
Implicit Finite Element Schemes for Stationary

Compressible Particle-Laden Gas Flows

Marcel Gurrisa, Dmitri Kuzminb, Stefan Tureka

aDortmund University of Technology, Institute of Applied Mathematics
Vogelpothsweg 87, D-44227 Dortmund, Germany

bUniversity of Erlangen-Nürnberg, Chair of Applied Mathematics III
Haberstr. 2, D-91058 Erlangen, Germany

Abstract

The derivation of macroscopic models for particle-laden gas flows is reviewed.
Semi-implicit and Newton-like finite element methods are developed for the sta-
tionary two-fluid model governing compressible particle-laden gas flows. The
Galerkin discretization of the inviscid fluxes is potentially oscillatory and unsta-
ble. To suppress numerical oscillations, the spatial discretization is performed by
a high-resolution finite element scheme based on algebraic flux correction. A mul-
tidimensional limiter of TVD type is employed. An important goal is the efficient
computation of stationary solutions in a wide range of Mach numbers, which is
a challenging task due to oscillatory correction factors associated with TVD-type
flux limiters and the additional strong nonlinearity caused by interfacial coupling
terms. A semi-implicit scheme is derived by a time-lagged linearization of the
nonlinear residual, and a Newton-like method is obtained in the limit of infinite
CFL numbers. The original Jacobian is replaced by a low-order approximation.
Special emphasis is laid on the numerical treatment of weakly imposed boundary
conditions. It is shown that the proposed approach offers unconditional stability
and faster convergence rates for increasing CFL numbers. The strongly coupled
solver is compared to operator splitting techniques, which are shown to be less
robust.
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1. Introduction

Significant advances have been achieved in the numerical modeling of flow
phenomena. The governing models became more and more complex in recent
years. Due to improved computing resources even the simulation of coupled flow
phenomena like gas-particle suspensions is possible.

The so-called two-fluid model represents a system of macroscopic conservation
laws for each phase. Typical standard discretizations, including those based on
finite element methods, tend to produce numerical oscillations if they are applied
to hyperbolic equations (or systems). This is unacceptable if the two-fluid model
governing particle-laden gas flows is considered. From the physical point of view
quantities like pressure and density have to be positive. This property can how-
ever be violated by the presence of undershoots and overshoots. To prevent the
birth and growth of wiggles and preserve the physical properties of the solution, a
suitable stabilization term should be added to the discretized equations. Kuzmin
et al. [30, 32, 24, 25, 28, 26, 27] have developed a new approach to the design of
high-resolution finite element schemes. Within the framework of algebraic flux
correction, the coefficients of a standard Galerkin discretization are constrained
using flux limiters based on a generalization of flux-corrected transport (FCT) al-
gorithms and total variation diminishing (TVD) methods. As demonstrated by
John and Schmeyer [21], algebraic flux correction is more reliable than mainstream
stabilization/shock capturing techniques. The linearized FCT algorithm [28, 27] is
to be recommended for transient flows, whereas flux limiters of TVD type are bet-
ter suited for the computation of steady-state solutions which is of primary inter-
est in the present numerical study. Hence, the latter limiting strategy is adopted.

Implicit schemes have the potential of being unconditionally stable if they are
designed in a proper way. Since the convergence to steady-state depends on the
propagation speed of the error waves, large CFL numbers accelerate the conver-
gence to steady-state. The implicit Euler approach corresponds to upwinding
in time and therefore enjoys very useful numerical properties. This makes the
backward Euler scheme a favorable choice in steady-state computations and it
is therefore applied in this study. On the other hand, nonlinear systems must
be solved and the computation of the nonlinear preconditioner is a challenging
task. In our scheme we replace the original flux Jacobian by a low-order approx-
imation, which reduces the computational costs and memory requirements and
yields a robust solver. The source term Jacobian can be derived analytically [14],
where the non-smooth parts are treated as constants. To avoid computationally
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expensive nonlinear iterations, we linearize the backward Euler scheme around
the current time level. The result is a strongly coupled semi-implicit approach.
The computation of stationary solutions to hyperbolic equations is rarely per-
formed with implicit solvers. Their development has been pursued by several
groups [7, 11, 35, 48] for the Euler equations. However, many existing schemes
employ linearizable/differentiable limiters, are conditionally stable, and the rate
of steady-state convergence deteriorates if the CFL number exceeds a certain up-
per bound. The scheme presented here converges for arbitrary CFL numbers de-
spite oscillatory correction factors and the rate of steady-state convergence does
not deteriorate for large CFL numbers. In the limit of infinite CFL numbers our
scheme becomes a Newton-like method.

Boundary conditions are an important part of the discretization and so is the it-
erative solver. An inaccurate treatment of boundary conditions results in a loss
of accuracy and may aggravate stability restrictions. It was already shown that
weakly imposed boundary conditions provide superior robustness and conver-
gence compared to their strongly imposed counterparts, while they maintain ac-
curacy. Therefore, boundary conditions are imposed weakly in this research arti-
cle.

The design of numerical solvers for the two-fluid model is a very challenging
task since additional nonlinearities arise due to large and stiff algebraic coupling
terms, which must be integrated and discretized in a proper way. Algebraic source
terms are typically incorporated into the computational model making use of op-
erator splitting [39, 40, 38, 42]. We compare both, the strongly coupled method,
where the fluxes and source terms are treated semi-implicitly, and the operator
splitting approach in a numerical study. Furthermore, we show that operator
splitting is inappropriate for steady-state simulations and subject to restrictive
time step constraints. It may even inhibit convergence to a steady-state solu-
tion. The algorithm developed in this paper features most properties of the single-
phase gas solver proposed in [14, 16].

In the following sections we describe the design of high-resolution schemes for
the two-fluid model, report the treatment of boundary conditions, and introduce
the semi-implicit solver. Operator splitting techniques as well as a fully coupled
approach are presented and compared in a numerical study.
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2. Modeling

It is generally accepted that single-phase gas flows can be modeled by macro-
scopic equations of mass, momentum and energy conservation. The particulate
(or dispersed) phase is also supposed to admit a continuous description. As a nat-
ural assumption, the single-phase equations are also valid for multi-phase flows
except at the interfaces separating the different components. A mixture of two
or more different materials can be interpreted as a flow, which is subdivided into
single-phase regions by infinitesimal thin interfaces. Due to limited computing
resources it is impossible to locate the interfaces at the microscopic scale if the
dispersed phase is distributed over the whole domain. It is necessary to trans-
form the microscopic equations into their macroscopic counterparts. In this case,
macroscopic equations are derived by using suitable averaging procedures so that
they are related to the microscopic ones in a mathematical sense.

Various techniques are reported in the literature and typical candidates are vol-
ume, time, statistical, and ensemble averages, or combinations of the former fam-
ilies. A survey can be found in the textbooks of Drew and Passmann [10] and Ishii
and Hibiki [19], where the latter text mainly focuses on time averaging. The differ-
ent techniques typically yield similar results. The averaged equations are widely
accepted and applied in a large number of publications. Saurel and Abgrall [42]
derive a quite general hyperbolic non-conservative model, which is applicable
to dense and dilute flows alike. Städke [47] used averaged hyperbolic equations
for the numerical simulation of the interaction of water and steam. Such macro-
scopic two-fluid models were successfully applied to incompressible bubbly flows
[29, 45]. Computational models related to particle-laden gas flows can be found
in [38, 36, 44, 40, 18, 39, 37, 22, 6, 17]. The models employed for the different flow
regimes widely agree in modeling aspects, except in the treatment of interface
exchange. Although the interaction between the involved materials at the inter-
faces has a strong influence on the flow behavior and the simulation results, the
modeling of some terms (e. g. lift forces) remains controversial in the literature.
Consequently, the interface exchange should be modeled carefully.

Modeling of compressible particle-laden gas flows requires several assumptions
and simplifications. This study is based on the following assumptions:

• No chemical reactions and no change of aggregate states.

• Both particles and gas are distributed over the whole domain.
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• The inviscid equations of mass, momentum, and energy conservation are
valid in the interior of each phase.

• The gas pressure satisfies the ideal gas law.

• There is no considerable amount of particle collisions and the particles do
not interact with each other.

• The material density of the particles is constant. That means, the particulate
phase is incompressible.

• Dilute flow conditions, i. e. the volume occupied by the particles is small.

• The material density ratio
ρg

ρp
≪ 1 is small.

• The particles are solid, spherical, of uniform size and their diameter is small
compared to the length scale.

• The influences of curvature is negligible and surface tension does not play a
role for solid particles.

• There are interfacial momentum and heat transfer, but no external momen-
tum and energy sources.

