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In this paper, we present an entropy stable scheme for solving the compressible
Navier-Stokes equations in two space dimensions. Our scheme uses entropy vari-
ables as degrees of freedom. It is an extension of an existing spacetime discontinuous
Galerkin method for solving the compressible Euler equations. The physical diffu-
sion terms are incorporated by means of the symmetric (SIPG) or nonsymmetric
(NIPG) interior penalty method, resulting in the two versions ST-SDSC-SIPG and
ST-SDSC-NIPG. The streamline diffusion and shock-capturing terms from the orig-
inal scheme have been kept, but have been adjusted appropriately. This guarantees
that the new scheme essentially reduces to the original scheme for the compressible
Euler equations in regions with underresolved physical diffusion. We show entropy
stability for both versions under suitable assumptions. We also present numerical
results confirming the accuracy and robustness of our schemes.

Keywords. Discontinuous Galerkin method, compressible Navier-Stokes equations, entropy
stability, entropy variables, interior penalty method, wall boundary conditions.

1. Introduction

In this contribution, we present schemes for solving the compressible Navier-Stokes equations
in two space dimensions that are proven to be entropy stable. Our schemes are extensions of the
method by Hiltebrand and Mishra [20} [19] for solving hyperbolic systems of conservation laws.
We use a version specific to the compressible Euler equations. The scheme by Hiltebrand and
Mishra has the following features: it uses entropy variables as degrees of freedom (instead of the
classic conserved variables), uses a spacetime (ST) discontinuous Galerkin (DG) approach on
unstructured grids, and involves streamline diffusion (SD) and shock-capturing (SC) terms. As
a result, the scheme can be shown to be entropy stable, is unconditionally stable, is (arbitrarily)
high-order in smooth flow, and is robust in the presence of shocks and discontinuities.

We extend the scheme to solving the compressible Navier-Stokes equations by adding a
suitable treatment for the physical diffusion terms representing viscosity and heat conduction.
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We consider both the nonsymmetric (NIPG) and symmetric (SIPG) interior penalty formu-
lation for this purpose, resulting in the versions ST-SDSC-NIPG and ST-SDSC-SIPG. In our
extension, we preserve all the positive qualities of the original scheme. In particular, we can
show entropy stability of the resulting numerical scheme under suitable conditions for both
ST-SDSC-NIPG and ST-SDSC-SIPG.

The question of whether one still needs streamline diffusion and shock-capturing terms when
approximating the compressible Navier-Stokes equations is quite controversial. For efficiency
reasons, the physical diffusion cannot be resolved everywhere in a typical computation. In
regions where the physical diffusion is sufficiently resolved, e.g., in boundary layers, the addi-
tional diffusion terms are not needed. Away from boundaries, the solution of the compressible
Navier-Stokes equations can behave quite similar to the solution of the compressible Euler
equations when the physical diffusion is not sufficiently resolved. In these regions, we want to
ensure that our scheme essentially reduces to the original scheme by Hiltebrand and Mishra.
Therefore, we do include a suitable extension of the original SD and SC terms in our new
schemes. The artificial diffusion terms are constructed such that they eliminate most oscil-
lations around shocks and vanish with the correct order of convergence in smooth flow. In
particular we observe for smooth flow convergence orders of O(h**+1) for polynomial degrees
of order k (with a potentially worse rate for the ST-SDSC-NIPG version for even polynomial
degree k).

In the literature, there exists a variety of DG methods for solving the compressible Navier-
Stokes equations that are based on discretizing the conserved variables of the system, see, e.g.,
[4, 5, 16, [7), [8, 9] 10} 111, 12, 13} 15l 17, 18, B0] and the references cited therein. Several of them
use the IP method for discretizing the diffusion term for example the work by Hartmann and
Houston [I7, 18]. Others use, e.g., the local discontinuous Galerkin (LDG) approach or the
‘Bassi-Rebay’ approach. A unified comparison of typical discretizations for the diffusion terms
can be found in [I] for the case of an elliptic model problem. To the best of our knowledge the
above methods do not allow for theoretical stability results for the case of the actual diffusion
operator of the compressible Navier-Stokes equations.

