Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Markus Geveler,
Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek

Institut für Angewandte Mathematik
TU Dortmund, Germany
markus.geveler@math.tu-dortmund.de

ParCFD 11
Barcelona, May 18, 2011
Motivation

FEM

- highly accurate for solving PDEs:
 - high order (non-conforming) FEs
 - arbitrarily unstructured grids to resolve complex geometries
 - grid adaptivity
 - Pressure-Schur-Complement Preconditioning
- ...

- in connection with Geometric Multigrid solvers:
 - convergence rates independent of mesh width h
 - superlinear convergence effect possible (\rightarrow high order FE spaces)

→ **Finite Element Geometric Multigrid enhances numerical efficiency.**
Motivation

GPUs
- high on-chip memory bandwidth
- maximisation of the overall throughput of a large set of tasks
- parallelisation techniques for FEM software are being explored
- stronger smoothers are still an issue → SPAI, ILU
- complete Geometric Multigrid solvers haven’t had much attention yet

But: bare ’MachoFlop’-performance does not count! Today: Realising FE-gMG on the GPU → *hardware-oriented numerics*
Solution approach

Idea: One performance-critical kernel: SpMV
- coarse-grid solver: Conjugate Gradients
- smoothers: based on preconditioned Richardson iteration
- defect calculations

What’s left
- some BLAS-1 (dot-product, norm, ...)
- grid transfer → can be reduced to SpMV too (later)

Benefits
- solver must be implemented only once
- oblivious of FE space and domain dimension
- performance tuning reduced to one kernel
Solution approach

Grid transfers

- chose the standard Lagrange bases for two consecutively refined Q_k finite element spaces V_{2h} and V_h
- function $u_{2h} \in V_{2h}$ can be interpolated in order to prolongate it

\[u_h := \sum_{i=1}^{m} x_i \cdot \varphi_h^{(i)}, \quad x_i := u_{2h}(\xi_h^{(i)}) \]

- for the basis functions of V_{2h} and $u_{2h} = \sum_{j=1}^{n} y_j \cdot \varphi_{2h}^{(j)}$ with coefficient vector y, we can write the prolongation as

\[u_h := \sum_{i=1}^{m} x_i \cdot \varphi_h^{(i)}, \quad x := P_{2h}^h \cdot y \]

- restriction matrix $R_{2h}^h = (P_{2h}^h)^T$
Solution approach

Grid transfer: Simplified example - 2D, \(Q_1 \) on regular grid

\[
P^h = \begin{bmatrix} P_v \\ P_e \\ P_q \end{bmatrix}
\]
Solution approach

Grid transfer: Prolongation matrix examples

- left to right: 2-Level, Cuthill McKee, Coordinate-based and Hierarchical orderings
- sparsity pattern (and bandwidth) depends on DOF numbering technique → performance
Implementation

Sparse matrix-vector multiply on the GPU: ELLPACK-R

- store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column index for each entry in A)
- A has size ($\#\text{rows in } S$) \times (maximum number of non-zeros in any row of S)
- shorter rows are padded with zeros
- additional array rl to store effective count of non-zeros in every row without the padding-zeros (stop computation on a row after the actual non-zeros)

$$S = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix} \quad \Rightarrow \quad A = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \quad j = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix} \quad rl = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$
Implementation

Sparse matrix-vector multiply on the GPU

\[y_i = \sum_{\text{n}\text{z}=0}^{\text{rl}_i} A_{i,nz} \times x_{j_{nz}} \]

- based on the ELLPACK-R format
- \(y = Ax \) can be performed by computing each entry \(y_i \) of the result vector \(y \) independently (one GPU-thread per \(y_i \))
- regular access pattern on data of \(y \) and \(A \)
- access pattern on \(x \) depends highly on sparsity pattern of \(A \)
- data access to all three arrays is fully coalesced due to column-major ordering
- \(x \)-values can be cached (texture-cache or L2 on FERMI)
- no synchronisation between threads necessary
- no branch divergence
Results

Benchmark setup

\[
\begin{cases}
-\Delta u = 1, & \mathbf{x} \in \Omega \\
u = 0, & \mathbf{x} \in \Gamma_1 \\
u = 1, & \mathbf{x} \in \Gamma_2
\end{cases}
\]

- Poisson problem as a fundamental component in many practical situations
- different FE spaces
- different DOF numbering techniques
- Jacobi preconditioning, V-cycle
- Intel Core i7 980 Gulftown hexacore workstation / NVIDIA Fermi GPU (Tesla C2070)
In addition: stronger preconditioning with SPAI

\[\| I - MA \|_F^2 = \sum_{k=1}^{n} \| e_k^T - m_k^T A \|_2^2 = \sum_{k=1}^{n} \| A^T m_k - e_k \|_2^2 \]

where \(e_k \) is the \(k \)-th unit-vector and \(m_k \) is the \(k \)-th row of \(M \). \(\rightarrow \) for \(n \) columns of \(M \) \(\rightarrow n \) least squares opt.-problems:

\[\min_{m_k} \| A^T m_k - e_k \|_2, \ k = 1, \ldots n. \]

- sparsity-pattern of the stiffness-matrix is used for pattern of preconditioner
Results

Sparse matrix-vector multiply on the GPU

Increasing #DOFs

Increasing matrix-bandwidth

Q_1 increasing #nonzeros

Q_2
Results

Its numerics, that counts: #iterations

- potential degradation of $\times 1/1000$
- hardware may offer an order of magnitude speedup
Results

FE-gMG: a closer look at preconditioning

→ SPAI offers ×1/2; SPAI+Q₂ works well
Results

Execution times for finest discretisation and reasonable numbering-techniques: CPU, GPU
Results

Geometric Multigrid
- mission accomplished: SpMV performance transported to solver level
- clever sorting may pay off
- gap between
 - weak solvers + unthoughtful DOF-ordering + unoptimised kernels (with respect to hardware) and
 - FE-gMG + clever reordering + hardware-acceleration
- is huge
- current design oblivious of FE-spaces, domain-dimension, preconditioning, grid properties, ...
Conclusion

Summary

- FE-gMG is efficient and flexible
- GPU vs. multicore CPU: close to one order of magnitude speedup
- sophisticated (sparse) preconditioners make the difference
- single-node hardware-oriented FE-gMG is ready from the solver-side, but ...

Future work

- assembly of preconditioners, system matrices, transfer-matrices still unresolved, especially for unstructured grids
- cross-effects with resorting the degrees of freedom in combination with a specific matrix storage format and associated SpMV kernel
- other related data-parallel operations: adaptive grid-deformation, ...
Acknowledgements

Supported by BMBF, *HPC Software für skalierbare Parallelrechner: SKALB project 01IH08003D.*