tr>
<td>3</td>
<td>74.43290</td>
<td>1.32009</td>
<td>2/2</td>
</tr>
<tr>
<td>4</td>
<td>74.46910</td>
<td>1.32105</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>74.47830</td>
<td>1.32129</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[r = 0, \ r_1 = 1, \ \alpha = 0, \ \eta_0 = 10^{-2}, \ a_2 = 0. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>53.78930</td>
<td>1.05488</td>
<td>2/2</td>
</tr>
<tr>
<td>3</td>
<td>53.88590</td>
<td>1.05770</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>53.91125</td>
<td>1.05844</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>53.91770</td>
<td>1.05863</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[r = 0.1, \ r_1 = 1, \ \alpha = 0, \ \eta_0 = 10^{-2}, \ a_2 = 1. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6005.265</td>
<td>59.75125</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>6016.220</td>
<td>59.94455</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>6019.075</td>
<td>59.99535</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>6019.795</td>
<td>60.00820</td>
<td>3/2</td>
</tr>
</tbody>
</table>
Cross Model Problem (VTP)

Heated cylinder

\[\eta_s(\dot{\gamma}, \Theta, p) = \eta_s + \frac{(\eta_0 - \eta_s)}{(1 + (\dot{\gamma}^+)^n)} \exp(\alpha p + (a_1 + \frac{a_2}{a_3 + \Theta})) \]

\[\eta_s = 10^{-3}, r = 0.1, r_1 = 1, \alpha = 10^{-3}, a_1 = 0, a_2 = 1, a_3 = 1, \]

\[\eta_s = 10^{-1}, k_1 = k_2 = 10^{-2}. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>45.26969</td>
<td>0.90303</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>45.35251</td>
<td>0.90563</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>45.37431</td>
<td>0.90632</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>45.37988</td>
<td>0.90649</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[\eta_s = 10^{-3}, k_1 = k_2 = 10^{-2}. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>464.07865</td>
<td>4.90752</td>
<td>2/2</td>
</tr>
<tr>
<td>3</td>
<td>464.93045</td>
<td>4.92313</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>465.15470</td>
<td>4.92724</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>465.21195</td>
<td>4.92828</td>
<td>2/2</td>
</tr>
</tbody>
</table>

\[\eta_s = 10^{-1}, k_1 = k_2 = 10^{-2}. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>512.7765</td>
<td>5.37640</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>513.7120</td>
<td>5.39301</td>
<td>3/3</td>
</tr>
<tr>
<td>4</td>
<td>513.9585</td>
<td>5.39743</td>
<td>3/3</td>
</tr>
<tr>
<td>5</td>
<td>514.0215</td>
<td>5.39856</td>
<td>3/2</td>
</tr>
</tbody>
</table>

\[\eta_s = 10^{-1}, k_1 = k_2 = 10^{-3}. \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5512.860</td>
<td>53.11685</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>5539.025</td>
<td>53.28790</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>5541.690</td>
<td>53.33335</td>
<td>3/2</td>
</tr>
<tr>
<td>5</td>
<td>5542.365</td>
<td>53.34490</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Level and model independent solver

S. Turek | Simulation of Extreme Fluidics
Barus Model Problem (VP)

- **Coarse grid and mesh information**

<table>
<thead>
<tr>
<th>Level</th>
<th>NEL</th>
<th>NMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>272</td>
<td>592</td>
</tr>
<tr>
<td>3</td>
<td>1088</td>
<td>2272</td>
</tr>
<tr>
<td>4</td>
<td>4352</td>
<td>8896</td>
</tr>
<tr>
<td>5</td>
<td>17408</td>
<td>35200</td>
</tr>
</tbody>
</table>

\[\eta_s(\dot{\gamma}, \Theta, p) = \eta_0 \exp^{\alpha p} \]

- \(\eta_0 = 0.105 \)
- \(\alpha = 0.1 \)
Barus Model Problem (VP)

