

 No. 555 January 2017

Fundamentals of a numerical cloud computing
For applied sciences-

Preparing cloud computing for
“Simulation-as-a-Service”

M. Geveler, S. Turek

ISSN: 2190-1767

Fundamentals of a numerical cloud computing for applied sciences –
Preparing cloud computing for `Simulation-as-a-Service´

Markus Geveler*, Stefan Turek°

* markus.geveler@math.tu-dortmund.de
° ture@featflow.de

Institute for Applied Mathematics
TU Dortmund

Abstract
This paper is supposed to be used as a contribution for the `Consultation on Cloud Computing Research
Innovation Challenges for WP 2018-2020´ as called for by the European Commission (DG CONNECT, unit
`Cloud and software´). We propose to encourage and support fundamental interdisciplinary research for
making the benefits generated by cloud computing accessible to the applied science community.

Introduction: Why cloud computing and high performance computing are contradicting

The basic idea of cloud computing (CC) is to abstract from an IT infrastructure including compute-,
memory-, networking- and software resources by virtualization. These resources are made
accessible to the user in a dynamic and adaptive way. The major resulting advantages compared
to a specially tailored `in-house solution´ can be found in a transparent and simple usage,
enhanced flexibility due to scalability and adaptivity to a specific need and finally in the increased
efficiency due to savings in energy and money spent. The latter is due to scaling effects,
operational efficiency, consolidation of resources and reduction of risks. The application is literally
independent from any (local) data and compute resources as these can be concentrated
effectively. All together, these advantages may some day supersede the traditional local / regional
data center approach which can be found on the level of modern universities and research centers.
From the point of view of data center management and operations, CC leads to a higher
occupancy and therefore efficiency: The inevitable granularity effects that occur with medium or
large workloads can be tackled with a backfilling of many small jobs. In addition, due to the fact
that a specific application run's need for resources may vary from time to time, left-over capacities
can be provided in a profitable `pay per use´ style.

In High Performance Computing (HPC) on the other hand, virtualization and abstraction concepts
contradict the usual approaches especially in the simulation of technical processes: Here, the
focus is put on enhancing the performance of an application by explicitly optimize for a certain type
of hardware. This requires an a priori knowledge of the hardware which usually is given by the fact,
that universities and regional research facilities have their own local or regional compute centers
with comparatively static hardware components. This point of view can in some cases generate
several orders of magnitude of performance gains and we call this concept hardware-oriented
numerics. This paradigm comprises the simultaneous optimization for hardware, numerical and
energy efficiency on all levels of application development [1,2,3,4]. One effort in hardware-oriented
numerics is to optimize code and develop or choose numerical methods with respect to a
heterogeneous hardware ecosystem: Multicore CPUs are as straight-forward as hardware
accelerators like GPUs, FPGAs, Xeon Phi processors and system on a chip designs such as
ARM-based CPUs with integrated GPUs. In addition, there are non-uniform memory architectures
on the device level as well as heterogeneous communication infrastructures on the cluster level.
The usual design pattern however is to optimize code for a (single) given hardware configuration
where the simulation code is then optimized in a comparatively expensive way due to this proximity
to hardware details. This development process is therefore the complete opposite of relying on a
virtualization approach.

mailto:ture@featflow.de
mailto:markus.geveler@math.tu-dortmund.de

Today's scientific cloud computing is not feasible for numerical simulation

Up to today all efforts to make use of CC techniques in the science community can be
characterized by what we call scientific cloud computing (SCC), which basically has been very
successful for a specific type of application: In the scope of Big Data often a direct projection of a
problem to a bag of tasks programming model can be found. Also other problems that are
constituted by smaller independent tasks, where the coupling and therefore communication is
minimal or zero can be coped with easily in a cloud environment. In numerical simulation on the
other hand a strong coupling of the very computationally intense subproblems is the standard
case. This induces a comparatively high synchronization need, requiring low communication
latencies. The execution models of CC are literally blind for this type of strong coupling because
the virtualization shuts down any attempt to optimize inter process communication. We believe,
that the development of numerical simulation software should be characterized by the synthesis of
hardware, numerical, and energy efficiency. Hence for this type of application a CC concept which
takes into account the heterogeneity of compute hardware would be most feasible: According to
our vision in future scenarios the user of such codes might want to choose for run time optimization
in different metrics: Flexibility in the selection in which way a specific run should be allocated to a
certain type(s) of compute node(s) are required. This flexibility has not been accounted for in the
development of numerical code frameworks yet. A direct result of the service providers internalizing
the concept of hardware-oriented numerics would be that the user of the service would be able to
make an a priori choice for the core requirements for the run. For instance it could be decided
whether an allocation of hardware should be made in order to minimize wall clock time or minimize
energy to solution. Other hardware specifics could be made allocateable such as the type and
properties of the communication links between nodes. The service would then return a number of
allocations based upon available hardware. After selection, a complex optimization problem then
has to be solved: The simulation software has to be able to select numerical algorithmic
components that fit to this allocation and finally, a load balancing has to be performed for the
individual problem to be solved.