In the following the index k refers to either the gas phase g or the particulate phase
p. The interface quantities are denoted by the index int. Each phase satisfies a
system of microscopic conservation laws that can be written as

∂tρk +∇ · (ρkvk) = 0

∂t(ρkvk) +∇ · (ρkvk ⊗ vk + Tk) = 0

∂t(ρkEk) +∇ · (vkρkEk + vk · Tk + qk) = 0,

(1)

where external body forces (like gravity) and heat sources are neglected. Density,
velocity, and the heat flux of the individual phases are indicated by, ρk, vk, and qk,
respectively. Tk denotes the stress tensor. Equations (1) are valid for both phases
exclusively in their interior Ωk. To derive macroscopic equations, which are valid
in the whole domain we apply the volume averaging process [10]. The result is a
coupled set of eight (in 2D) nonlinear conservation
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∂t(αkρk) +∇ · (αkρkvk) = 0

∂t(αkρkvk) +∇ · (αkρkvk ⊗ vk + αkTk) = Tint
k · ∇αk + Fint

k

∂t(αkρkEk) +∇ · (αk(ρkvkEk + vk · Tk + qk)) = (vint · Tint
k ) · ∇αk + vint · Fint

k + αkqint
k ,

(2)

where αk is the volume fraction. This system of macroscopic conservation laws
is valid in the whole domain Ω = Ωg ∪ Ωp. The left hand side of this system
contains convective terms for both phases, while the interface exchange terms are
located on the right hand side. Both phases are coupled at the interface by the
interfacial stress Tint

k and velocity vint, heat exchange qint
k , interfacial forces Fint

k ,
and the volume fractions. Equations (2) are widely accepted as the general form
of governing equations of two-phase flows. In our model external heat sources,
viscosity, and body forces are neglected, while the interface terms vint, Tint

k , qint
k ,

and Fint
k require further modeling. Since the density ratio

ρg

ρp
≪ 1 is small, the

impact of the interfacial forces except viscous drag is negligible [14]. Therefore,
the only interfacial force, which is modeled in the present study is viscous drag.
For the inviscid equations the stress tensor is given in terms of

Tk = IPk. (3)

In the case of particle-laden gas flow under consideration the generic model (2)
can be simplified to [14]

∂t(αgρg) +∇ · (αgρgvg) = 0

∂t(αgρgvg) +∇ · (αgρgvg ⊗ vg + αgIP) = −FD

∂t(αgρgEg) +∇ ·
(
αgvg

(
ρgEg + P

))
= −vp · FD − QT

∂t(αpρp) +∇ · (αpρpvp) = 0

∂t(αpρpvp) +∇ · (αpρpvp ⊗ vp) = FD

∂t(αpρpEp) +∇ · (αpρpvpEp) = vp · FD + QT,

(4)

where

FD =
3

4
αp

ρg

d
CD|vg − vp|(vg − vp) (5)
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is the drag force. The amount of drag depends on the drag coefficient CD. This
dimensionless quantity is defined by the (widely accepted) standard equation

CD =

{
24
Re(1 + 0.15Re0.687) if Re < 1000

0.44 if Re ≥ 1000
. (6)

It is valid for spherical particles and given as a function of the particle Reynolds
number Re [5]

Re =
ρgd|vg − vp|

µ
. (7)

Here µ denotes the microscopic dynamic viscosity of the gas and d is the particle
diameter. Both µ and d are assumed to be constant. Sommerfeld [46] argues that
the standard drag coefficient is a valid choice for steady flow problems. The rate
of interfacial heat transfer is given by [23]

QT =
Nu6κ

d2
αp(Tg − Tp) (8)

as a function of the Nusselt number

Nu = 2 + 0.65Re
1
2 Pr

1
3 , Pr =

cpgµ

κ
. (9)

The thermal conductivity κ, Prandtl number Pr, and heat capacity at constant
pressure cpg are assumed to be constant.

Moreover, the gas pressure is assumed to satisfy the ideal gas law

P = (γ − 1)ρg

(

Eg −
|vg|2

2

)

(10)

and the pressure of the particulate phase is neglected [14] since particle collisions
are insignificant under dilute flow conditions. Constitutive equations

Tk =
1

cvk

(

Ek −
1

2
|vk|

2

)

(11)

link the temperature of both phases to the velocity and total energy. Note that the
effective density αpρp is variable, although the particulate phase is incompressible
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with a constant material density ρp.

2.1. Mathematical Properties

In this section we review important mathematical properties of governing equa-
tions (4). They can be written in a compact form

∂tU +∇ · F = S, (12)

where U is vector of conservative variables, F is the flux tensor, and S are the
source terms. Unfortunately, the governing equations lack hyperbolicity since
there is no complete set of eigenvectors. Hence, the application of hyperbolic
solvers, which are build on a diagonalization of the flux Jacobians is not directly
possible. Neglecting the source terms we obtain a system of conservation laws
for both phases. The equations governing the gas phase provide a complete set
of eigenvectors and they coincide with the Euler equations for the effective den-
sity αgρg. On the other hand the equations modeling the particulate phase are a
coupled set of pressureless transport equations. We recommend to compute the
stabilization and prescribe boundary conditions separately for both phases, while
the nonlinear system should be solved in a strongly coupled way. Since the treat-
ment of the gas phase is described in [14, 32, 16], we focus our attention to the
pressureless conservation laws of the particulate phase.

To avoid confusion and simplify notation, the index p, denoting the particulate
phase, will be dropped in the remainder of this section. Neglecting the right hand
sides of equations (4), the 2D system of conservation laws that govern the motion
of particles can be written as

∂t





ρ
ρv
ρE



+∇ ·





ρv
ρv ⊗ v

ρEv



 = 0 (13)

or simply

∂tU +∇ · F = ∂tU + ∂xF(x) + ∂yF(y) = 0. (14)

In the former equation U = (ρ, ρu, ρv, ρE)T = (U(1), U(2), U(3), U(4)) is the vector
of conservative variables. The effective density is given by ρ = αpρp, and v =
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(u, v)T denotes the velocity vector. The inviscid flux vectors

F(x) =







ρu
ρu2

ρuv
ρEu






=









U(2)

U(2)2

U(1)

U(2)U(3)

U(1)

U(2)U(4)

U(1)









and F(y) =







ρv
ρuv
ρv2

ρEv






=









U(3)

U(2)U(3)

U(1)

U(3)2

U(1)

U(3)U(4)

U(1)









(15)

define the rate of convective transport along the corresponding axes of the two-
dimensional Cartesian reference frame. The tensor of all convective fluxes is de-
noted by

F =
(

F(x), F(y)
)

. (16)

The flux Jacobians for both directions are given by

∂F(x)

∂U
=










0 1 0 0

−U(2)2

U(1)2 2U(2)

U(1) 0 0

−U(2)U(3)

U(1)2
U(3)

U(1)
U(2)

U(1) 0

−U(2)U(4)

U(1)2
U(4)

U(1) 0 U(2)

U(1)










=







0 1 0 0
−u2 2u 0 0
−uv v u 0
−uE E 0 u







(17)

and

∂F(y)

∂U
=










0 0 1 0

−U(2)U(3)

U(1)2
U(3)

U(1)
U(2)

U(1) 0

−U(3)2

U(1)2 0 2U(3)

U(1) 0

−U(3)U(4)

U(1)2 0 U(4)

U(1)
U(3)

U(1)










=







0 0 1 0
−uv v u 0
−v2 0 2v 0
−vE 0 E v







, (18)

which together form the Jacobian tensor

A =

(

∂F(x)

∂U
,

∂F(y)

∂U

)

. (19)

The coupled transport equations (13) describe the transport of the conserved quan-
tities U with the velocity v. A spectral analysis of both Jacobians shows that the
eigenvalues are given by

λ(x) = {u, u, u, u} and λ(y) = {v, v, v, v} (20)
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for the coordinate directions x and y. Moreover, both spaces of eigenvectors are
three dimensional. Hence, the Jacobians are not diagonalizable and the govern-

ing equations lack hyperbolicity. Since the eigenvalues λ(x) and λ(y) represent the
characteristic speeds of wave propagation, information travels as a single wave
with velocity v.

Furthermore, the homogeneity property

F(d)(U) =
∂F(d)(U)

∂U
U, d = x, y, (21)

which also is a feature of the Euler equations [13], makes it possible to rewrite the
discretization equivalently as a matrix-vector product, and enables the derivation
of semi-implicit time stepping schemes without loss of conservation.

Due to the lack of pressure, delta shocks may in principle appear in the partic-
ulate phase. They are excluded by the assumption of dilute conditions. In addi-
tion, the interface exchange terms also play an important role in preventing such
unphysical phenomena, although there is no mathematical proof available. The
gas pressure is linked to the velocity in such a way that the gas density remains
bounded. Since the velocity of particles is also related to the gas velocity by the
magnitude of interfacial drag, the gas pressure influences the velocity of the par-
ticles in some sense. This may be a reason why delta shocks are not observed in
the particulate phase.

