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Abstract

Among a variety of grid deformation methods, the method proposed by Liao
[4, 6, 18] is one of the most favourables, because it prevents mesh tangling and of-
fers precise control over the element volumes. Its numerical realisation only requires
solving a Poisson problem and a system of fully decoupled initial value problems.
Many other deformation methods in contrast involve the solution of complex non-
linear PDEs. In this article, we introduce a generalisation of Liao’s method which
allows for generating a desired mesh size distribution for quite arbitrary grids with-
out giving rise to mesh tangling. We elaborate on its numerical realisation and prove
the convergence of our method. Our results are confirmed by numerical experiments.

Keywords: mesh generation, deformation method, a posteriori error estimation,
mesh adaption

AMS classification: 65N15, 65N30, 76D05, 76D55

1 Introduction

Grid deformation, i.e. the redistribution of the mesh points of a given grid preserving
the mesh topology, is a topic of research since many years and, consequently, a variety
of methods is available today (see [5, 7, 10, 24] among many others). Most of the grid
deformation approaches can be divided into two groups: the group of static methods and
the group of dynamic approaches. Static methods obtain the mapping to the deformed
grid by minimising certain functionals which usually leads to the (often difficult and
expensive) solution of non-linear PDEs. In contrast to this, dynamic methods (e.g.
[9, 17]) use time stepping or pseudo-time stepping approaches to construct the desired
transformation. Being a member of the latter group, the method developed by Liao and
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his coworkers, based on the work of Moser [11], requires the solution of a single Poisson
equation and a decoupled system of initial value problems (IVPs) only. Furthermore, it
has been shown that tangled elements cannot occur [20].

There are a couple of reasons to investigate and to apply a grid deformation method
in order to adapt a given computational mesh (r-adaptivity):

In many applications, local and anisotropic phenomena like shock fronts occur. It was
shown [1, 12] that by anisotropic refinement and alignment according to such phenomena,
the accuracy of the calculation can be vastly improved. Refining the region of a shock
by using hanging nodes solely (h-adaptivity) may suffer from the fact that the given grid
is not aligned with the shock. In contrast, r-adaptive methods may provide additional
flexibility which allows for aligning the grid cells to the shock.

In FEM simulation it has turned out that grid adaptivity governed by a posteriori
error estimation is mandatory for reliable and efficient computations. The widely used
method of grid adaptation by allowing hanging nodes on element level, however, requires
data structures which rely on the extensive usage of indirect adressing. This is necessary
to handle the unstructured grids emerging from the adaptation procdure. Recent research
[2] has shown that in typical adaptive FEM codes using this method of grid adaptation
only a small fraction of the available processor performance of several GFlop/s can be
typically used. On the other hand, by using local generalised tensor product meshes
and thereby avoiding indirect adressing a very significant speed up can be achieved.
This has been successfully implemented in our new FEM package FEAST [2]. In this
context, grid deformation is an ideal tool for grid adaptation, as it preserves the local
generalised tensor product structure while providing flexibility in adaptation comparable
to elementwise h-adaptivity.

In this article, we proceed as follows: In the next section, we describe in detail our
deformation method and prove its basic properties. In section 3, the focus is placed on
convergence analysis of the grid deformation method. We present numerical experiments
supporting our theoretical results in section 4.

2 Description of our Deformation Method

We first introduce some notations. A computational domain Ω ⊂ R
2 is triangulated by

a mesh T consisting of NEL quadrilateral elements T of size hT . We denote the set of
vertices by V and the set of edges by E . The mesh is supposed to be conforming, i.e.
no hanging nodes are allowed. The area of an element T is denoted by m(T ). For the
common Lebesgue and Sobolev spaces on a domain D we use the abbreviations L2(D)
and Hk(D). In the special case D = Ω, we write L2 and Hk instead. The function space
of k-fold continuously differentiable functions is referenced by Ck(D); for an interval I,
Ck,α(I), 0 < α < 1, denotes the space of functions with Hölder-continuous kth derivatives.
A domain is said to have an Ck,α-smooth boundary if the boundary can be parameterised
by a function in Ck,α(I). The Jacobian matrix of a smooth mapping Φ : Ω → Ω is denoted
by JΦ, its determinant by |JΦ|.

To formalise the deformation process, we introduce a weighting function g ∈ C1(Ω̄)
and a monitor function f ∈ C1(Ω̄). Both functions must be strictly positive in Ω̄. The
reason why f is called monitor function will become clear below.

The theoretical background of our approach – like Liao’s approach [4, 6, 18, 19] –
is based on Moser’s work [11]. The aim of the numerical grid deformation algorithm
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described below is to construct a bijective transformation Φ : Ω → Ω which satisfies

g(x)|JΦ(x)| = f(Φ(x)), x ∈ Ω (1)

as well as
Φ : ∂Ω → ∂Ω. (2)

If such a transformation Φ has been found, the new coordinates ξ of a grid point x
are computed by

ξ := Φ(x). (3)

Applying the area formula to an element T yields

m(Φ(T )) :=

∫

Φ(T )
1 dx =

∫

T
|JΦ(x)|dx,

and using the 1 × 1-Gauss quadrature rule in formula (1), we obtain

g(xc)
m(Φ(T ))

m(T )
= f(Φ(xc)) + O(h).