Towards a numerical cloud computing

In order to realize this vision, there are two fundamental problems to solve:

(1) Specially tailored numerics as well as load balancing strategies as well as
(2) mapping, scheduling and operation strategies for numerical simulation have to be developed.

In (1) numerical components in a code framework have to be revisited or developed from scratch
with respect to (2) by adjusting them to the respective strategies. Such numerical alternatives
range from preconditioners in linear solvers to whole discretization approaches on the model level.
Different hardware specific implementations have to be provided and tuned in order to enable the
optimizer in (2) to succeed, which is closely related to performance engineering. This has to be
undergone with respect to all levels of parallelism in modern hardware architectures and on all
levels of an application.

On the other hand, the systems / strategies developed in (2) have to be sensitive for the
effects of specific numerics on specific hardware. This problem is often closely related to numerical
scaling, convergence and complexity theories. These theories and related skills are usually not
addressed as an integral part of the training in computer science or service providers / operators.
Here an automatic tuning system has to be developed that is capable of deciding what type of
numerics is to be used for a given hardware allocation and which parts of the data are distributed
to which part of the hardware by a static or even dynamic load balancing. The latter is an even
more complex problem keeping in mind the heterogeneity even within one specific allocation,
where CPUs are for instance to be saturated alongside GPUs. This optimization problem is very
similar to how compilers schedule instructions on the processor level. It is also multi-dimensional,
as not only raw performance has to be optimized for but also energy to solution as stated in the
previous section.

Hence we emphasize that these two components, (1) and (2), cannot be brought up

independently: Specialists from the domain of applied mathematics, performance engineers and
application specialists are required for the former, whereas the latter is to be coped with by
computer sciences and service providers / specialists.

Conclusion

For the reasons brought up in this consulting paper, we propose to extend the flexibility of scientific
cloud computing towards a numerical cloud computing in the following way: Given a
heterogeneous cloud hardware architecture on the node level, with a priori unknown specifics and
amount of nodes in an allocation, software frameworks for numerical simulation have to be enabled
to `react´ on the properties of this allocation as described in the previous section. This would make
possible the continuation of hardware-oriented numerics and thus combine the advantages of a
very hardware-centric approach with those of virtualization.
For the sake of such a `Simulation-as-a-Service´ interdisciplinary research is needed that fuses
knowledge in classical cloud computing approaches with experiences from the applied sciences.

Acknowledgements

This work has been supported in part by the German Research Foundation (DFG) through the
Priority Program 1648 ‘Software for Exascale Computing’ (grant TU 102/48) as well as grant TU
102/50-1.

References

[1] GEVELER, M., RIBBROCK, D., GÖDDEKE, D., ZAJAC, P., AND TUREK, S. 2013. Towards a complete
FEM–based simulation toolkit on GPUs: Unstructured grid finite element geometric multigrid solvers with
strong smoothers based on sparse approximate inverses. Computers and Fluids 80 (July), 327–332. doi:
10.1016/j.compfluid.2012.01.025.

[2] GEVELER, M., REUTER , B., AIZINGER, V., GÖDDEKE, D., AND TUREK, S. 2016. Energy efficiency of
the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors –
a case study based on the Haswell and Cortex-a15 microarchitectures. Computer Science – Research and
Development, 1-10 (June). doi: 10.1007/s00450-016-0324-5.

[3] TUREK, S., BECKER , C., AND K ILIAN , S. 2006. Hardware–oriented numerics and concepts for PDE
software. Future Generation Computer Systems 22, 1–2, 217–238. doi:10.1016/j.future.2003.09.007.

[4] TUREK, S., GÖDDEKE, D., BECKER , C., BUIJSSEN, S., AND WOBKER, H. 2010. FEAST —-
realisation of hardware–oriented numerics for HPC simulations with finite elements. Concurrency and
Computation: Practice and Experience 6 (May), 2247–2265. Special Issue Proceedings of ISC 2008.
doi:10.1002/cpe.1584.

	EB 559
	Ergebnisbericht Nr. 555
	EB 559
	Ergebnisbericht Nr. 555
	Ergebnisbericht Nr. 555