Mesh1, \(r = 0.15 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.700913e2</td>
<td>-6.155597</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>1.721632e2</td>
<td>-6.215218</td>
<td>5/2</td>
</tr>
<tr>
<td>4</td>
<td>1.725257e2</td>
<td>-6.228167</td>
<td>4/2</td>
</tr>
<tr>
<td>5</td>
<td>1.725743e2</td>
<td>-6.230978</td>
<td>4/2</td>
</tr>
</tbody>
</table>

Mesh2, \(r = 0.25 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.802439e2</td>
<td>-1.824015</td>
<td>6/2</td>
</tr>
<tr>
<td>3</td>
<td>5.186006e2</td>
<td>-2.106716</td>
<td>6/2</td>
</tr>
<tr>
<td>4</td>
<td>5.309640e2</td>
<td>-2.173021</td>
<td>5/2</td>
</tr>
<tr>
<td>5</td>
<td>5.354556e2</td>
<td>-2.194828</td>
<td>5/2</td>
</tr>
</tbody>
</table>

Mesh3, \(r = 0.30 \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.025332e3</td>
<td>-4.720981e1</td>
<td>8/2</td>
</tr>
<tr>
<td>3</td>
<td>1.056778e3</td>
<td>-4.945528e1</td>
<td>7/2</td>
</tr>
<tr>
<td>4</td>
<td>1.066600e3</td>
<td>-5.012865e1</td>
<td>6/3</td>
</tr>
<tr>
<td>5</td>
<td>1.069325e3</td>
<td>-5.032015e1</td>
<td>6/3</td>
</tr>
</tbody>
</table>

Level and parameter independent solver

S. Turek | Simulation of Extreme Fluidics
Viscoelastic Fluids (VSP)

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.57150</td>
<td>0.01031</td>
<td>2/2</td>
</tr>
<tr>
<td>3</td>
<td>5.58032</td>
<td>0.01047</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>5.58285</td>
<td>0.01051</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>5.58351</td>
<td>0.01052</td>
<td>2/2</td>
</tr>
</tbody>
</table>

Oldroyd-B

Level independent solver

Giesekus

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.56474</td>
<td>0.01053</td>
<td>2/2</td>
</tr>
<tr>
<td>3</td>
<td>5.57511</td>
<td>0.01064</td>
<td>2/2</td>
</tr>
<tr>
<td>4</td>
<td>5.57936</td>
<td>0.01062</td>
<td>2/2</td>
</tr>
<tr>
<td>5</td>
<td>5.58131</td>
<td>0.01059</td>
<td>2/2</td>
</tr>
</tbody>
</table>

Oldroyd-B

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20.8412</td>
<td>0.32761</td>
<td>7/7</td>
</tr>
<tr>
<td>3</td>
<td>17.7123</td>
<td>0.22910</td>
<td>6/8</td>
</tr>
<tr>
<td>4</td>
<td>15.0096</td>
<td>0.14311</td>
<td>6/9</td>
</tr>
<tr>
<td>5</td>
<td>12.58895</td>
<td>0.07002</td>
<td>6/9</td>
</tr>
</tbody>
</table>

Oldroyd-B

Giesekus

<table>
<thead>
<tr>
<th>Level</th>
<th>Drag</th>
<th>Lift</th>
<th>N/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.03961</td>
<td>-0.00172</td>
<td>4/2</td>
</tr>
<tr>
<td>3</td>
<td>4.93834</td>
<td>-0.00210</td>
<td>4/3</td>
</tr>
<tr>
<td>4</td>
<td>4.84483</td>
<td>-0.00252</td>
<td>3/3</td>
</tr>
<tr>
<td>5</td>
<td>4.77541</td>
<td>-0.00276</td>
<td>3/4</td>
</tr>
</tbody>
</table>