Here, xc stands for the center of T . If the function g represents the distribution of the
element area in the mesh, i.e. g(x) = m(T ) + O(h), x ∈ T , then we have

m(Φ(T )) = f(Φ(xc)) + O(h).

Thus by prescribing the monitor function f , the element T will get – up to a spatially
fixed scaling constant – the size defined by the value of f in the position of the image of
T in the deformed grid.

In the special case g ≡ 1 investigated by Liao, the monitor function f determines the
relative growth or shrinkage of the elements with respect to the previous mesh, i.e., the
mesh on which the deformation takes place. In Liao’s methods, the monitor function f
does in general not describe the absolute distribution of the element size in space. If and
only if the starting mesh has equidistributed element sizes, the monitor function does
control the absolute element size.

In our new method, considering g to be the area distribution on the undeformed mesh,
f in contrast describes the absolute mesh size distribution of the target grid, which is
clearly independent of the starting grid. Note that condition (2) ensures that boundary
points can move along the boundary only.

Then, based upon [4, 6, 18, 19], the transformation Φ is computed in four steps.

1. Scale the monitor function f or the area function g such that
∫

Ω

1

f(x)
dx =

∫

Ω

1

g(x)
dx. (4)

For the sake of simplicity, we will assume that (4) is fulfilled from now on. Let f̃
and g̃ denote the reciprocals of the scaled functions f and g.

2. Compute a grid-velocity vector field v : Ω → R
n satisfying

−div(v(x)) = f̃(x) − g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (5)

with n being the outer normal vector of the domain boundary ∂Ω, which may
consist of several boundary components.
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3. For each grid point x, solve the initial value problem

∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x (6)

with

η(y, s) :=
v(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (7)

4. Define
Φ(x) := ϕ(x, 1). (8)

The divergence equation in the second step does not provide a unique solution. There-
fore, we compute v by solving the pure Neumann problem

−∆w = f̃ − g̃, ∂nw = 0 on ∂Ω (9)

and setting v := ∇w. Doing so, we implicitly fulfil the side condition curl v = 0 which
provides uniqueness.

Theorem 2.1. Let the boundary of Ω be C3,α-smooth and let f, g ∈ C1(Ω̄) be strictly
positive in Ω̄. Then, if the mapping Φ : Ω → Ω constructed above exists, it fulfils
conditions (1) and (2).

Proof: Define the auxiliary function

H(x, t) := |Jϕ(x, t)|
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

.

We now show ∂tH(x, t) = 0. From equation (7), we have

v(x) = η(x, t)
(

tf̃(x) + (1 − t)g̃(x)
)

.

Applying the chain rule and the div-Operator, we find

div(v(x)) = div
[

η(x, t) ·
(

t ˜f(x) + (1 − t)g̃(x)
)]

=
[

tf̃(x) + (1 − t)g̃(x)
]

div η(x, t)

+
(

t∇f̃(x) + (1 − t)∇g̃(x) , η(x, t)
)

.

Therefore it follows

div (v(ϕ(x, t))) = div (η(ϕ(x, t), t))
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+
(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) , η(ϕ(x, t))
)

. (10)

Starting from the ODE (6), we have by Abel’s formula

|Jϕ(x, t)| = exp

∫ t

0
tr(Jη(ϕ(x, s), s))ds

= exp

∫ t

0
div η(ϕ(x, s), s)ds (11)
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and by differentiation of (11) we obtain

∂

∂t
|Jϕ(x, t)| = |Jϕ(x, t)|divη(ϕ(x, t), t)). (12)

Therefore, we obtain

∂

∂t
H(x, t) =

(
∂

∂t
|Jϕ(x, t)|

)

·
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+|Jϕ(x, t)| ·

[

f̃(ϕ(x, t)) + t

(

(∇f̃)(ϕ(x, t)),
∂

∂t
ϕ(x, t)

)

−g̃(ϕ(x, t)) + (1 − t)

(

(∇g̃)(ϕ(x, t)),
∂

∂t
ϕ(x, t)

)]

(12)
= |Jϕ(x, t)| · div η(ϕ(x, t), t) ·

[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+|Jϕ(x, t)| ·

[

f̃(ϕ(x, t)) − g̃(ϕ(x, t)) +

(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) ,
∂

∂t
ϕ(x, t)

) ]

(6)
= |Jϕ(x, t)| ·

[

div η(ϕ(x, t), t)
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+f̃(ϕ(x, t)) − g̃(ϕ(x, t))

+
(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) , η(ϕ(x, t), t)
) ]

(10)
= |Jϕ(x, t)|

[

div v(ϕ(x, t)) + f̃(ϕ(x, t)) − g̃(ϕ(x, t))
]

(5)
= 0

Because of this, we end up with

1

g(x)
= g̃(x) = |Jϕ(x, 0)| g̃(ϕ(x, 0))

= H(x, 0)

= H(x, 1)

= |Jϕ(x, 1)| f̃(ϕ(x, 1))

= |JΦ(x)|
1

f(Φ(x))
. (13)

As by (5) the normal component of v vanishes for a boundary point x, it follows due
to formula (6) that ∂nϕ(x, t) = 0 ∀ t ∈ [0, 1]. Therefore, boundary points are moved in
tangential direction only.