3. Discretization

The construction of the high-resolution scheme basically involves three steps
[24]. First, the standard Galerkin discretization serves as a high-order scheme.
Since the Galerkin discretization is oscillatory and unstable, we add a suitably
defined artificial diffusion operator D to preserve the physical properties of the
solution. The error induced by this manipulation is proportional to the mesh
size, which reduces the order of approximation to one. For this reason the re-
sulting discretization is called low-order scheme. Finally, we increase the order
of approximation by reinserting a limited fraction of nonlinear antidiffusion F∗,
which results in the desired high-resolution scheme. The amount of antidiffusion
is controlled by TVD-type flux limiters based on the local smoothness of the solu-
tion. Note that we compute the stabilization for each phase separately. Hyperbolic
solvers can be applied to the equations governing the gas phase, while scalar dis-
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sipation is feasible for the pressureless conservation laws of the particulate phase.
The design of the artificial diffusion operator for the gas phase can be found in in
[25, 32, 14, 16]. Therefore it remains to define the stabilization of the particulate
phase.

3.1. High-Order Scheme

Given a suitable set of linear or bilinear basis functions {ϕi}, let the numerical
solution and the convective fluxes be interpolated using the group finite element
formulation [12]

Uh(x, t) = ∑
i

ϕi(x)Ui(t), Fh(x, t) = ∑
i

ϕi(x)Fi(t), (22)

where Fi is the flux tensor evaluated using the solution values at node i. Mul-
tiplying the governing equations (12) by a test function and integrating over the
domain, one obtains the Galerkin finite element discretization

∑
j

[∫

Ω
ϕi ϕj dx

]
dUj

dt
+ ∑

j

[∫

Ω
ϕi∇ϕj dx

]

· Fj =
∫

Ω
ϕiS dx ∀i. (23)

The latter equation can be written in a shorter form

∑
j

Mij

dUj

dt
= −∑

j

cij · Fj +
∫

Ω
ϕiS dx (24)

or

MC
dU

dt
= KU + S (25)

due to the homogeneity property. In the formula above, the 4 NVT × 4 NVT-
matrix MC (NVT = number of vertices) denotes the block consistent mass matrix

MC = {Mij} = {mij I}, (26)

where I is the 4 × 4 identity matrix. The coefficients of this finite element scheme
are given by

mij =
∫

Ω
ϕi ϕj dx and cij =

∫

Ω
ϕi∇ϕj dx. (27)

Equation (24) corresponds to the standard Galerkin discretization. For the pur-
pose of implementing numerical boundary conditions, it is more convenient to
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consider the weak formulation

∑
j

Mij

dUj

dt
= ∑

j

cji · Fj −
∫

∂Ω
ϕiFh · n ds +

∫

Ω
ϕiS dx, (28)

which makes it possible to prescribe boundary conditions in a weak sense [14, 16].
In our algorithm, the weak form of the Galerkin discretization (28) serves as the
high-order scheme, while the stabilization is still based on (24).

3.2. Low-Order Scheme and Algebraic Flux Correction

In this section we focus on the stabilization of the convective fluxes related to
the particulate phase and we neglect the gas phase as well as the algebraic source
terms for convenience. The process of algebraic flux correction begins with row-
sum mass lumping on the left hand side of the semi-discrete Galerkin scheme

ML
dU

dt
= KU. (29)

The lumped counterpart of the consistent mass matrix MC is given by

ML = diag{Mi}, Mi = mi I, and mi = ∑
j

mij. (30)

Note that mass lumping related to the time derivative does not affect the accuracy
since the time derivative vanishes in the stationary limit, while it improves the
matrix properties and the performance of iterative linear solvers.

The lack of hyperbolicity rules out the usual approach in construction of approx-
imate Riemann solvers, which is based on edge-by-edge transformations to local
characteristic variables. In the case of the pressureless particle equations, such
transformations are neither possible nor necessary. Since there exists just one
wave moving with the flow velocity v, stabilization by scalar dissipation defined
in terms of the conservative variables is feasible. Since the same diffusion coef-
ficient applies to each equation, the lack of hyperbolicity turns out to be an ad-
vantage rather than a drawback as far as stabilization is concerned. The discrete
transport coefficients

kij = −cij · vj (31)

are defined as in the case of scalar transport equations [24], and the artificial diffu-
sion coefficients dij have the same value for all conservative variables. The default
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setting
dij = max{−kij, 0,−kji} = dji (32)

as stated in [24], is sufficient to satisfy the scalar LED criterion [24]. However, the
theoretical framework is invalid for nonlinear coupled systems. Therefore, a low-
order scheme based on (32) may produce undershoots and overshoots that carry
over to the flux-limited solution. It turns out that a slightly increased amount of
diffusion is sufficient to get rid of non-physical oscillations and compute a physi-
cally correct Riemann solution. An algebraic analysis of the Rusanov-type scheme
presented by Banks and Shadid [2] leads to the following revised definition

dij = max{|kij|, |kji|} = dji. (33)

The resulting low-order scheme is more diffusive than that based on (32). Indeed,

max{|kij|, |kji|} ≥ max{−kij, 0,−kji}. (34)

As before, the contribution of the artificial diffusion operator to the modified Ga-
lerkin scheme can be decomposed into a sum of numerical fluxes. In vectorial
notation this looks like

F
di f f
ij = |Λij|(Uj − Ui), F

di f f
ji = −F

di f f
ij , (35)

where
|Λij| = diag{dij, dij, dij, dij} = dij I (36)

is a diagonal matrix of diffusion coefficients.

The construction of the low-order scheme is followed by a nonlinear antidiffu-
sive correction. As in the case of scalar equations, the amount of antidiffusion
must be limited, so as to keep the scheme non-oscillatory. The correction factors
are computed for each equation separately. The only difference is the new formula
(33) for the artificial diffusion coefficient. The pair of limited antidiffusive fluxes
associated with nodes i and j is of the form

F∗
ij = |Λ∗

ij|(Ui − Uj), F∗
ji = −F∗

ij , (37)

where
|Λ∗

ij| = diag{α
(1)
ij dij, α

(2)
ij dij, α

(3)
ij dij, α

(4)
ij dij} (38)
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is a limited counterpart of |Λij|. Since the coupling is rather weak, the solution-
dependent correction factors αij are chosen individually for each equation. This is
due to the fact that there is just one wave and, consequently, just one character-
istic direction in which the wave can travel. The determination of the correction
factors can be found in [30, 31].

Although algebraic flux correction for the equations of the particulate phase is per-
formed in a segregated fashion, the resulting algebraic system should be solved
in a fully coupled way. Decoupled solution strategies may require less memory
but give rise to additional time step restrictions. Moreover, intermediate solu-
tions are more likely to exhibit numerical oscillations that inhibit convergence to
steady-state. Those strategies typically involve successive solution of a sequence
of subproblems and demand the use of out-dated quantities. The result is an inac-
curate stabilization as long as the solution has not converged. In the steady-state
limit this problem vanishes since the solution will no longer change significantly.
Nevertheless, convergence can only be reached for small time steps since inac-
curate stabilization due to large time steps will prevent convergence. Therefore,
the development of strongly coupled iterative solvers for flux-limited Galerkin
discretizations constitutes a major highlight of the present study. The implemen-
tation of two-way coupling mechanisms, implicit time integration schemes, and
Newton-like methods for nonlinear algebraic systems is described in the follow-
ing chapters.

4. Treatment of Source Terms

While the discretization of hyperbolic terms is described in the sections above,
the discretization of source terms is still an open question. The source terms in-
troduce a two-way coupling and give rise to an additional nonlinearity in the
model. The presence of small particles causes the source terms relating to the
drag force and heat exchange to dominate. This in turn leads to slow convergence
when using implicit solvers and aggravates the already very restrictive stability
constraints in explicit computations. To circumvent this problem, source terms are
usually included into the two-fluid model by way of operator splitting, see among
others [38, 42, 40]. The operator splitting approach makes it possible to develop
independent solvers for both the hyperbolic terms and the source terms. In such
an approach, the hyperbolic terms are usually discretized using explicit methods
developed in the framework of single-phase equations. On the other hand the
source terms call for an implicit solver due to their stiffness. At the same time,
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they can be integrated by a semi-analytical way [42, 33].

In the references cited above the Yanenko splitting of first order accuracy is em-
ployed since it removes the source terms and therefore the associated stability
constraints completely from the equations accounting for the hyperbolic terms.
The computation of the transport terms is the most time and memory consum-
ing part of the simulation of these types of multiphase flows. Operator splitting
techniques seem to be promising methods since they make it possible to solve for
the hyperbolic terms of both phases separately even for implicit approaches. In
transient computations this completely holds true, while operator splitting tech-
niques are less efficient or even less accurate in steady-state computations. Al-
though some splitting techniques are unconditionally stable, they typically do not
allow the solution to approach steady-state for moderate and large CFL numbers.