S. Turek | Simulation of Extreme Fluidics
Viscoelastic Fluids (VSP)

Lower We vs. higher We

S. Turek | Simulation of Extreme Fluidics
Viscoelastic Fluids (VSP)

Lower We vs. higher We

<table>
<thead>
<tr>
<th>We</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>...</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldroyd-B</td>
<td>5 [130.06]</td>
<td>4 [130.06]</td>
<td>4 [130.06]</td>
<td>5 [120.40]</td>
<td>5 [118.67]</td>
<td>5 [117.66]</td>
<td>...</td>
<td>7 [119.33]</td>
</tr>
<tr>
<td>Giesekus</td>
<td>4 [129.37]</td>
<td>4 [124.41]</td>
<td>4 [119.86]</td>
<td>3 [116.31]</td>
<td>3 [113.67]</td>
<td>3 [111.71]</td>
<td>...</td>
<td>3 [107.29]</td>
</tr>
<tr>
<td>Fene-P</td>
<td>4 [128.91]</td>
<td>4 [124.62]</td>
<td>4 [120.70]</td>
<td>3 [117.67]</td>
<td>3 [115.51]</td>
<td>4 [114.02]</td>
<td>...</td>
<td>3 [111.84]</td>
</tr>
</tbody>
</table>
Flow around Cylinder Benchmark

Coarse grid and mesh information

<table>
<thead>
<tr>
<th>Level</th>
<th>NEL</th>
<th>DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3a1</td>
<td>656</td>
<td>15823</td>
</tr>
<tr>
<td>R3a2</td>
<td>944</td>
<td>22457</td>
</tr>
<tr>
<td>R3a3</td>
<td>1520</td>
<td>35715</td>
</tr>
<tr>
<td>R3a4</td>
<td>2672</td>
<td>62221</td>
</tr>
<tr>
<td>R3a5</td>
<td>4976</td>
<td>115223</td>
</tr>
</tbody>
</table>

Local refinement via hanging nodes
Flow around Cylinder Benchmark

- Planar flow around cylinder (Oldroyd-B)

![Graph showing drag coefficient versus We number](image)
Flow around Cylinder Benchmark

- **Oldroyd-B**

<table>
<thead>
<tr>
<th>We</th>
<th>Drag</th>
<th>NL</th>
<th>We</th>
<th>Drag</th>
<th>NL</th>
<th>We</th>
<th>Drag</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>130.366</td>
<td>8</td>
<td>0.8</td>
<td>117.347</td>
<td>4</td>
<td>1.5</td>
<td>125.665</td>
<td>4</td>
</tr>
<tr>
<td>0.3</td>
<td>123.194</td>
<td>4</td>
<td>1.0</td>
<td>118.574</td>
<td>6</td>
<td>1.7</td>
<td>129.494</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>118.828</td>
<td>4</td>
<td>1.2</td>
<td>120.919</td>
<td>5</td>
<td>1.9</td>
<td>133.754</td>
<td>4</td>
</tr>
<tr>
<td>0.6</td>
<td>117.779</td>
<td>4</td>
<td>1.3</td>
<td>122.350</td>
<td>4</td>
<td>2.0</td>
<td>136.039</td>
<td>5</td>
</tr>
<tr>
<td>0.7</td>
<td>117.321</td>
<td>4</td>
<td>1.4</td>
<td>123.936</td>
<td>4</td>
<td>2.1</td>
<td>138.438</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Giesekus**

<table>
<thead>
<tr>
<th>We</th>
<th>Drag</th>
<th>Peak2</th>
<th>NL</th>
<th>We</th>
<th>Drag</th>
<th>Peak2</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>96.943</td>
<td>924.45</td>
<td>14</td>
<td>60</td>
<td>85.859</td>
<td>12010.57</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>89.905</td>
<td>4204.51</td>
<td>12</td>
<td>70</td>
<td>85.365</td>
<td>13773.61</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>88.304</td>
<td>6318.79</td>
<td>5</td>
<td>80</td>
<td>84.937</td>
<td>15502.45</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>87.256</td>
<td>8311.32</td>
<td>5</td>
<td>90</td>
<td>84.585</td>
<td>17207.87</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>86.476</td>
<td>10199.1</td>
<td>4</td>
<td>100</td>
<td>84.287</td>
<td>18897.95</td>
<td>4</td>
</tr>
</tbody>
</table>