The existence of such a mapping Φ is guaranteed by the following theorem from [11].
However, the mapping Φ is not unique.

Theorem 2.2 (Moser). Let 0 < k ∈ N, α > 0. Let Ω ⊂ R
n be a domain with C3+k,α-

smooth boundary. Suppose f, g ∈ Ck,α(Ω̄) with
∫

Ω f =
∫

Ω g. Then there exists a Ck+1-
diffeomorphism Φ which fulfils

g(x)|JΦ(x)| = f(Φ(x)) ∀x ∈ Ω

and
Φ(x) = x ∀x ∈ ∂Ω.
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Remark 2.3. Note that the derivation of our new deformation method does not depend
on the dimension. Although we restrict to the two-dimensional case in this article for
the sake of implementational simplicity, our new deformation method is applicable to
three-dimensional meshes without any modification.

Remark 2.4. Our new method for grid deformation is a generalisation of Liao’s method
for static grid deformation. However, our method can be reinterpreted as a special
case of a method for time-dependent grid deformation developed by Liao et al. [4, 6],
iff the domain itself does not change in time. This dynamic method relies on solving
−div(v(x, t)) = ∂t(1/fd(x, t)) and then computing the IVPs ∂tΦ(x, t) = fd(Φ(x, t), t) ·
v(Φ(x, t), t). Setting 1/fd(x, t) := tf̃(x) + (1 − t)g̃(x), our method is recovered. Both
methods can be interpreted [13] as special cases of the GCL method by Cao, Huang and
Russell [8].

3 Convergence analysis

We consider the fraction
f(x)

area(x)
(14)

as starting point of our convergence analysis. Here, area(x) stands for the interpolated
element area distribution of the deformed grid. If X is a vertex of the deformed grid,
area(X) is defined to be the arithmetic mean value of the areas of the elements X belongs
to and by the bilinear interpolation of the corresponding node values otherwise. If the
desired area distribution is achieved, then the fraction (14) is constant. Iff the function
a(x) := c · area(x), c ∈ R, fulfils

∫

Ω
a(x) dx =

∫

Ω
f(x) dx, (15)

it even holds f(x)/a(x) ≡ 1. Now, we define the quality function

q(x) :=
f(x)

a(x)
.

The overall quality of the grid adaptation according to the desired cell size can be mea-
sured by the deviation of q(x) from the constant function 1 leading to the quality measures
Q0 and Q∞ defined by

Q0 := ||q − 1||0 and Q∞ := max
x∈V

|q(x) − 1|. (16)

If we do not distinguish between Q0 and Q∞, we omit the subscript.

Remark 3.1. Note that the quality measures defined in equation (16) are consistent
with respect to regular refinement, i.e. regular refinement of a deformed grid does not
change the quality measures systematically which can be easy shown by standard scaling
arguments.

Remark 3.2. Usually, the convergence of a numerical method is defined by comparing
the difference of its numerical result and an abstract exact solution. For our deformation
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method, a natural way of defining convergence seems to postulate Q̃ := ||Φ − Φ̃|| in a
certain norm, where Φ stands for a “reference transformation” obtained by solving all
differential equations in the algorithm exactly and Φ̃ for the approximate transformation
computed with numerical methods. However, there are two drawbacks: In contrast to Q,
Q̃ is hard to compute, as the exact transformation Φ is of course unknown. More severe,
the uniqueness of Φ in our deformation method is given by the implicit side condition
curl v = 0 in equation (9), which is an artificial condition. Thus there is in fact no
unique Φ to compare with.

When processing our grid deformation algorithm with numerical methods, there are
three error sources.

1. The deformation PDE (9) is solved approximately.

2. The IVPs (6) are solved approximately.

3. The interpolation of the discontinuous cell size distribution induces a consistency
error.

The consistency error stems from the fact that the actual cell size distribution is discon-
tinuous and has to be interpolated in order to gain area(x). Therefore, even when solving
the deformation PDE (9) and all IVPs (6) exactly, we cannot expect one of the quality
measures to be zero.

In the following convergence analysis we consider for a given bounded domain Ω
a sequence of triangulations (Ti)i∈I where I denotes an arbitrary index set. Let us
denote the number of vertices in Ti by Ni. In what follows, we always assume that
⋃

T∈Ti
T = Ω ∀i ∈ I and Ni+1 > Ni ∀i ∈ I.

The following definitions prepare the convergence analysis of our grid deformation.

Definition 3.3. a) The sequence of triangulations (Ti)i∈I is said to be edge-length reg-
ular, iff

hi := max
e∈Ei

|e| = O(N
−1/2
i ) ∀i ∈ I.

b) The sequence of triangulations (Ti)i∈I is said to be size regular, iff

∃c, C > 0 : ch2
i ≤ m(T ) ≤ Ch2

i ∀T ∈ Ti ∀i ∈ I. (17)

For the initial grids, we postulate edge-length regularity from now on without explic-
itly stating this. This property justifies a convergence analysis in powers of h. We now
define convergence by the decay of our quality measures.

