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Abstract
This paper is supposed to be used as a contribution for the `Consultation on Cloud Computing Research
Innovation Challenges for WP 2018-2020´ as called for by the European Commission (DG CONNECT, unit
`Cloud and software´).  We propose to encourage and support  fundamental  interdisciplinary research for
making the benefits generated by cloud computing accessible to the applied science community. 

Introduction: Why cloud computing and high performance computing are contradicting

The basic idea of cloud computing (CC) is to abstract from an IT infrastructure including compute-,
memory-,  networking-  and  software  resources  by  virtualization.  These  resources  are  made
accessible to the user in a dynamic and adaptive way. The major resulting advantages compared
to  a  specially  tailored  `in-house  solution´  can  be  found  in  a  transparent  and  simple  usage,
enhanced flexibility due to scalability and adaptivity to a specific need and finally in the increased
efficiency  due  to  savings  in  energy  and  money  spent.  The  latter  is  due  to  scaling  effects,
operational efficiency, consolidation of resources and reduction of risks. The application is literally
independent  from  any  (local)  data  and  compute  resources  as  these  can  be  concentrated
effectively. All together, these advantages may some day supersede the traditional local / regional
data center approach which can be found on the level of modern universities and research centers.
From  the  point  of  view  of  data  center  management  and  operations,  CC  leads  to  a  higher
occupancy and therefore efficiency: The inevitable granularity effects that occur with medium or
large workloads can be tackled with a backfilling of many small jobs. In addition, due to the fact
that a specific application run's need for resources may vary from time to time, left-over capacities
can be provided in a profitable `pay per use´ style.

In High Performance Computing (HPC) on the other hand, virtualization and abstraction concepts
contradict  the usual  approaches especially in  the simulation  of  technical  processes:  Here,  the
focus is put on enhancing the performance of an application by explicitly optimize for a certain type
of hardware. This requires an a priori knowledge of the hardware which usually is given by the fact,
that universities and regional research facilities have their own local or regional compute centers
with comparatively static hardware components.  This point of view can in some cases generate
several  orders of  magnitude of  performance gains and we call  this  concept  hardware-oriented
numerics. This paradigm comprises the simultaneous optimization for hardware, numerical and
energy efficiency on all levels of application development [1,2,3,4]. One effort in hardware-oriented
numerics  is  to  optimize  code  and  develop  or  choose  numerical  methods  with  respect  to  a
heterogeneous  hardware  ecosystem:  Multicore  CPUs  are  as  straight-forward  as  hardware
accelerators like GPUs, FPGAs, Xeon Phi  processors and system on a chip designs such as
ARM-based CPUs with integrated GPUs. In addition, there are non-uniform memory architectures
on the device level as well as heterogeneous communication infrastructures on the cluster level.
The usual design pattern however is to optimize code for a (single) given hardware configuration
where the simulation code is then optimized in a comparatively expensive way due to this proximity
to hardware details. This development process is therefore the complete opposite of relying on a
virtualization approach.
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Today's scientific cloud computing is not feasible for numerical simulation

Up  to  today  all  efforts  to  make  use  of  CC  techniques  in  the  science  community  can  be
characterized by what we call  scientific cloud computing (SCC), which basically has been very
successful for a specific type of application: In the scope of Big Data often a direct projection of a
problem  to  a  bag  of  tasks  programming  model  can  be  found.  Also  other  problems  that  are
constituted by smaller  independent  tasks,  where the coupling  and therefore  communication  is
minimal or zero can be coped with easily in a cloud environment. In numerical simulation on the
other hand a strong coupling of  the very computationally intense subproblems is  the standard
case.  This  induces  a  comparatively  high  synchronization  need,  requiring  low  communication
latencies. The execution models of CC are literally blind for this type of strong coupling because
the virtualization shuts down any attempt to optimize inter process communication.  We believe,
that the development of numerical simulation software should be characterized by the synthesis of
hardware, numerical, and energy efficiency. Hence for this type of application a CC concept which
takes into account the heterogeneity of compute hardware would be most feasible: According to
our vision in future scenarios the user of such codes might want to choose for run time optimization
in different metrics: Flexibility in the selection in which way a specific run should be allocated to a
certain type(s) of compute node(s) are required. This flexibility has not been accounted for in the
development of numerical code frameworks yet. A direct result of the service providers internalizing
the concept of hardware-oriented numerics would be that the user of the service would be able to
make an a priori choice for the core requirements for the run. For instance it could be decided
whether an allocation of hardware should be made in order to minimize wall clock time or minimize
energy to solution. Other hardware specifics could be made allocateable such as the type and
properties of the communication links between nodes. The service would then return a number of
allocations based upon available hardware. After selection, a complex optimization problem then
has  to  be  solved:  The  simulation  software  has  to  be  able  to  select  numerical  algorithmic
components that fit  to this allocation and finally, a load balancing has to be performed for the
individual problem to be solved.

Towards a numerical cloud computing

In order to realize this vision, there are two fundamental problems to solve:

(1) Specially tailored numerics as well as load balancing strategies as well as 
(2) mapping, scheduling and operation strategies for numerical simulation have to be developed.

In (1) numerical components in a code framework have to be revisited or developed from scratch
with respect  to (2)  by adjusting them to the respective strategies.  Such numerical  alternatives
range from preconditioners in linear solvers to whole discretization approaches on the model level.
Different hardware specific implementations have to be provided and tuned in order to enable the
optimizer in (2) to succeed, which is closely related to performance engineering. This has to be
undergone with respect to all levels of parallelism in modern hardware architectures and on all
levels of an application.

On the other hand, the systems / strategies developed in (2) have to be sensitive for the
effects of specific numerics on specific hardware. This problem is often closely related to numerical
scaling, convergence and complexity theories. These theories and related skills are usually not
addressed as an integral part of the training in computer science or service providers / operators.
Here an automatic tuning system has to be developed that is capable of deciding what type of
numerics is to be used for a given hardware allocation and which parts of the data are distributed
to which part of the hardware by a static or even dynamic load balancing. The latter is an even
more complex  problem keeping in  mind the heterogeneity  even within  one specific  allocation,
where CPUs are for instance to be saturated alongside GPUs. This optimization problem is very
similar to how compilers schedule instructions on the processor level. It is also multi-dimensional,
as not only raw performance has to be optimized for but also energy to solution as stated in the
previous section.

Hence  we  emphasize  that  these  two  components,  (1)  and  (2),  cannot  be  brought  up



independently: Specialists from the domain of applied mathematics, performance engineers and
application  specialists  are  required  for  the  former,  whereas  the  latter  is  to  be  coped  with  by
computer sciences and service providers / specialists.

Conclusion

For the reasons brought up in this consulting paper, we propose to extend the flexibility of scientific
cloud  computing  towards  a  numerical  cloud  computing  in  the  following  way:  Given  a
heterogeneous cloud hardware architecture on the node level, with a priori unknown specifics and
amount of nodes in an allocation, software frameworks for numerical simulation have to be enabled
to `react´ on the properties of this allocation as described in the previous section. This would make
possible the continuation of hardware-oriented numerics and thus combine the advantages of a
very hardware-centric approach with those of virtualization.
For the sake of such a `Simulation-as-a-Service´ interdisciplinary research is needed that fuses
knowledge in classical cloud computing approaches with experiences from the applied sciences.
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