For the space discretization of hyperbolic equations with source terms an upwind
approximation of source terms is sometimes proposed, similar to the upwind ap-
proximation of hyperbolic terms [4]. A much simpler approach has been success-
fully used in the references cited above, where the source terms are discretized
in a pointwise way. The accuracy of a pointwise approximation is emphasized in
[39]. A similar finite-element-like approximation is proposed in this paper.

4.1. Operator Splitting

For the (pseudo) time integration of (4) one may apply operator splitting to
circumvent the convergence and stability problems associated with the nonlin-
earity induced by the source terms. As a starting point, we recall the operator
splitting that was applied to the two-fluid model in [15]. In transient computa-
tions a time integration scheme of second or higher order is usually applied. To
preserve the overall accuracy in time-dependent computations, the use of second-
or higher-order operator splitting schemes is required. Since this study focuses on
stationary solutions, first order splitting techniques combined with backward Eu-
ler time stepping suffice for this purpose. The time integration of the hyperbolic
part is described below.
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4.1.1. Yanenko Splitting

A popular approach is the Yanenko splitting [42, 33, 40]

U∗ − Un

∆t
+∇ · F∗ = 0 (39)

Un+1 − U∗

∆t
= Sn+1, (40)

where the superscript n denotes the time level. In the first step, the numerical
solution is advanced in time without taking the source terms into account. In the
second step, the nodal values of the resulting solution U∗ are corrected by adding
the contribution of Sn+1.

For an explicit solver fitted to transient simulations, the Yanenko splitting is a
good choice, although it is only first-order accurate. It turns out to be very robust
and to be applicable to nearly arbitrary CFL numbers. After the first step (39)
the source term step (40) changes the intermediate solution U∗ depending on the
length of the time step, so that the final solution Un+1 does not satisfy the equa-
tions of the first subproblem. The solution will actually not approach steady-state
since it depends on the length of the time step. The Yanenko splitting is therefore
restricted to time-dependent flows and very small time steps.

4.1.2. Douglas-Rachford Splitting

To make sure that the splitting does not disturb solutions approaching a steady-
state, we replace (39)–(40) by the Douglas-Rachford scheme [8]

U∗ − Un

∆t
+∇ · F∗ = Sn (41)

Un+1 − U∗

∆t
= Sn+1 − Sn, (42)

which is known to be very robust, at least in the context of alternating direction
implicit (ADI) iterative solvers for multidimensional problems.

The implicit correction in the second step does not change a converged station-
ary solution and allows the solution to approach steady-state. Moreover, the
Douglas-Rachford splitting provides a closer link between the density and ve-
locity of the particulate phase. This is another reason why it is preferred to the
Yanenko splitting. Due to the above mentioned drawbacks of the Yanenko split-
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ting, the Douglas-Rachford splitting is employed in this paper.

Source Term Update. Let us focus our attention on the second step (42) of the
Douglas-Rachford splitting since the first step (41) corresponds to the hyperbolic
solver, which is described in section 6. It is followed by an implicit correction
of the involved interface transfer terms. In this step, the drag force and heat ex-
change terms are discretized in a semi-implicit fashion. First, the velocities are
updated by solving the linear system

(αpρp)
∗

vn+1
p − v∗

p

∆t
= γ∗

D(v
n+1
g − vn+1

p )− Fn
D (43)

(αgρg)
∗

vn+1
g − v∗

g

∆t
= γ∗

D(v
n+1
p − vn+1

g ) + Fn
D , (44)

where the superscript ∗ refers to the solution of system (41) and

γ∗
D =

3

4
C∗

D

ρ∗g

d
α∗

p|v
∗
g − v∗

p|. (45)

Once the velocities have been updated, the changes in energy due to the interfacial
drag and heat exchange are taken into account as follows:

(αpρp)
∗

En+1
p − E∗

p

∆t
= γ∗

T(T
n+1
g − Tn+1

p )− Q̃n
T (46)

(αgρg)
∗

En+1
g − E∗

g

∆t
= γ∗

T(T
n+1
p − Tn+1

g ) + Q̃n
T. (47)

The heat transfer coefficient γ∗
T and net source/sink Q̃n

T are given by

γ∗
T =

Nu∗6κg

d2
α∗

p, Q̃n
T = Qn

T + vn+1
p · Fn+1

D − vn
p · Fn

D. (48)

Since mass transfer does not take place, there are no source terms in the continuity

equations. Therefore, the effective densities (αρ)n+1
k := (αρ)∗k remain unchanged.

Numerical experiments indicate that steady-state convergence of the Douglas-
Rachford splitting can only be achieved for small CFL numbers. It is a well-known
fact that decoupled solution strategies are unfavorable in steady-state computa-
tions due to their time step restrictions. In practice one has to make a decision
in the trade-off between the low computational costs of segregated algorithms
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in comparison with strongly coupled methods and the much more restrictive
time step constraints of the former family of methods. An implicit time stepping
scheme without use of operator splitting, which offers the potential of uncondi-
tional stability and convergence, is preferable in steady-state simulations and is
therefore developed in this study. Time integration as well as the fully coupled
solution strategy are presented in section 6.

4.2. Finite Element Discretization

Let us consider system (4) and rewrite its weak formulation in the generic form

∫

Ω
ω(∂tU +∇ · F) dx =

∫

Ω
ωS dx (49)

for every admissible test function ω. In the expression above, the source terms
are represented by the right hand side. A direct integration of these terms in-
volves numerical integration in each iteration step, which makes the integration
very time consuming. To discretize the source terms in a finite-element-like way
without numerical integration in each (pseudo) time step, we adopt the group fi-
nite element formulation, which was originally defined for hyperbolic terms [12].
The group finite element formulation is also employed for the discretization of the
hyperbolic terms of the two-fluid model. Hence, we interpolate the source terms
in the space of basis functions

Sh = ∑
i

ϕiSi, (50)

where

Si =
(
0, −FDi, −vpi

· FDi − QTi, 0, FDi, vpi
· FDi + QTi

)
(51)

denotes the source terms evaluated at the corresponding node i. Substituting (50)
into (49) yields semi-discretized equations of the form

MC
dU

dt
= KU + MCS, (52)

where MC denotes the consistent mass matrix and the matrix-vector product KU
includes the discretized hyperbolic terms and boundary conditions as explained
in sections 3 and 5. At the same time, one replaces the consistent mass matrix by
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its lumped counterpart, which transforms (52) to

ML
dU

dt
= KU + MLS. (53)

This type of source term discretization is closely related to the finite volume frame-
work, and the source term integration by schemes which take advantage of opera-
tor splitting. The replacement of the consistent mass matrix with the lumped one
enables a pointwise updating strategy in an operator splitting approach. More-
over, the lumped mass matrix prevents the birth of oscillations due to nonzero
off-diagonal source term blocks. Such treatment of source terms is also feasible in
a fully coupled approach, which is favored in this work since it does not violate
the physical properties of the solution. It is a well known fact that the two-fluid
equations do not conserve momentum and energy of each phase separately, in
contrast to the mixture momentum and energy which are perfectly conserved.
Equations (53) clearly feature this property. Furthermore, the positivity constraint
is not affected by the source terms nor are numerical oscillations observed in the
computational results.

The next section addresses the implementation of boundary conditions, which
is one of the most challenging tasks in the development of any implicit hyperbolic
solver and therefore also an important part of this paper.

5. Boundary Conditions

The two-fluid model consists of the Euler equations written in terms of the ef-
fective density and the pressureless transport equations. These subproblems are
linked by algebraic source terms. The flux Jacobians of the coupled system lack di-
agonalizability since an incomplete set of seven independent eigenvectors exists.
Therefore, it is neither possible nor necessary to prescribe characteristic bound-
ary conditions for the coupled two-fluid equations. As a matter of fact, it suffices
to implement boundary conditions for the equations governing each phase sepa-
rately.

Both phases involve similar boundary integrals. Therefore, the computation of
the boundary integral is exactly the same for both phases, but the treatment of
the boundary fluxes differs. The Euler equations admit three waves moving at
different speeds and in different directions, which necessitates the specification of
characteristic boundary values in terms of the Riemann invariants. In contrast,
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the equations modeling the particulate phase only admit one wave moving with
the fluid velocity. Hence, the whole information propagates with the particle ve-
locity. This enables the specification of boundary values in terms of conservative
variables rather than Riemann invariants.