Definition 3.4. For an edge-length regular sequence (Ti)i∈I , a sequence of grid defor-
mations is said to converge, iff Q → 0 for h → 0. Here, Q stands for either Q0 or
Q∞.

Definition 3.5. An edge-length regular sequence of triangulations (Ti)i∈I fulfils the sim-
ilarity condition, iff there is a function g with 0 < gmin ≤ g(x) ≤ gmax < ∞ and there
are positive constants cs, Cs with

1

h2
i

cim(T ) = g(x) + O(hi) ∀ x ∈ T ∀ T ∈ Ti ∀i ∈ I, cs ≤ ci ≤ Cs. (18)

Here, ci is a spatially fixed constant.
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If a sequence of grids fulfils the similarity conditions, all grids feature a similar dis-
tribution of element sizes up to a spatially fixed constant. All three conditions on the
mesh defined here are naturally satisfied for a sequence of grids created by successive
regular refinement of an arbitrary coarse grid. Notice that these requirements affect the
asymptotic behaviour only and permit large spatial variations of both element size and
shape.

For edge-length regular sequences of triangulations, the similarity condition implies
size regularity.

Lemma 3.6. Let the sequence of triangulations (Ti)i∈I fulfil the similarity condition.
Then, it is size regular.

Proof. Consider an arbitrary element T ∈ Ti. Then,

m(T ) =
h2

i

ci
g(x) + O(h3

i )
︸ ︷︷ ︸

≤ch3
i

≤

(
gmax

cs
+ c

)

h2
i

for hi < 1. On the other hand,

m(T ) =
h2

i

ci
g(x)

︸ ︷︷ ︸

>0

+O(h3
i )

︸ ︷︷ ︸

≥−ch3
i

≥

(
gmin

Cs
− chi

)

h2
i ≥

gmin

2Cs
h2

i

for hi < gmin/(cCs).

To formulate the following results, we need some notations. For an arbitrary grid
point x, we denote by X its image in the deformed grid obtained with both PDE (9) and
all IVPs (6) solved exactly. Let us denote by Xh the image of the same vertex x, but
computed by solving exactly the disturbed initial value problem, where the exact vector
field v is replaced by vh in the right hand side. Furthermore, X̃ is the corresponding
point obtained by computing both the PDE and the IVP numerically. The following two
lemmas demonstrate that size and shape regularity are preserved under grid deformation,
if our deformation algorithm is carried out solving all differential equations exactly. As
an abbreviation we call these grids “exactly deformed”, and “numerically deformed” if
the differential equations have been solved by numerical methods.

Lemma 3.7. Let (Ti)i∈I be a sequence of grids with grid size hi → 0 which fulfils the
similarity condition (18). Then the sequence (T d

i )i∈I of exactly deformed meshes is edge-
length regular.

Proof. Let us denote by X and Y the images of the vertices x and y obtained by exact
computation. These vertices are computed by solving the initial value problems

∂tϕ
x(t) = η(ϕx(t), t), ϕx(t = 0) = x

∂tϕ
y(t) = η(ϕy(t), t), ϕy(t = 0) = y

with the right hand side η defined in formula (6). According to Gronwall’s lemma (com-
pare [16, p. 57]), it holds

||ϕx(t) − ϕy(t)|| ≤ eLt(||ϕx(0) − ϕy(0)||
︸ ︷︷ ︸

=||x−y||

).
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Here, the Lipschitz constant L of the ODE right hand side is defined by

||η(t, x) − η(t, x′)|| ≤ L||x − x′|| ∀x, x′ ∈ Ω ∀ t ∈ [0, 1]. (19)

Thus, we have

L ≤ sup
t∈[0,1]

sup
x,x′∈Ω,x 6=x′

∣
∣
∣

∣
∣
∣

v(x)

sf(x) + (1 − s)g(x)
−

v(x′)

sf(x′) + (1 − s)g(x′)

∣
∣
∣

∣
∣
∣ ||x − x′||−1

= O(h0). (20)

From this, we deduce for t = 1

||ϕx(1) − ϕy(1)|| = ||X − Y || ≤ eL||x − y|| ≤ eLch.

Lemma 3.8. Let f > ε > 0 be a strictly positive monitor function, f ∈ C1(Ω̄) and (Ti)i∈I

be a sequence of grids which fulfils the similarity condition (18). Then, the sequence
(T d

i )i∈I of exactly deformed grids is size regular.

Proof. Because of f ∈ C1(Ω̄), ∃fmax := maxx∈Ω |f(x)| < ∞. By definition 3.5, it holds
gmin ≤ g ≤ gmax. Thus,

m(Φ(T ))

m(T )
≤ 2

fmax

gmin
= O(h0)

and, vice versa,
m(T )

m(Φ(T ))
≤ 2

gmax

ε
= O(h0)

for h < h0. Therefore, m(T ) and m(Φ(T )) have the same convergence order. As the
sequence of initial grids is size regular due to lemma 3.6, the assertion follows immediately.

Now we are able to formulate and prove our central convergence theorem for grid
deformation.