Though to a smaller extent, there is also some work based on using entropy variables as
degrees of freedom. In [21], Hughes et al. examine the properties of the physical diffusion and
heat conduction terms for the compressible Navier-Stokes equations when entropy variables are
used as degrees of freedom. In [34], Shakib et al. use a spacetime finite element approach for
solving the resulting equations. The authors use discontinuous elements in time but continuous
elements in space. Barth [2, [3] uses a spacetime DG approach and discretizes the diffusion
term using the SIPG approach. To the best of our knowledge though he does not examine
entropy stability for the actual discrete formulation nor does he include shock-capturing terms
for simulations for the Navier-Stokes equations. Further, van der Vegt and coworkers [27, 26,
32] have worked on solving the compressible Navier-Stokes equations using both conserved
variables and entropy variables. The authors use a spacetime DG approach in combination
with an IP discretization of the diffusion term but also do not provide an explicit proof of
entropy stability. The work by Zakerzadeh and G. May [39] is one of the few ones that does
provide entropy stability estimates for the fully discrete versions. The authors examine entropy
stability for different discretizations of the diffusion term, in particular for a LDG discretization,
a BR2-type discretization, and also a form of the SIPG discretization. However, the specific
version of the employed SIPG discretization is different from the one considered here. Further,
the authors do not include shock-capturing terms and do not consider boundary contributions.
Finally, May [29, 28] compares one-dimensional extensions of the scheme by Hiltebrand and



Mishra using the IP discretization and the LDG discretization for the diffusion term and
provides corresponding entropy stability results.

In this contribution, we extend the method based on IP discretization to two dimensions.
The proof of entropy stability for the SIPG approach is more challenging in two dimensions
as the 8 x 8 diffusion matrix written with respect to entropy variables only has rank 5. We
also examine the case of adiabatic solid wall boundary conditions here whereas all of the above
mentioned contributions assume compact support of the solution. Furthermore, we provide
improved artificial diffusion terms compared to [29] as well as extensive numerical results in
two dimensions.

This paper is structured as follow: in section we shortly review the original scheme
of Hiltebrand and Mishra for solving hyperbolic systems of conservation laws to keep this
work self-contained. In section (3, we discuss properties of the compressible Navier-Stokes
equations in two dimensions when entropy variables are used as degrees of freedom. In section
we present our extensions ST-SDSC-SIPG and ST-SDSC-NIPG for solving the compressible
Navier-Stokes equations. This includes the discretization of the physical diffusion term as well
as the suitable extension of the artificial diffusion terms. In section[5] we show entropy stability
of our schemes under suitable assumptions. Finally, in section [6|we present numerical results in
one and two space dimensions for piecewise polynomial spaces of degrees one, two, and three.
We conclude with a summary in section

2. Review of the spacetime DG method for hyperbolic systems

In this section, we review the spacetime DG formulation for systems of hyperbolic conservation
laws that our new method is based on to keep this work self-contained. For more detailed
information, we refer to [20, 19].

Consider a system of hyperbolic conservation laws on the open domain 2 C R? given by

U; + F1(U),, + F}(U),, =0, (x,t) € 2 xRy, (1)

where U = (uq,.. .,um)T 2 xRy — R™ m € N, is the vector of conserved variables and
F¥ : R™ — R™ is the flux function in zj-direction, k = 1,2. We use the short-hand notation
U; = 0;U and F(U),, = 9, F(U). We assume the existence of a strictly convex entropy
function S : R™ — R and of entropy flux functions Q* : R™ — R, k = 1,2, such that
the corresponding entropy inequality is satisfied. We note that this assumption is satisfied
for the compressible Euler equations. One can then define entropy variables V.= Sy(U) =
<aS(U) as(U)

Our °° "7 Oum

T
) and apply a change of variables to get

U(V); +FY (V) +F3(V),, =0, (x,t) € 2 xRy, (2)

where F¥(V) = FF(U(V)) for brevity. The method is based on using these entropy variables as
degrees of freedom instead of the usual conserved variables. Before describing the discretization
of equation , we will first set the prerequisites for the spacetime mesh.