It was already shown in [14, 16] that weak Neumann-type flux boundary con-
ditions are much more robust than their strongly impost counterparts. The accu-
racy was also emphasized in the references cited above. In this study we prescribe
weak Neumann-type flux boundary conditions. To impose boundary conditions
of that type we only manipulate the boundary fluxes in the boundary integrals

∫

∂Ω
n · Fh ds −→

∫

∂Ω
n · F̃h ds (54)

so as to satisfy the boundary conditions.

5.1. Inlet and Outlet Boundary Conditions

Without loss of generality we assume that

vp,n vg,n > 0, (55)

where vp,n = n · vp and vg,n = n · vg are the normal velocities of the particles and
gas, respectively. In other words, the case that one phase enters the domain while
the other phase leaves the domain simultaneously is excluded from the scope of
this paper. Note that this simplifies notation, but does not limit the computational
scheme.

A part of the boundary is called inlet if the normal velocities of both phases satisfy

vp,n < 0 and vg,n < 0, (56)

otherwise it is referred to as an outlet. Inlet and outlet boundary conditions for the
gas phase are the same as described in [14, 16] for the effective density ρ = αgρg

and it suffices to discuss boundary conditions for the particulate phase in the
present section. Consequently, the inflow and outflow can be subsonic or super-
sonic depending on the Mach number. In contrast, the wave of the particulate
phase enters the domain at an inlet, which requires the specification of the com-
plete vector of conservative variables. At an outlet, the wave leaves the domain
and no information has to be prescribed. To simplify notation, the index denoting
the particulate phase is neglected in the following formulas.
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The restriction to one wave simplifies the solution of the boundary Riemann
problem of the particulate phase. To avoid unphysical boundary layers [15], we
use the same boundary Riemann solver as for the gas phase [15, 14].The flux for-
mula of Roe is given by

n · F̃h = F(Ui , U∞) =
1

2
n · (F(Ui) + F(U∞))−

1

2
|An

i∞|(U∞ − Ui) (57)

with the flux tensor F defined by (16). Due to scalar dissipation the matrix |An
i∞|

exhibits a diagonal structure

|An
i∞| = diag{di∞, di∞, di∞, di∞}, di∞ = max{|n · vi|, |n · v∞|} (58)

in contrast to its counterpart corresponding to the Euler equations. This is similar
to the scalar upwind-formulation of each equation. In order to clarify the last
statement, let us consider a local linearization of the characteristic speed

v̂ =

{

vi · n if vi · n ≥ 0

v∞ · n if vi · n < 0
(59)

of the particulate phase. Due to this assumption, the boundary flux is given by
(the non-conservative formulation)

Flin(Ui, U∞) =
v̂

2
(Ui + U∞)−

v̂

2
(U∞ − Ui)

=
v̂ + |v̂|

2
Ui +

v̂ − |v̂|

2
U∞

=

{

Uiv̂ if v̂ ≥ 0

U∞v̂ if v̂ < 0

(60)

and is clearly equivalent to the one-dimensional upwind approximation. The
boundary flux (57) provides a quite similar treatment, where di∞, given by equa-
tion (58), mimics an approximation of the characteristic speed, which is consistent
with the inner discretization. Considering the last arguments it is sufficient to de-
fine the ghost state by the values of the interior state in the case of an outlet or by
the imposed boundary condition at an inflow part of the boundary.
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5.2. Wall Boundary Conditions

The wall boundary condition

vp,n = 0 (61)

should also be imposed on the equations governing the particulate phase. Since
they do not involve a pressure gradient in contrast to the Euler equations, it is
insufficient to apply the concepts developed for the Euler equations [14, 16]. The
wall boundary condition cannot be enforced just by canceling the boundary in-
tegral arising from the Galerkin discretization. Such an implementation does not
inhibit fluxes penetrating through the walls. In the case of the Euler equations the
nonzero pressure serves as a kind of source term, which prevents nonzero nor-
mal fluxes. Due to the lack of pressure the volume integrals may become large
in comparison with the boundary integrals, which may also be a reason for the
penetration of particles through the wall.

A simple way to circumvent this problem is to enforce flow tangency after each
iteration by subtracting the normal components of the momentum equations

(K∗U)i = (K∗U)i −



(K∗U)i ·





0
ni

0













0
ni

0



 (62)

at any wall boundary node i in a strong sense. This conflicts with the boundary
conditions imposed on the gas phase and gives rise to spurious boundary lay-
ers due to the inconsistent wall boundary treatment of both phases. On the other
hand, the weak implementation of boundary conditions provides superior robust-
ness, faster convergence, and accuracy in steady-state computations.

We therefore add an additional penalty term to the weak form of the momentum
equations of both phases

penalty := −σ
∫

Γwall

ω|vn|ρ
2vnn ds, (63)

where σ ≫ 1 is a large positive penalty parameter and ω represents the test func-
tion. The integration is carried out over the wall boundary and the penalty term,
which appears on the right hand sides of the momentum equations, is set to zero
elsewhere. Penalty terms were successfully applied to the incompressible Navier-
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Stokes equations [20] and reactive bubbly flows [29]. For the Euler equations a
penalty term very similar to (63) was proposed in [9] to enforce the wall bound-
ary condition. A more theoretical analysis of penalty techniques can be found in
[49, 43]. Moreover, the performance of those terms in the framework of (scalar)
transport equations as well as the incompressible Navier-Stokes equations was
established in [3]. Although the free-slip condition can be prescribed much eas-
ier for the gaseous phase, the particle equations require such a penalty term. It
is also added to the gas momentum equations to equalize the treatment of both
phases and to avoid boundary layers, which may arise due to different boundary
implementations. Nevertheless, the no-penetration condition

v · n = 0 (64)

can be substituted into the boundary integrals of each phase. Due to this fact, the
boundary integrals of the particle equations related to solid walls vanish and the
corresponding terms of the gas equations simplify to

n · F̃h
∣
∣
∣

wall

=







0

n(x)P

n(y)P
0







. (65)

Obviously, any weak solution of the governing equations also satisfies the mod-
ified equations with the additional penalty term. On the other hand, a weak so-
lution of the modified equations satisfies the free-slip condition as well as the
governing equations since convergence forces the penalty term to vanish and the
free-slip condition to be satisfied.

The penalty term turns out to be very large and stiff due to the large penalty pa-
rameter σ. This gives rise to rather large errors in the early stages of a simulation
since the free-slip condition is usually not yet satisfied initially. Care must there-
fore be taken in the design of the preconditioner to achieve convergence. Note
that the sign of the penalty term is chosen to restrict the contribution to the pre-
conditioner positive semi-definite [14] so as to improve its matrix properties [9].
Additionally, the abrupt change in the normal velocity due to an initial solution
violating the free-slip condition may cause divergence. This is not a drawback of
the penalty term, the problem is caused by physical reasons since such an impul-
sive start is physically impossible [34]. The initially large errors decrease signif-
icantly by several orders of magnitude during a few iterations since the normal
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velocity vanishes after a few iteration steps. However, a converged solution does
not depend on the way it was computed. Therefore, one may start the simulation
with a small penalty parameter and increase it during the first iterations. Such a
procedure is closely related to the underrelaxation of the wall boundary condition
proposed by Lyra [34]. Note that the penalty term is also applicable to transient
computations since the initial solution satisfies the wall boundary condition for
the physical reasons pointed out above.

6. The Implicit Solver

It is common practice to solve the arising nonlinear systems by pseudo time
stepping schemes for marching the solution to steady-state. The time step can be
interpreted as an underrelaxation, where a time step of infinite length corresponds
to a direct solution of the stationary equations without underrelaxation. In this
study we employ the backward Euler scheme to integrate the fluxes and source
terms. We will demonstrate in section 7.3 by numerical results that a fully coupled
solution strategy is much more robust then operator splitting based approaches.
Therefore, the governing equations are solved in a fully coupled way, although the
stabilization was defined for each phase individually. To avoid computationally
expensive nonlinear iterations, the fluxes and source terms are linearized by a
Taylor series expansion.