Theorem 3.9. Let (Ti)i∈I be a sequence of grids with grid size hi → 0 which fulfils
condition (18) and let us denote the sequence of numerically deformed grids by (T̃i)i∈I .
For the monitor function f , it may hold 0 < ε < f ∈ C1(Ω̄). Let us assume that for
the approximate solution of the deformation vector field vh, the equation ||v − vh||∞ =
O(h1+δ), δ > 0 is valid. Let ||Xh − X̃|| = O(h1+δ) be true for any vertex. Then,

a) the sequence of numerically deformed meshes (T̃i)i∈I is edge-length regular,

b) (T̃i)i∈I is size regular according to condition (17),

c) the sequence of deformations converges, moreover, ∃c > 0 independent of h, such
that

Q0 ≤ chmin{1,δ}, Q∞ ≤ chmin{1,δ}. (21)
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Figure 3.1: Influence of an disturbed vertex on the element area

Proof. Let us denote the area distribution of the numerically deformed grid T by ã(x).
The quantities Xh and X are computed as the solution of the initial value problems

∂tϕ(t) = η(ϕ(t), t), ϕ(0) = x,

∂tϕh(t) = ηh(ϕh(t), t), ϕh(0) = x

in t = 1. As a consequence of Gronwall’s lemma, it holds (compare [16, p. 57]) that

||X − Xh|| ≤ eL

∫ 1

0
sup
x∈Ω

||η(x, s) − ηh(x, s)|| ds

≤ eL

∫ 1

0
sup
x∈Ω

∣
∣
∣

∣
∣
∣

v(x) − vh(x)

sf(x) + (1 − s)g(x)

∣
∣
∣

∣
∣
∣ ds

≤ eL sup
x∈Ω

||v(x) − vh(x)||

︸ ︷︷ ︸

=O(h1+δ)

sup
t∈[0,1]

sup
x∈Ω

∣
∣
∣
∣(tf(x) + (1 − t)g(x))−1

∣
∣
∣
∣

︸ ︷︷ ︸

=O(h0)

= eLO(h1+δ). (22)

Here, the Lipschitz constant L is given by the condition (19) and fulfils equation (20)
like in the proof of lemma 3.7. The combination of this upper bound with formula (22)
yields

||X − Xh|| = O(h1+δ). (23)

for all grid vertices X. Using the triangle inequality, it follows

||X − X̃|| ≤ ||X − Xh||
︸ ︷︷ ︸

(23): O(h1+δ)

+ ||Xh − X̃||
︸ ︷︷ ︸

=O(h1+δ)

= O(h1+δ). (24)

Note that equation (24) holds without any assumptions on the initial and deformed mesh.
Let ẽ be an arbitrary edge on the numerically deformed grid with endpoints X̃ and Ỹ .
Then, due to the triangle inequality and lemma 3.7, it follows

||X̃ − Ỹ || ≤ ||X − X̃||
︸ ︷︷ ︸

(24):≤ch1+δ

+ ||X − Y ||
︸ ︷︷ ︸

≤ch

+ ||Y − Ỹ ||
︸ ︷︷ ︸

(24):≤ch1+δ

≤ ch,

and thus the edge-length regularity of the deformed grid. Let us consider a single element
T in the numerically computed deformed grid X̃ is a vertex of. Let us denote by X the
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exactly computed counterpart of X̃. Then, the area difference ∆T due to the disturbed
vertex X̃ can be bounded by ∆T ≤ ∆T1 + ∆T2 (see figure 3.1). These quantities are the
areas of triangles which basis length is bounded by ch due to the shape regularity. Their
heights η1 and η2 are not larger than ||X−X̃|| and therefore (at most) O(h1+δ). Because
of this, ∆T due to the disturbed vertex X̃ can be bounded by cdh

2+δ. This holds for the
other vertices of T as well, so that we can conclude

m(Φ(T )) = m(Φ̃(T )) + O(h2+δ). (25)

From this, we get using lemma 3.8

m(Φ̃(T )) ≤ m(Φ(T ))
︸ ︷︷ ︸

≤Ch2

+cdh
2+δ ≤ 2Ch2

and vice versa

m(Φ̃(T )) ≥ m(Φ(T ))
︸ ︷︷ ︸

≥ch2

−cdh
2+δ ≥

1

2
ch2

for h < h0. This proves assertion b).
By construction, ã(x) = c

h2 m(Φ̃(T )) + O(h) holds. By a Taylor expansion of the
monitor function f , we obtain

f(X̃)

ã(X̃)
=

f(X) + ∇f(χ) · (X − X̃)
c

h2 m(Φ̃(T )) + O(h)

=
f(X)

c
h2 m(Φ̃(T )) + O(h)

+

=O(h1+δ)
︷ ︸︸ ︷

∇f(χ) · (X − X̃)
c

h2
m(Φ̃(T )) + O(h)

︸ ︷︷ ︸

=O(h0)

.