At the n'* time level ", we denote the time step as At" = t"t! — " and the update
time interval as I"™ = (#",¢"*!). For simplicity, we assume that the spatial domain 2 C R?
is bounded and polyhedral and divided into a triangulation 7T, i.e., a non-overlapping set of
triangles K such that Ugc7K = 2. Furthermore, we take the usual conditions of mesh and



shape regularity for granted. For a generic element (cell) K, we denote

hx = diam(K), (diameter of K),
N(K)={K' €T :K # K Ameas14(K N K') >0}, (neighbours of K).
The mesh width of the triangulation is A(7T) = maxg hx. A generic spacetime element is the
prism K x I"™. We also assume that there exists an (arbitrarily large) constant C' such that
(1/C)h < At™ < Ch for all time levels n.

On a given triangulation 7~ with mesh width h(7), the discrete solution V" (we will use the
superscript h for referring to discrete variables) is sought in the space

ko h 1 m . Whgem € PHK x I") in
V= {W < (L (42 [O’TD) " each component 1 <i<m |’ (3)

where PF¥(K x I™) is the space of three-dimensional polynomials of order k on the prism K x I"™.
The discretization of the conservation law is given by: find V" € V¥ such that

Bpa (V" ®") + Bsp(V", ®") + Bsc(V", @) =0 v &" c VF. (4)

In the following, we will give the details for each of the three quasilinear forms, which are all
nonlinear in the first argument and linear in the second.

2.1. The DG quasilinear form
The form Bpg is given by

Bpa(V", ®") = Z//( u(vh). ¢h+ZFk (vh- @’;k>dxdt
+ 3 [ U0V Vi) @l a3 [ UVELVE) 2l s

+Z > // F(Vi . Vi vkke) - @ do(x) dt, (5)

n,K K'eN(K) Ox rcr
with
h h
¢, (x) = €£%1+ " (x,t" L)
Ok = Kn K/,
Vi k' = unit normal for edge K K’ pointing outwards from element K,

(6)

®h . (x,t) = lim ®"(x+evgg,t), Vx € gk,
’ e—0+

for all ®"* € V¥ anda-b=>", a;b; for a,b € R™.
We still need to specify the numerical fluxes that we use. To enable time marching, we
choose the upwind flux for the temporal numerical flux U:

u(vh

n,—

Vi) =U(Vy ). (7)



For the spatial numerical flux F, we use a consistent, conservative, and entropy-stable flux
given by

2

. 1
F(Vi_ Viciver) =) F (Vi Vie Wicgr — §D(V?<,+ - Vi) (8)
k=1

with D = D(V%ﬁ,V’}(#;I/KK/). Here, F** denotes an entropy-conservative flux (in zy-
direction). The existence of such fluxes for any generic conservation law with an entropy
framework was shown by Tadmor [36]. Explicit expressions of entropy-conservative fluxes for
the compressible Euler equations have been obtained, e.g., by Ismail and Roe [22]. The oper-
ator D represents a numerical diffusion operator. For detailed information — also concerning
the entropy-conservative fluxes — we refer to |20, [19].

2.2. Streamline diffusion and shock-capturing operator

If one only used the Bpg-form, i.e., if one defined the discrete solution as the solution of
Bpa(V", ®") = 0 ¥ ®" € V¥, then this solution would typically exhibit unphysical oscillations
near shocks and contact discontinuities. Therefore, a streamline diffusion and a shock-capturing
operator are added, compare . These terms add artificial diffusion where needed in order
to damp unphysical oscillations.