Efficient continuation for increasing We numbers

S. Turek | Simulation of Extreme Fluidics
Flow around Cylinder Benchmark

- Direct steady vs. non-steady approach for Giesekus

Drag values

Conformation stress - Peak 2

Time

Time
Flow around Cylinder Benchmark

- Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

\[W_e = 0.7 \]

Lack of pointwise mesh convergence due to model (?)
3D Viscoelastic Flow Simulations

Flow past a sphere benchmark: R.G. Owens T. N. Phillips

<table>
<thead>
<tr>
<th>Resolution</th>
<th>$\max_1(\tau_{xx})$</th>
<th>$\max_2(\tau_{xx})$</th>
<th>F^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>20.80</td>
<td>2.082</td>
<td>5.6976</td>
</tr>
<tr>
<td>L3</td>
<td>19.29</td>
<td>2.081</td>
<td>5.6946</td>
</tr>
<tr>
<td>L4</td>
<td>18.72</td>
<td>2.086</td>
<td>5.6941</td>
</tr>
<tr>
<td>L5</td>
<td>18.52</td>
<td>2.087</td>
<td>5.6940</td>
</tr>
</tbody>
</table>

Authors

Lunsmann [4] - - 5.6937
Owens [5] 18.27 - 5.6963

<table>
<thead>
<tr>
<th>Resolution</th>
<th>$\max_1(\tau_{xx})$</th>
<th>$\max_2(\tau_{xx})$</th>
<th>F^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>50.31</td>
<td>5.041</td>
<td>5.4170</td>
</tr>
<tr>
<td>L3</td>
<td>39.01</td>
<td>5.061</td>
<td>5.4133</td>
</tr>
<tr>
<td>L4</td>
<td>36.43</td>
<td>5.104</td>
<td>5.4128</td>
</tr>
<tr>
<td>L5</td>
<td>35.65</td>
<td>5.118</td>
<td>5.4128</td>
</tr>
</tbody>
</table>

Authors

Lunsmann [4] 35.17 - 5.4123
Owens [5] 35.67 - 5.4117
Sahin [6] 34.73 5.12 -
3D Viscoelastic Flow Simulations

M. Sahin: 3D flow past a cylinder benchmark

Prediction of special viscoelastic flow features for increased We numbers

We=1.2

We=1.8

Separation line between the upper/lower streams
Non-Newtonian Multiphase Flow

Single phase validation on 2D benchmark “flow around a cylinder”

<table>
<thead>
<tr>
<th>level</th>
<th>Shear thining n=0.75</th>
<th>Shear thickening n=1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Damanik*</td>
<td>Our results</td>
</tr>
<tr>
<td></td>
<td>C_D</td>
<td>C_L</td>
</tr>
<tr>
<td>1</td>
<td>3.20082</td>
<td>-0.01261</td>
</tr>
<tr>
<td>2</td>
<td>3.26433</td>
<td>-0.01342</td>
</tr>
<tr>
<td>3</td>
<td>3.27739</td>
<td>-0.01342</td>
</tr>
</tbody>
</table>

Viscosity distribution

Pseudo 2D rising bubble in Power-Law fluids Droplet generation for Power-Law fluids

Mesh converged bubble shapes for n = 0.5, 1.0, 2.0

Jet formation n=1.0

Dripping n=0.5

Reference: Damanik et al.

S. Turek | Simulation of Extreme Fluidics
Material 1: Viscoelastic fluid described by the Oldroyd-B model

Material 2: Newtonian fluid

<table>
<thead>
<tr>
<th>Test case</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>μ_1</th>
<th>μ_2</th>
<th>g</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Viscoelastic ($\Lambda = 10$)</td>
<td>10</td>
<td>0.1</td>
<td>10</td>
<td>1</td>
<td>9.8</td>
<td>0.245</td>
</tr>
<tr>
<td>2. Newtonian ($\Lambda = 0$)</td>
<td>10</td>
<td>0.1</td>
<td>10</td>
<td>1</td>
<td>9.8</td>
<td>0.245</td>
</tr>
<tr>
<td>3. Viscoelastic ($\Lambda = 10$)</td>
<td>10</td>
<td>0.1</td>
<td>2</td>
<td>1</td>
<td>9.8</td>
<td>0.245</td>
</tr>
<tr>
<td>4. Newtonian ($\Lambda = 0$)</td>
<td>10</td>
<td>0.1</td>
<td>2</td>
<td>1</td>
<td>9.8</td>
<td>0.245</td>
</tr>
</tbody>
</table>
Encapsulation Processes