Inserting equation (25), we obtain

f(X̃)

ã(X̃)
=

f(X)
c

h2 m(Φ(T )) + O(hmin{1,δ})
+ O(h1+δ)

Now, we exploit that due to the edge-length regularity of the deformed mesh, the length
of any element edge is bounded from above by ch. Let us denote the center of the
undeformed element by xc. Then we get by another Taylor expansion

f(X̃)

ã(X̃)
=

f(Φ(xc))
c

h2 m(Φ(T )) + O(hmin{1,δ})
+

=O(h)
︷ ︸︸ ︷

∇f(ν) · (Φ(xc) − X)
c

h2
m(Φ(T )) + O(hδ)

︸ ︷︷ ︸

=O(h0)

+ O(h1+δ)

=
f(Φ(xc))

f(Φ(xc))
+ O(hmin{1,δ}) + O(h)

= 1 + O(hmin{1,δ}).
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As this relation holds for all grid vertices, it follows immediately the assertion Q∞ =
O(hmin{1,δ}). Let now Y be an arbitrary grid point in the interior of the element T
with vertices V1, . . . V4 in the numerically deformed grid. By X̃, we denote one of the
four vertices of T where the area function ã is minimal: ã(X̃) = min4

i=1{ã(Vi)}. As the
computed grid is edge-length regular and size regular according to condition (17) and
due to the normalisation condition (15)), we know that ã(X̃) = O(h0). Moreover, as ã
is a bilinear function on T , we have ã(Y ) ≥ ã(X̃) ∀ Y ∈ T . Thus, we gain by a Taylor
expansion

f(Y )

ã(Y )
≤

f(Y )

ã(X̃)
=

f(X̃)

ã(X̃)
+

≤ch
︷ ︸︸ ︷

∇f(µ) · (X̃ − Y )

ã(X̃)
≤

f(X̃)

ã(X̃)
+ ch

for sufficiently small h. This leads to the assertion Q0 ≤ chmin{1,δ}.

4 Numerical Realisation and Analysis

This section is devoted to the numerical implementation of the four steps described
above. Although the construction of the mapping Φ can be performed in any dimension,
we restrict ourselves to the two-dimensional case. For first investigations of the three-
dimensional case, we refer to the master thesis of Panduranga [22] and the diploma thesis
of Miemczyk [21]. To prove the existence of a smooth diffeomorphism Φ, Moser uses the
smoothness conditions of f, g and the domain Ω stated above. In practical computations,
we relax these conditions. In the examples presented in this article, the functions f and
g are strictly positive and continuous, the domain Ω may have a Lipschitz boundary.

The first step in constructing Φ is to obtain the functions f and g. In our computa-
tions, the monitor function f is defined to be the bilinear interpolant of an analytically
given function. To compute g, we first determine the element size in a grid point, which
is set as the arithmetic mean of the area of the elements surrounding the grid point.
Then, we define g as the bilinear interpolant of these node values.

To maintain a high degree of flexibility with respect to the underlying mesh, we
compute in the second step of our algorithm the Poisson problem (9) using its discrete
weak formulation

(∇wh,∇ϕh) = (f̃ − g̃, ϕh) ∀ϕh ∈ Q1(T) (26)

by the finite element method on the given mesh T. Here Q1 denotes the function space
created by continuous and elementwise bilinear functions on T. In the following, every
FEM calculation is performed with bilinear conforming finite elements.

The solution of the corresponding algebraic systems however requires special care,
as the solution of the Neumann problem (9) is unique up to an additive constant only.
To solve (9), we use a modified multigrid method in which after every iteration the side
condition

∫

Ω wh dx = 0 is imposed by adding a suitable constant [13].
Afterwards, the vector field v is approximated by the recovered gradient vh of the

finite element solution wh. For the reconstruction of the gradient we employ standard
averaging techniques.

In the next step, we approximate the initial value problem (6) by replacing v by its
discrete counterpart vh. This leads to the initial value problem

∂ϕ(x, t)

∂t
= ηh(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x (27)

12



with

ηh(y, s) :=
vh(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (28)

Note that this ODE system decouples into 1D-ODEs for every coordinate, which can
be solved by standard ODE methods.

As IVP solver, we apply the explicit Euler’s method (EE) and several Runge-Kutta
type methods: Heun’s method (HEUN), the classical Runge method of third order (RK3)
and the standard Runge-Kutta method of fourth order (RK4) These convergence orders,
however, can be experienced only for sufficiently smooth solutions and thus sufficiently
smooth right hand sides. The right hand side we consider is continuous only and therefore
lacks the required smoothness. Thus, we can not expect to experience full convergence of
the high order methods. Because of this, we additionally investigate the Runge-Kutta-
Fehlberg method RKF2B (see [16, p. 167]). This scheme is a three-stage method, but of
second order only. Instead of aiming at the highest possible convergence order (three),
this method is designed to achieve a particularly small error constant. Furthermore, we
employ Adams-Bashforth methods of order two and three (AB2, AB3) as representatives
of linear multi-step methods. The starting values are obtained by Heun’s method. For
all IVP solvers mentioned, we refer to Hairer, Norsett and Wanner [16].

Remark 4.1. In the proposed method for grid deformation, every evaluation of the right
hand inside formula (6) in the ODE solve requires searching through the grid: To evaluate
a finite element function in a given point in real coordinates, the element this point belongs
to has to be known. In practical implementations, it is crucial for computational efficiency
to employ fast and sophisticated searching methods. We propose raytracing and distance
search (for details, we refer to Grajewski [13]).