The following form is used for the streamline diffusion operator (cf. [20, 23] 25|, 24])

2
BV =Y [ | (Uv<vh><1>?+ZF’“v<vh><I>Zk)~(D23<Res> dxdt  (9)
nKY k=1

with intra-element residual

2
Res = U(V"), + > FF(Vh),,, (10)
k=1
and scaling matrix
Db = CSP AU (V). (11)

Here, CSP denotes a positive constant and is typically chosen to be 10. Further, Uy denotes
the Jacobian DU(V) and F¥, the Jacobian DF¥(V). Note that the intra-element residual is
well defined as the first derivatives are taken of a polynomial function.

The streamline diffusion operator adds numerical diffusion in the direction of the streamlines.
However, one needs further numerical diffusion in order to reduce possible oscillations at shocks.
For this purpose, the following shock-capturing operator (similar to Barth [2]) is used:

2 —_—
Bsc(V", ®") = Z/n/ DY (@t. Uth) +Z Ztn)2¢2k-(vagk)>dxdt, (12a)

with Ij; = Uv(\~7m k) for brevity and

1

Vg =———+
K meas(I" x K)

/ Vi(x,t) dx dt
m



being the cell average. The scaling factor is

AtnCSC@mK

DSC _
n,K — )
b (Toh 2 hk? v (Touh
o Jie (V- (OuVE) + 3 Vi, - (OV VL) ) e +-c

(12b)

_ 0
with € := ]Kﬁ(At")Tl (diarﬁ(())) and € > 1/2 (chosen as 1) and

Resy, i = \/ / / Res - (Uy! (V?)Res) dx dt. (12¢)
I JK

Here, CSC is a positive constant, typically taken to be 1. We note that in the original formu-
lation of the shock-capturing term [20, 19] both an inner residual term (defined by (12¢))) and
a boundary residual term enter the formula . As the boundary residual term has only
little influence, we do not include this term in our extension to the compressible Navier-Stokes
equations and therefore do not present this term here.

2.3. Entropy stability for nonlinear systems

The design of the streamline diffusion (SD) shock-capturing (SC) discontinuous Galerkin (DG)
scheme is motivated by the consideration that it has to be entropy-stable for a generic
nonlinear system of conservation laws, equipped with an entropy formulation. There holds the
following theorem.

Theorem 2.1 (Partial restatement of Theorem 3.1 in [20]). Consider the system of conser-
vation laws with a uniformly convex entropy function S and entropy flux functions QF
(1 < k < 2). For simplicity, assume that the exact and approzimate solutions have com-
pact support inside the spatial domain 2. Let the final time be denoted by t. Then, the
streamline diffusion shock-capturing discontinuous Galerkin scheme approximating 18
entropy-stable, i.e., the approximate solutions satisfy

[ SUVE ) dx < [ SUIVE () ax (13)
(9 2

One can also extract the following property of the quasilinear form Bpg from the proof of
Theorem (given as proof of Theorem 3.1 in [20]).

Lemma 2.1. Under the conditions of Theorem [2.1], there holds
Bpg(V", V") > / S(U(VY _(x))) dx — / S(U(V{_(x))) dx. (14)
9} (9}
3. The compressible Navier-Stokes equations

The compressible Navier-Stokes equations in two space dimensions are given by

U; + Fl(U)m + FZ(U)M - H' (U)m + Hz(U)ﬂCQv (15)



with

P gu pU
u= ", F o= 7P = | Y
pU puUv pv+p
E u(E + p) v(E +p)
and
0 0
Hl(U) —_ T11 HQ(U) —_ T12
To1 ’ T2
T11U% + T12V + KOg, To1U + Toov + KOy,

Here, p = p(x,t) > 0 denotes the density, v = u(x,t) the velocity in z;-direction, v = v(x,t)
the velocity in zo-direction, p = p(x,t) > 0 the pressure, and
E=-L_4 1p(u2 + v?)
y—1 2
the total energy with v > 1 being the adiabatic constant. Additionally, R > 0 is the gas
constant, C, > 0 is the specific heat at constant volume, and 6 = Rip > 0 refers to the
temperature. The viscous stress tensor 7 is given by