6.1. Linearized Backward Euler Scheme

The spatially discretized two-fluid model can be expressed in the condensed
form

ML
dU

dt
= F + S, (66)

where U is the vector of conservative variables, F is the flux vector, and S repre-
sents the source terms of the two-fluid model. This system of ordinary differential
equations can be integrated in time by the backward Euler scheme

ML
Un+1 − Un

∆t
= Fn+1 + Sn+1 (67)

with a time step of length ∆t. The superscript n refers to time level n and the
result is a nonlinear system of algebraic equations, which calls for nonlinear iter-
ations in each (pseudo-) time step. Nonlinear iterations are computationally very
expensive. To circumvent this problem, one assumes sufficient smoothness and

24



linearizes the equations around the current solution Un by a Taylor series expan-
sion of the fluxes

Fn+1 = Fn +

(
∂F

∂U

)n

(Un+1 − Un) +O(‖Un+1 − Un‖2) (68)

and the source terms

Sn+1 = Sn +

(
∂S

∂U

)n

(Un+1 − Un) +O(‖Un+1 − Un‖2). (69)

Substitution of equations (68) and (69) into the nonlinear equations (67) leads to a
linear algebraic system

[
ML

∆t
−

(
∂F

∂U
+

∂S

∂U

)n]

(Un+1 − Un) = Fn + Sn. (70)

Due to the linearizations (68) and (69) the latter scheme is time accurate of first
order and applicable to stationary as well as transient flows, although a time inte-
gration scheme for transient flows should be at least second order accurate. Fur-
thermore, nonlinear iterations are avoided and merely a linear system of algebraic
equations has to be solved at each time level. Note that due to the homogeneity
property the semi-implicit time marching scheme remains conservative, even if it
is applied to transient problems.

At first glance, this scheme seems to be conditionally stable since it is semi-implicit.
On the other hand, there is strong numerical evidence that the semi-implicit scheme
based on the backward Euler method is unconditionally stable if the initial values
are sufficiently accurate.

Suppose that both the fluxes and the source terms are differentiable with respect
to the conservative variables. Setting the time step (or the CFL number) of the
semi-implicit time stepping scheme to infinity, one recovers Newton’s method

−

(
∂F

∂U
+

∂S

∂U

)n

(Un+1 − Un) = Fn + Sn, (71)

which is known to have second order of convergence (quadratic convergence) un-
der these conditions. Corresponding to the notation used in this paper, Newton’s
scheme is also denoted by CFL = ∞, which is related to a time step of infinite
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length.

It is a well known fact that the convergence of Newton’s method depends on a
sufficiently accurate initial state. The Taylor linearization is only valid in a vicin-
ity of the current solution Un. This is the reason, why a suitable initial guess
is essential. Note that this requirement is not a stability restriction and the time
step can actually be arbitrarily large. The only condition is that the solution does
not change rapidly at each time level. To satisfy this constraint and make the lin-
earization valid, either small time steps or a suitable initial guess are crucial. After
the algorithm starts converging one can increase the CFL number to an arbitrarily
large or infinite value. Since the computation of the original Jacobian matrix is
a complicated task and may worsen the matrix properties, a low-order approx-
imation of the Jacobian will serve as a preconditioner. To indicate this fact, the
scheme will be called Newton-like. The approximation does not provide second
order convergence, but yields a robust and parameter-free scheme. There is no
significant loss of efficiency since second order convergence is related to differen-
tiability of the residual, which is not available for the flux function of Roe and the
limiter function applied in this study.

There are several possibilities to approximate the Jacobian. Some of them are
sketched in [14]. In this study we employ approximations of the flux and source
term Jacobians, which can be assembled cheaply and provide very good matrix
properties.

6.2. Edge-Based Approximate Interior Flux Jacobian

The original flux Jacobian in (71) and (70) is replaced by an edge-based approx-
imation of the low-order Jacobian, where the correction factors are neglected. The
approximate Jacobian (or preconditioner) constructed in this way is free of addi-
tional problem-dependent parameters and enjoys several advantages in compar-
ison with the previously discussed approximations. No additional fill-in is cre-
ated since the low-order fluxes only depend on the direct neighbors of a current
node. For scheme (70) the resultant matrix is of M-matrix type, which is related
to positivity preservation of each iterate subject to a suitable time step (at least
on the characteristic level). This is an important fact since it rules out unphysical
effects, which may cause divergence (e. g. zero density). The low-order approx-
imation therefore provides increased robustness and is subject to lower memory
requirements. Moreover, its computation is much less expensive than that of the
approximation of the full Jacobian.

26



The kind of Jacobian approximation proposed here can be determined analyti-
cally by a derivation of the low-order fluxes under certain simplifying assump-
tions. The sum of fluxes into a node i, which is related to the i-th row of the
residual vector, is given by

Flow
i = ∑

j

cji · Fj −
∫

∂Ω
ϕin · Fh ds

︸ ︷︷ ︸

=Bi

+∑
j 6=i

Dij(Uj − Ui). (72)

On the right hand side the first three terms represent the Galerkin discretization
(28) and the discretized source terms. For the gaseous phase of the two-fluid
model Dij are the diffusion blocks defined in [14, 32, 25, 16]. In the case of the
particulate phase Dij can be written as

Dij = diag{dij, dij, dij, dij}, (73)

where dij are given by (33). For the sake of simplicity one assumes that the dif-
fusion blocks are constant with respect to the conservative variables. The first
term of equation (72) involves the Galerkin coefficients cji defined by (27). They
are independent of the conservative variables. Under the above simplification,
the derivatives of the low-order nodal flux Flow

i with respect to the conservative
variables at nodes i and j are given by

∂Flow
i

∂Uj
= cji · Aj −

∂Bi

∂Uj
+ Dij,

∂Flow
i

∂Ui
= cii · Ai −

∂Bi

∂Ui
− Dij (74)

where Aj and Ai is the Jacobian tensor evaluated at nodes j and i, respectively.
The approximate Jacobian proposed so far is exact with respect to the Galerkin
discretization if the derivative of the boundary part and the source terms can be
determined exactly. The derivation of the boundary integral Bi is complicated
since the solution of the boundary Riemann problem is involved and the ghost
state may even depend on its related interior counterpart. We refer the interested
reader to [14], where a boundary flux Jacobian is derived by multiple applications
of the chain rule.

The approximation of the source term Jacobian is also a delicate task since the
source terms are rather stiff and dominating. They should be treated implicitly
and a suitable approximation of the Jacobian is required. On the other hand the
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source terms lack smoothness and the Jacobian does not exist analytically. In [14]
approximate drag force and heat exchange Jacobians are derived by treating the
non-smooth parts as constants. These Jacobians are used in the present study.

7. Numerical Results

The performance of the developed numerical scheme has been verified for the
Euler equations and a superior robustness and convergence of the weak boundary
conditions was shown numerically [14, 16]. In this section we focus on the anal-
ysis of the two-fluid model featuring a two-way coupling. The first goal of this
chapter is to validate the code and compare with benchmark computations from
the literature. At the same time it is shown that the discretization of the two-fluid
model features most of the properties of the single-phase gas code. The nonlin-
ear convergence analysis is therefore another important goal. It follows from the
numerical results that the nonlinear convergence behavior is qualitatively com-
parable to the single-phase gas computations. The rate of nonlinear convergence
improves with increasing CFL number. In spite of two conflicting non-differen-
tiable nonlinearities, which act together in the case of the high-resolution scheme,
the solution approaches steady-state in all computations. One can observe both
a genuine unconditional stability and a high and stable convergence rate for very
large or even infinite CFL numbers. The performance is highlighted for low Mach
numbers and complex flow situations.

In the present chapter two test cases are studied. First the flow in a jet propulsion
nozzle (JPL nozzle) is investigated. This test case is characterized by subsonic flow
at low Mach numbers in the converging part of the nozzle, which is accelerated
up to the supersonic regime. We analyze the nonlinear convergence for both the
low-order and the high-resolution scheme. Special attention is also paid to the
influence of different mass fractions on the physics of both phases. The second
computation deals with the reflection of a stationary shock wave at a ramp under
purely supersonic conditions. Based on these computations, we study the effect
of different particle sizes and mass fractions.

Both test cases involve the flow of nitrogen laden with small ceramic Al2O3 par-
ticles. The constants associated with such flow conditions are listed in table 1. At
the inlet a chamber with a homogeneous mixture of uniformly distributed gas and
particles is assumed. The temperatures and velocities are in equilibrium. Let us
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Constant Value Unit
γ 1.4
Pr 0.75

µ 2.76 · 10−5 kg
m·s

ρp 4000
kg
m3

cpg 1040 J
kg·K

cvg 743 J
kg·K

cvp 1380 J
kg·K

Table 1: Physical constants

Level NVT NEL
1 182 277
2 640 1108
3 2387 4432
4 9205 17728

Table 2: Mesh properties JPL nozzle

characterize the flow further by the mass fraction

φ =
αpρp

αpρp + αgρg
(75)

to measure the amount of particles in the chamber. In all computations reported
below, the penalty parameter is set to σ = 108. Moreover, the high-resolution
scheme is always initialized by the low-order solution, which is a sufficiently ac-
curate estimate to render the linearization adequate.

7.1. Jet Propulsion Nozzle Flow

The converging diverging nozzle is characterized by the presence of curved
boundaries, a quite steep entrance of 45◦ degrees, and a relatively thin throat,
which results in the large acceleration from Mach number M = 0.1 at the inlet
up to Mach number M = 2 (depending on the mass fraction). Therefore, a large
characteristic stiffness arises.