All numerical tests in this article refer to the following test problem. Figure 4.1
displays a resulting grid with 1,024 elements.

Test Problem 4.2. We consider the unit square Ω = [0, 1]2 triangulated by a tensor
product mesh. As monitor function, we choose

f(x) = min

{

1, max

{
|d − 0.25|

0.25
, ǫ

}}

, d :=
√

(x1 − 0.5)2 + (x2 − 0.5)2. (29)

The parameter ǫ is set to 0.1. This setting implies that on the deformed grid the largest
cell has 10 times the area of the smallest one.

The right hand side of the ODE in the deformation method is formed by a piecewise
rational function which is continuous but not differentiable in a classical sense. Therefore,
the right hand side of the ODE lacks the regularity needed for higher order IVP solvers
to establish full convergence. Now, we investigate if and to what extend the convergence
order of the high order methods suffers decay. We compute test problem 4.2 with fixed
step size 10−6 employing the classical RK3 scheme on a tensor product grid. The de-
viation ρ from this reference grid induced by the IVP solver is measured by taking the
l∞-norm of the vector containing the pointwise deviation defined by ||xref − x|| where
xref stands for the position of the corresponding point on the reference grid. Note that
our reference grid is not the grid obtained by applying the deformation algorithm with-
out any approximation, because the deformation vector field is computed as recovered
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Figure 4.1: Resulting grid for test problem 4.2, 1,024 elements

gradient of an FEM solution as before. However, in the deformation algorithm, the error
stemming from the PDE approximation is fully decoupled from the error coming from the
IVP approximation. This allows to investigate these errors separately and thus justifies
the numerical tests presented here. Figures 4.2 and 4.3 which visualize ρ vs. the num-
ber of evaluations of the ODE right hand side indicate that all high order IVP methods
are of second order only in the example considered. However, the high order methods
(AB3, RK3, RK4) perform best in the sense that given a fixed number of right hand side
evaluations, the absolute approximation error related to these methods is smaller than
the one of low order methods. The RKF2B method seems to be comparable to the high
order Runge-Kutta methods in this numerical test. Note that when considering ρ, the
advantages of the Runge-Kutta methods in favour of the linear multi-step methods are
far less pronounced than the quality measures indicated before. Remarkably, the Runge-
Kutta method RK4 produces less accurate results per evaluation of the right hand side
than the (actually lower order) RK3-method for this example.

We now return to investigations on the overall convergence behaviour. For ease of
implementation, we will replace from now on in the computations of the quality measures
the analytical monitor function f by its bilinear interpolant fh on the deformed grid which
is scaled then in order to fulfil equation (15). This leads to the scaled interpolant f̂ . Note
that the integrals of f and fh do not need to coincide which requires the additional scaling.
The following lemma justifies our approach as it is shown that the additional error due
to this replacement is of higher order.

Lemma 4.3. Let the assumptions in theorem 3.9 be fulfilled. Let Q denote the qual-
ity measures computed with the analytical monitor function f and the same measure Q̂
obtained using f̂ instead. Here, Q stands for either Q0 or Q∞. Then,

Q = Q̂ + O(h2).

Proof. Because of f ∈ C1(Ω), we know

max
x∈Ω

|f(x) − fh(x)| ≤ Ch2.

Let us denote the factor the function fh is scaled with by ω. Then,

ω

∫

Ω
fh(x) dx = |Ω| =

∫

Ω
f(x) dx,

14
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Figure 4.2: Deviation ρ and order of convergence of several ODE methods in the case of
test problem 4.2, 4,096 elements
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Figure 4.3: Deviation ρ and order of convergence of several ODE methods in the case of
test problem 4.2, 65,536 elements
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and thus

ω =

∫

Ω(f − fh)(x) dx
∫

Ω f(x) dx
+ 1 ≤

C|Ω|
∫

Ω fh(x) dx
h2 + 1.

Vice versa
1

ω
=

∫

Ω(fh − f)(x) dx
∫

Ω f(x) dx
+

∫

Ω f(x) dx
∫

Ω f(x) dx
≤ Ch2 + 1.

Therefore, ∃0 < c1, C1 such that 1 − c1h
2 ≤ ω ≤ 1 + C1h

2. Thus, we conclude ω − 1 =
O(h2) and because of this

max
x∈Ω

|f(x) − f̂(x)| = max
x∈Ω

|f − (1 + O(h2))fh(x)|

≤ max
x∈Ω

|f(x) − fh(x)| + O(h2)max
x∈Ω

|fh(x)|.

Consequently, we end up with

Q =
∣
∣
∣

∣
∣
∣
f

g
− 1

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣
(f − f̂)

g

∣
∣
∣

∣
∣
∣ +

∣
∣
∣

∣
∣
∣
f̂

g
− 1

∣
∣
∣

∣
∣
∣ = Q̂ + O(h2).

With a similar argument, one can show that the replacement of f by f̂ in the grid
deformation itself does not alter the deformation method substantially as well. As thus
the change from f to f̂ does not have any significant influence on the convergence and the
quality measures, we from now on implicitly assume this replacement for all numerical
examples and experiments, writing f instead of f̂ then.