T
T:;L(V (u> + (V (u)) > + AV - <u>]l,
v v v
with superscript 7' denoting the transpose. We assume the viscosity parameters (p, A) and the

conductivity £ > 0 to be constant. We use A = —% 1. We further assume the relation between
w and k/R to be given by the Prandtl number Pr = 4+/(9vy — 5) via

K _Cwp v i
R  RPr (y—-1)Pr"

In order to write the compressible Navier-Stokes equations in the form

v+ o) =7 ([oale) eto) [02]): (19

one needs to define suitable matrices D;;(U), 4, j = 1,2. We do not give the specifics here (we
refer the interested reader to [15]). We emphasize that the resulting matrix D = (Dj;); j=1,2
(which is formulated with respect to the conserved variables) is not symmetric.

Therefore, we rewrite using entropy variables as degrees of freedom. For the transfor-
mation to entropy variables, we use the physical entropy and the corresponding entropy flux
in the following way

pus

ps 1
S:— —_—
7_17 Q 7_17

pUs

2—_
Q=

s = log(p) — ylog(p). (17)
This results in the entropy variables (written in terms of primitive variables and s for simplicity)

) ) )

v—1 2p P P P

V:<7—S p(u* +v%)  pu  pv p>T' (18)



Then, we can reformulate the compressible Navier-Stokes equations in entropy variables

as follows V) ) V)
FL(V A(V) Ap(V VxD
U(v), +V- =V o, 19
Vi [pw)] =5 () anw) v (49)
with
An(V) Ap(V)]
A(V) =
V) Ag (V) Axn(V)]
[0 0 0 0 0 0 0 0 i
0 —%Ui 0 %vgm 0 0 %fui —%’U3U4
0 0 —Ui V34 0 —’UZ 0 VU4
_ M 0 %1}21}4 V3V4 —%v% — v§ +xvs 0 wsvy —%02114 —%1)21)3
vy |0 0 0 0 0 0 0 0
0 0 —Uz V34 0 —UZ 0 VoUy
0 gvz 0 — 29904 0 O —%vi %v3v4
[0 —Zvsvg wouy — 5203 0 wovy 3vsvy  —303 — 03 + xv4
(20)
and y = ﬁ. The matrix A has the following property [21].
Lemma 3.1. The matriz A € R®*® given in is symmetric positive semi-definite.
In the following lemma, we examine A further.
Lemma 3.2. Let the matriz R € R>*® be given by
01 0 00 0O 0O
1 1
0 0 7 0 0 7 0 0
R=|00 0 10 0 00 (21)
00 0 00 0O 1O
00 0 00O 0 01
Define )
A =RART, (22)
There holds:
(i) The matriz A € R is given by
az2  V2ax  an a7 a2s
R V2a32  2a33  V2a3s V2a3r V2ass
A=| ap V2a3 au a7 ass
arz  V2ar3  an arr arg
agy  V2ag3  aga  agr  asg
and there holds )
A =RTAR.

(ii) The matriz A is symmetric positive definite for u, s > 0.



(iii) Let EV(A) denote the set of eigenvalues of the matriz A. Then,
EV(A) = EV(A) U {0}
with the dimension of the eigenspace corresponding to the eigenvalue O being 3.

Proof. (i) Follows by direct computation, exploiting that columns 3 and 6 and rows 3 and
6, respectively, have the same entries.

(ii) Follows by direct computation, e.g., by verifying that all leading principal minors are
positive.

(iii) Define

01 0 00 O 00O
1 1
00 7 00 7 00
00 0O 10 0 00O
R — 00 0 OO0 O 10
““t=100 0 00 0 01
1 1
00 7 00 -7 00
10 0 00 O 00O
00 0O 01 0 00O
Note that R.;; is an orthogonal matrix and that
A
T 0
Re%tARext: 0
0

This directly implies the claim.
O

In section [f] we will prove entropy stability for the ST-SDSC-SIPG method for the compress-
ible Navier-Stokes equations. To do so, we will need the quotient of the largest and smallest
eigenvalue of A(Vh) to be uniformly bounded. We can derive this property from the following
assumption which requires uniform boundedness of the computed solution.