The geometry of the nozzle is adopted from [18], where the upper and lower
boundaries serve as solid walls. The left and right boundaries correspond to the
inlet and outlet of the domain, respectively. At the subsonic inlet, the free stream
conditions from table 3 are prescribed in contrast to the supersonic outlet, where
no boundary condition is needed. The domain is covered by an unstructured
triangular coarse grid, which is refined several times for the simulations. The
mesh properties at different levels are depicted in table 2. Computations for vari-
ous mass fractions are performed to assess the influence on the gas phase and to
compare the results with data reported in the literature. First we compute five
solutions with φ = 0.0 (pure gas), 0.1, 0.5 and d = 1µm, 20µm on mesh level four.
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Quantity Value Unit
M∞ 0.2

ρ∞ 6.0708
kg
m3

P∞ 106 Pa

v∞

√
γP∞

ρ∞

(
M∞

0

)

m
s

φ 0.1, 0.5

Table 3: Free stream conditions of the JPL
nozzle flow

Quantity Value Unit
M∞ 2

ρ∞ 6.0708
kg
m3

P∞ 106 Pa

v∞

√
γP∞

ρ∞

(
M∞

0

)

m
s

φ 0.1, 0.3

Table 4: Free stream conditions of the
oblique shock wave

For comparison figure 1 displays the properties of a pure gas flow. Figure 2 illus-
trates the Mach number distribution for the different mass fractions and particle
diameters.

We observe that the influence of the particles on the gas Mach number increases
with increasing mass fraction. The interfacial area and the amount of drag in-
crease due to larger volume fractions at higher mass fractions, which decelerates
the gas and decreases the Mach number. This physical argumentation is clearly
confirmed by the numerical solutions, see figures 2 and 1 (a). The results are in
a good qualitative agreement with the observations of Nishida and Ishimaru [36]
and Chang [6], although the configurations are not exactly equivalent.

Figures 2 (c) and (d) also illustrate the influence of the particle diameter on the
gas Mach number contours. It is shown by the contour lines that small particles
mimic the gas behavior. Despite a much higher volume fraction of the larger par-
ticles downstream and in the throat, compare figure 3 (b), the gas Mach number
is approximately the same or even slightly higher (at the throat) than in the flow
laden with smaller particles (see figure 3(a)). At first glance this looks surprising.
The interfacial area of the flow with d = 20µm is indeed smaller than the corre-
sponding interfacial area of the flow laden with particles of diameter d = 1µm (for
the same volume fraction). Therefore, the magnitude of interfacial drag increases
with decreasing particle diameter. Hence, smaller particles are more capable of
decelerating the gas than their larger counterparts, which compensates the differ-
ent magnitude of the volume fractions of both flows. A Mach number increase for
larger particles was also observed in [6].

The particle distributions for the mass fraction under consideration, and parti-
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(a) Mach number (blue= 0.1,
red= 2.22)

(b) Density (blue= 1.1, red= 6.27)

(c) Temperature (blue= 283, red= 562)

Figure 1: JPL nozzle: Pure gas flow physics (30 contours). Density in
kg

m3 , temperature in K
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(a) φ = 0.1, d = 1µm
(blue= 0.1, red= 1.97)

(b) φ = 0.1 d = 20µm
(blue= 0.1, red= 1.93)

(c) φ = 0.5 d = 1µm
(blue= 0.07, red= 1.43)

(d) φ = 0.5 d = 20µm
(blue= 0.07, red= 1.43)

Figure 2: JPL nozzle: Mach numbers for φ = 0.1, 0.5 and d = 1µm, 20µm (30 contours)
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(a) Mach number
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Figure 3: JPL nozzle: Effective particle density in
kg
m3 and Mach number at φ = 0.5

cle diameters of d = 1µm, 20µm can be compared in figure 4. A comparison of
the two different particle diameters indicates a particle clustering at the walls in
the converging part of the nozzle for d = 20µm. In contrast to the gas phase, the
particle velocity is not linked to a pressure term by a constitutive equation, which
inhibits such a clustering. The particulate phase is only coupled to the gas pres-
sure by the interfacial forces. A larger particle diameter results in less drag and
temperature exchange (for the same volume fraction) due to the smaller interfacial
area. Therefore, larger particles are less influenced by the gas than smaller ones,
which more or less mimic the gas behavior. The larger particles are therefore less
deflected to the centerline by the gas flow, or more precisely due to the pressure
gradient, and a larger amount of particles hit the wall. At the wall, the particles
are deflected to the center of the nozzle by the boundary condition.

In contrast, the amount of particles in the vicinity of the walls in the diverging
part of the nozzle decreases with increasing particle diameter, see figure 4. This
can be explained from physical reasons in the same way as above. Moreover, the
large Reynolds numbers at the throat (see figure 5 (a)) cause less drag due to the
drag curve in figure 5 (b). Therefore, the larger particles are not able to follow the
gas streamlines parallel to the walls. Nishida and Ishimaru [36], Chang [6], and
Ishii and Umeda [18] claim that there are particle free layers in the vicinity of the
walls, which increase with increasing particle size. In the present study, a small
amount of particles is still present in the vicinity of the walls in the diverging part.
Note that these particles vanish with decreasing mesh size, so that the added nu-
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(a) φ = 0.1, d = 1µm
(blue= 0.13, red= 0.73)

(b) φ = 0.1 d = 20µm
(blue= 0.02, red= 1.65)

(c) φ = 0.5 d = 1µm
(blue= 1.18, red= 6.89)

(d) φ = 0.5 d = 20µm
(blue= 0.29, red= 14.1)

Figure 4: JPL nozzle: Effective particle densities in
kg

m3 for φ = 0.1, 0.5 and d = 1µm, 20µm (30
contours)
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(a) Reynolds number (blue= 0,
red= 190)

(b) Drag curve
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Figure 5: Reynolds number for φ = 0.5, d = 20µm (15 contours) and drag curve

merical diffusion can be seen as responsible for that phenomenon. To summarize
the observations reported above, we state that the illustrated effects are physically
sensible and compare well with the results reported in the literature.

Last but not least, we examine the convergence behavior of the nonlinear iteration
for φ = 0.1 and d = 1µm to rate on the implicit scheme and particularly the bound-
ary conditions. Note that in this case the interface momentum and heat exchange
are rather large due to the small particle diameter. The convergence history of the
low-order scheme presented in figure 6 is qualitatively comparable to the single-
phase computations already discussed in [14, 16]. Once again, the Newton-like
scheme with CFL = ∞ exhibits the best convergence rates, while the convergence
rates deteriorate with decreasing CFL numbers. For CFL = ∞ the residual falls
below 10−12 in eleven iterations, while the residual hardly decreases for CFL = 1.
This demonstrates the superior performance of the proposed boundary treatment
and of the whole semi-implicit scheme in spite of the strong nonlinearity of the
interfacial transfer terms. The excellent convergence behavior clearly justifies the
use of implicit schemes.
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(a) High-resolution scheme
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(b) Low-order scheme
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Figure 6: JPL nozzle: Nonlinear convergence history in logarithmic scale for different CFL num-
bers on mesh level three

In the computations with the high-resolution scheme convergence is also reached
and unconditional stability can be observed. The results of the computations with
CFL = ∞ and CFL = 100 are almost the same, while the former case exhibits
slightly faster convergence. Obviously, the convergence rates deteriorate with de-
creasing CFL numbers. The convergence histories are qualitatively comparable
with the single-phase computations [14, 16]. Moderate CFL numbers also yield
satisfactory convergence rates and the performance improvement with increasing
CFL numbers stagnates at CFL = 100. Moreover, it is slightly less pronounced
than in the single-phase gas computations. Two conflicting nonlinearities due to
the interfacial exchange terms and the correction factors are present, which decel-
erates convergence. On the other hand, the deterioration of convergence rates due
to the interfacial coupling remains relatively small. Nevertheless, the rate of con-
vergence and the performance of the scheme are not affected if the CFL number
exceeds some upper bound, as observed in [48] even for the Euler equations.

7.2. Oblique Shock Reflection

The second test case in this chapter is a purely supersonic wave reflection at a
ramp of angle 10◦. In contrast to the JPL nozzle flow, a shock arises in the solu-
tion and is reflected at the ramp. At the supersonic inlet boundary (left side) the
free stream conditions from table 4 are prescribed, while no boundary condition
is involved at the supersonic outlet boundary (right side). The upper and lower
boundaries consist of solid walls. The goal of this section is to study the influence
of the particle diameter as well as that of the mass fraction on the wave position.
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A comparison with a pure gas flow is performed for the purpose of code valida-
tion. Although the already analyzed JPL nozzle flow is a much more complicated
test case, the current benchmark is also reported in the literature and allows an
additional validation of the code in terms of the wave position. For a pure nitro-
gen flow, which is characterized by table 1, the analytical solution downstream
the shock can be determined by shock wave theory [1]. It reads

ρR = 8.8538
kg

m3
MR = 1.6405 PR = 1706578.6040 Pa

with wave angle β = 39.3139◦. The particulate phase consists of solid Al2O3 ce-
ramic particles, which possess the physical properties listed in table 1.