Remark 4.4. In practical computations, the computation of Q0 requires numerical in-
tegration which introduces an additional error. Note that even on tensor product meshes
the quotient of the bilinear functions f and area is not bilinear but rational. Because of
this, it is impossible with standard quadrature rules to avoid any quadrature error unlike
in the case of bilinear functions. In our examples, we employ the (third order) tensor
product Simpson rule for computing Q0. Thus, the quadrature error can be asymptotically
neglected. To compute Q∞, we use the quadrature points of the Simpson rule as sample
points.

Corollary 4.5. Let us assume that our numerical method for computing the deformation
IVPs is of second order as indicated by the numerical tests presented above. Let all initial
grids be size- and shape-regular and fulfil the similarity condition (18) For the monitor
function f and the sequence of deformed grids, the assumptions of theorem 3.9 may hold.
Furthermore, let us choose the step size ∆t of the deformation IVPs as ∆t = O(h).
Then, if ||v − vh||∞ = O(h2) and if the IVP method is of second order at least,

Q0 ≤ ch, Q∞ ≤ ch. (30)

Proof. Due to the choice of IVP time steps, we have (in the notation of theorem 3.9),
||Xh − X̃|| = O(h2) for all grid vertices. Thus, the preliminaries of theorem 3.9 are
fulfilled with δ = 1.

Remark 4.6. The rather strong assumption ||v − vh||∞ = O(h2) is justified in the
situation of our test problem due to the high regularity of the mesh and the solution of
the Poisson equation. For superconvergence results in the maximum norm, we refer to
Blum [3] and the references cited therein.
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Figure 4.4: Quality measure Q0 and Q∞ computed with the true monitor function f and
quality measures Q̂0, Q̂∞ using the bilinear interpolant f̂ vs. number of elements

To verify our convergence results, we compute test problem 4.2 using standard aver-
aging techniques to obtain the deformation vector field vh and compute the deformation
IVPs with RK3. The sequence of initial grids consists of successively refined tensor
product grids. Note that in this test setting, there is no consistency error for the repre-
sentation of the area distribution of the initial mesh in contrast to the general case. On
the coarsest grid with NEL = 256, we perform 3 RK3-steps, on the grid with NEL =
1,024, we employ 5. From this level of refinement on, the number of IVP steps dou-
bles per refinement. In figure 4.4, we display the quality measures Q0 and Q∞ and
their approximate counterparts Q̂0 and Q̂∞ depending on the number of elements NEL.
Clearly, we observe Q ≤ ch for all quality measures as expected. Note that the monitor
function in our test problem is Lipschitz-continuous, but not differentiable, and thus the
assumptions of our convergence theorem are not completely fulfilled. For Q0, we even
experience Q0 = O(h3/2). The reason for this superconvergence phenomenon is subject
of ongoing research. Moreover, figure 4.5 demonstrates that the sequence of deformed
grids is edge-length regular as stated in our theorem. Additionally, due to the order of
hmin := mine∈E |e|, we can conclude that |e| ≥ ch ∀e ∈ E .

5 Applications and outlook

In this article, the emphasis is put on the derivation and mathematical analysis of our the
presented grid deformation method. However, the algorithm presented and analysed in
this article is only the basic version of a class of grid deformation methods which feature
outstanding accuracy, speed and robustness. A series of forthcoming papers [14, 15]
focuses on these algorithms, their efficient implementation, their asymptotic complexity
as well as their embedding in r-and rh-adaptive algorithms driven by a posteriori error
estimation. Variants of this grid deformation method have been sucessfully applied to
many practical problems. We now show in brief two of these applications.

Turek and Wan [23] investigated the numerical simulation of rigid particulate flows
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Figure 4.5: Minimal and mximal edge length hmin and hmax vs. number of elements

using a variant of the grid deformation method presented in this article in combina-
tion with fictitious boundary method (FBM). The flow field was computed by a special
ALE formulation of the Navier-Stokes equations to compensate the mesh deformation in
time. The equation was discretised by nonconforming Finite Elements and the resulting
linear subproblems were solved with multigrid techniques. Solid particles could move
freely through the computational mesh which was adapted by grid deformation using
the distance to the particles as monitor function. Numerical results show the benefit of
grid deformation in particulate flows with many moving rigid particles. Among many
examples, Turek and Wan considered the sedimentation of 120 balls of identical size and
shape falling down in a closed channel. Grid deformation was used in this example to
concentrate the mesh around the falling balls. We present a sequence of meshes created
during this simulation in figure 5.1.

In his diploma thesis [21], Miemczyk applied the grid deformation method presented
in this article in three dimensions for the computation of the flow around objects in
a channel using FBM. The flow field was governed by the nonstationary incompresible
Navier-Stokes equations. The monitor function in his examples was chosen according
to the distance to the object. Thus, the grid was concentrated around its contours
which helped to reduce the boundary approximation error on the object and therefore
improved the accuracy of the computation. In figure 5.2, we show a grid adapted by our
deformation method for simulating the flow around a yacht.
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Figure 5.1: Sequence of adapted grids for the simulation of the sedimentation of 120 balls
(taken from Wan and Turek [23])

Figure 5.2: Deformed grid for computing the flow around a yacht (taken from Miemczyk
[21])
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