- Numerical simulation of micro-fluidic drug encapsulation ("monodisperse compound droplets")
- Polymeric "bio-degradable" outer fluid with generalized Newtonian behaviour
- Optimization w.r.t. boundary conditions, flow rates, droplet size, geometry

In Pharmaceutics
- Controlled drug release
- Protection of chemically active ingredients (from both sides)
- Protection against shear stress in stirred reactors
- Protection against evaporation
- Taste or odor masking

Jet Configuration
- Core material is defined as the specific material that requires to be coated (liquid, emulsion, colloid or solid)
- Shell material is present to protect and stabilize the core (Alginate, Chitosan, Gelatin, Pectin, Waxes, Starch)
Encapsulation Processes

<table>
<thead>
<tr>
<th>mgLS(^{(2)})-FBM-FEM flow module</th>
<th>Tasks related to code development</th>
<th>Tasks related to application</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multiple Level Set fields for simulation of liquid core encapsulation - l/l/g</td>
<td>• Validation via experimental results</td>
<td></td>
</tr>
<tr>
<td>• Fictitious boundary method for particle encapsulation - s/l/g</td>
<td>• Modulation for monodisperse compound drops</td>
<td></td>
</tr>
</tbody>
</table>

Ketoprofen/Ketoprofen Lysinate core

Alginate shell

Preliminary simulation results for encapsulation of solid particles

Aqueous solutions of alginates have shear-thinning characteristics.
Robust numerical and algorithmic tools are available using

- Classical and Log Conformation Reformulation (LCR)
- Monolithic Finite Element Approach
- Edge Oriented stabilization (EO-FEM) and local GDM
- Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of nonlinear flow with (extreme) rheological behaviour

Advantages

- No CFL-condition restriction due to the fully implicit coupling
- Positivity preserving
- Higher order and local adaptivity
Compatibility Conditions for LCR

- The non-symmetric bilinear forms due to LCR

\[\tau \in T_{PD} \subset \left[L^2(\Omega) \right]^4 \] such that \(\tau \) is positive definite

\[c(\tau, v) = \int_{\Omega} \exp(\tau) : D(v) \, d\Omega \]

\[\geq \beta_2 \| \exp(\tau) \|_{0,\Omega} \| v \|_{1,\Omega} \]

\[\geq \beta_2 \| \tau \|_{0,\Omega} \| v \|_{1,\Omega} \quad \forall \tau \in T_{PD}, \quad \forall v \in \left[H^1_0(\Omega) \right]^2 \]

\[\tilde{c}(\tau, u) = -2 \int_{\Omega} B(\nabla u, \sigma_c) : \tau \, d\Omega \]

\[\geq \beta_2 \| \tau \|_{0,\Omega} \| v \|_{1,\Omega} \quad \forall \tau \in \left[L^2(\Omega) \right]^4, \quad \forall v \in \left[H^1_0(\Omega) \right]^2 \]
Higher Order Nonconforming FEM

- Larger FE space which allows high order approximation
- d.o.f.s belong to at most two elements which is good for parallelisation
- Coupling of different polynomial orders
 - Mortar condition: test space \(\approx \) order at slave side
 \[
 |E|^{-1} \int_{E_i} u_h|K_2 L_{E_i,k} \, ds = |E|^{-1} \int_{E_i} u_h|K_1 L_{E_i,k} \, ds, \quad 0 \leq k < 2
 \]
 - No hanging nodes
What are „Extreme Fluids“???