We compute numerical solutions of the configuration described so far for mass
fractions φ = 0.1, 0.3 and particle diameters d = 1µm, 20µm. Figure 7 displays
the effective gas densities, which are computed on an unstructured mesh consist-
ing of 14,105 nodes and 27,904 triangles. The pure gas flow density is depicted
in figure 8 (a) for comparison. We observe that the wave angle decreases with
increasing mass fraction, while it increases with increasing particle diameter. The
same observations on the wave position are reported in [41] and the decrease of
the wave angle can be clearly observed by a comparison of figures 8 (a), 7 (a),(c)
and 7 (b),(d). At the same time the increase of the wave angle due to increasing
particle diameter is less obvious in figure 7 but still present and also observed in
[41]. An increasing particle diameter has an additional effect on the gas phase.
Figure 7 illustrates a smearing of the shock in the gas phase for larger particles. At
first glance this seems to be due to an additional amount of diffusion. This behav-
ior can in fact be explained by the physical nature of the particles. The particulate
phase, if it is considered isolated, does not exhibit a shock at that position due
to the lack of pressure. Moreover, it was already pointed out in section 7.1 that
large particles are less inclined to follow the gas streamlines. The Reynolds num-
ber distribution (see figure 8 (b)) exhibits large Reynolds numbers in the vicinity
of the shock, which results in less drag (compare figure 5 (b)) and clearly justifies
the above explanation. At the same time, interfacial drag is still present and its
magnitude and influence on the gas phase increases with increasing particle mass
fraction. Hence, the shock in the gas phase is smeared and smoothed out by the
influence of the particulate phase rather than by additional numerical diffusion.

Finally, we examine the convergence of the nonlinear iteration by a compar-
ison of different CFL numbers for computations on a mesh consisting of 3,565

37



(a) φ = 0.1, d = 1µm
(blue= 6.07, red= 9.05)

(b) φ = 0.1 d = 20µm
(blue= 6.07, red= 9)

(c) φ = 0.3 d = 1µm
(blue= 6.07, red= 9.57)

(d) φ = 0.3 d = 20µm
(blue= 6.07, red= 9.47)

Figure 7: Oblique shock: Effective gas density in
kg
m3 for φ = 0.1, 0.3 and d = 1µm, 20µm
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(a) Pure gas
(blue= 6.07, red= 9.05)

(b) Reynolds number
(blue= 0, red= 974)

Figure 8: Oblique shock: Pure gas flow density in
kg
m3 and Reynolds number with φ = 0.3, d =

20µm
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(a) High-resolution scheme
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(b) Low-order scheme
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Figure 9: Oblique shock: Nonlinear convergence histories in logarithmic scale

nodes and 6,976 triangles. The developed scheme turns out to be unconditionally
stable for a suitable initial guess, which is provided by the low-order solution.
To initialize the low-order computations a few pre-iterations with CFL = 10 are
performed. Figure 9 shows the convergence histories for both schemes and the
convergence behavior is qualitatively comparable to the formerly reported test
cases. In the case of the low-order scheme the rate of convergence improves with
increasing CFL number, while CFL = ∞ produces the best results since the rel-
ative error falls to 10−11 in about 40 iterations. In a simulation with CFL = 1, it
hardly decreases in the first 100 iterations. The high-resolution scheme exhibits a
similar behavior. Also in this case, the choice of CFL = ∞ offers the fastest con-
vergence. The relative error falls to 10−8 in about 600 iterations after which the
solution can be considered stationary, while CFL = 100 results in nearly the same
rate of convergence. However, the rate of convergence deteriorates with decreas-
ing CFL numbers.

In summary, the choice of large CFL numbers is usually preferable since the scheme
proves unconditionally stable in practical computations for a suitable initial con-
dition, which can be easily obtained in terms of the low-order solution. Note that
no parameter tuning is required. Hence, the developed scheme inherits the con-
vergence behavior of the single-phase gas code in a qualitative sense.

7.3. Operator Splitting vs. Fully Coupled Solution Strategy

There are two basic approaches to an implicit numerical treatment of the inter-
facial transfer terms. Either operator splitting techniques as presented in chapter
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4 and applied in [15] to stationary as well as non-stationary problems may be em-
ployed, or the equations may be integrated in time by the fully coupled implicit
time integration as discussed in chapter 6. At first glance, the former approach
significantly reduces the computational costs since the arising algebraic systems
can be solved separately. In comparison with the fully coupled approach, where
an 8 NVT × 8 NVT-system must be solved, operator splitting reduces the com-
putational effort to the solution of two algebraic systems of size 4 NVT × 4 NVT
and a source term integration step. Operator splitting of Yanenko type is rather
stable and robust but not suitable for the computation of stationary solutions. It
does not allow the solution to approach steady-state and the final result depends
on the (pseudo) time step. Douglas-Rachford operator splitting (see section 4.1)
is therefore investigated, while the Yanenko splitting may serve to compute an
initial guess. The Douglas-Rachford splitting is known to be very robust at least
in the framework of alternating direction implicit (ADI) iterative solvers.

It follows from the numerical results that the Douglas-Rachford splitting intro-
duces an upper bound for the pseudo time step, which hampers the convergence
to steady-state. This turns the promising reduction of computational costs into
a drawback due to the increasing number of nonlinear iterations. Note that in a
time-dependent application, where rather small time steps are essential for accu-
racy reasons, operator splitting is still competitive due to the low costs.

For the comparison of the fully coupled and the operator splitting approach both
schemes were applied to the problem reported in section 7.1 on mesh level three.
Mass fractions of φ = 0.5 and particle diameters of d = 20µm are prescribed for
the numerical tests. The logarithmic plots of nonlinear convergence histories pro-
duced by both the fully coupled and the operator splitting approach are presented
in figure 10. All computations are based on the low-order scheme, which is suffi-
cient to examine the treatment of source terms. Obviously, the convergence of the
fully coupled approach is far superior since it enables the use of large CFL num-
bers. On the contrary, the Douglas-Rachford splitting exhibits convergence only
for small pseudo time steps. The scheme remains stable and does not converge
for moderate CFL numbers, which can be explained by the large stiffness of the
interfacial forces and the explicit treatment in the hyperbolic step. Since it is a well
known fact that decoupled methods are subject to time step restrictions, the ob-
servations are as expected. The fully coupled implicit scheme converges in about
15 iterations for CFL = ∞ and exhibits convergence for all applied pseudo time
steps. In contrast, Douglas-Rachford splitting does not converge for ∆t > 3 · 10−4,
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(a) Fully coupled scheme
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(b) Douglas-Rachford splitting
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Figure 10: Nonlinear convergence history in logarithmic scale of the low-order schemes for differ-
ent pseudo time steps on mesh level three

which corresponds to a maximal CFL number of about CFL = 9. However, it
converges for ∆t = 3 · 10−4 in approximately 1500 iterations, which corresponds
to 75 times more iterations.

Summarizing the results of the presented numerical study, we conclude that the
unconditional stability of the fully coupled implicit time integration proposed in
this paper makes it a highly promising solution strategy for the two-fluid model.

8. Conclusions and Outlook

A high-resolution finite element scheme was proposed for the macroscopic
two-fluid model of particle-laden gas flows. The main highlight is a robust itera-
tive solver that delivers converged steady-state solutions despite oscillatory cor-
rection factors even if stiff algebraic source terms are present. The semi-implicit
pseudo-time-stepping appears to be unconditionally stable and reduces to a Newton-
like method in the limit of infinite CFL numbers. With increasing time steps the
convergence rates improve and they do not deteriorate if the CFL number ex-
ceeds some upper bound. The fully coupled solver was compared to operator
splitting techniques and was shown to be much more robust than the latter ap-
proaches. The Galerkin finite element discretization was equipped with weak
boundary conditions of Neumann type based on a boundary Riemann solver for
the inlets and outlets and a penalty term was added to prevent the flow from pen-
etrating solid walls.

42



The convergence to steady state can be further accelerated within the framework
of a nonlinear (FAS-FMG) multigrid method. Further tasks to be accomplished in-
clude the implementation of the new algorithm in 3D, its combination with adap-
tive mesh refinement techniques, and application to real-life problems. Moreover,
the computational model will be extended by viscous terms.
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D. Kuzmin, R. Löhner, S. Turek, editors, Flux-Corrected Transport, Principles,
Algorithms, and Applications, pp. 155-206, Springer, 2005.
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