Assumption 3.1 (Ass. for ST-SDSC-SIPG). We assume that there are uniform lower bounds
po > 0,pg > 0 such that p" > pg and p" > py. We further assume that there are uniform upper
bounds pyr,unr,var, par > 0 such that p" < pyr, || < g, [0"| < var, and p < pay.

Lemma 3.3. Under Assumptz'on thefe exist bounds \ and A such that 0 < A < )\}1‘ <...<
A< A, where A are the eigenvalues of A(VP) (with V* denoting the discrete solution).

Proof. Under the Assumption the entropy variables |VJ!|,|V#|,|V}| are uniformly bounded

from above. In addition, |V}}| = |z—2| > L2 > 0. Thus, all the entries in A (V") as well as in
A(Vh) are bounded. This directly leads to an upper bound on the largest eigenvalue
C > (aij)? =tr(ATA) =tr(ATA) => (A2 (23)
Y] i



Let us denote the upper bound of the eigenvalues by A and assume that the eigenvalues are
sorted 0 < /\? <...< /\g. Then we have

pAs  AB_ det A(Vh).

A > N - (24)
A lengthy but direct calculation yields
R 8 K}2 ph 7
hy __ 3
det A(V") = Vol <ph> . (25)

This is bounded from below by Assumption and therefore this establishes a lower bound
on the eigenvalues. O

4. The ST-NIPG and the ST-SIPG method

In this section, we present our methods ST-SDSC-NIPG and ST-SDSC-SIPG for solving the
compressible Navier-Stokes equations in two space dimensions. Related versions in one space
dimension have been presented in [29]. In the following, we will focus on the description of
the methods in the interior of the space domain 2. Necessary modifications to account for
boundary conditions are discussed in section

4.1. The IP formulation

We introduce the following notation: F refers to the collection of all edges of the triangulation
T with F; referring to the collection of interior edges and Fr referring to the collection of
boundary edges. For each edge e € F; we assign a unit normal v, = (v}, v2)T, e.g., to point
from K' to K2. For an edge e € Fr, v, is assumed to coincide with the exterior unit normal

vector. We define the average and jump for an edge e € F; shared by triangles K' and K? by
1
{vi}= 5 (Vi + Ve ) and  [V"] = Via = Vi,

For an edge e € Fr, which belongs to cell K, we define {Vh} = [Vh] = V?{’f.

For both ST-SDSC-NIPG and ST-SDSC-SIPG, we seek the discrete solution V* € V¥ such
that

Bpa (V" ®") + BE (V" @") + BSG(V", ") + Bp (V" ") =0 vV &" e V. (26)

Here Bpg is given by ; Bé% and Bé% are modifications of the streamline diffusion and shock-
capturing terms, which will be described below. The form Bip ¢ represents the discretization

10



of the diffusion term and is given by

L A Z h (I)h
s w5 [ [ (aovn ($)- () o
<l I Vi, ®l,

_ZZ/ /< (V") <{V"’“% > <[<I>h%;> do(x)dt  (B1)

e

n eckF;
T e () (e
X [ L (v () (i) o e
+) Z B (Vh, @),
n ecFr
with Bg,"e(Vh ®") modeling the behavior for boundary edges e € Fr and time interval

I". We w111 describe the details for Dirichlet boundary conditions and adiabatic solid wall
boundary conditions in section The parameter o > 0 represents a penalty parameter and
he denotes the length of the edge that is integrated over. We note that the definition of Bp ¢
is independent of the choice of the direction of the normal v,.

Notation 4.1. The method is called NIPG method for ( =1 and SIPG method for ( = —1.

4.2. Streamline diffusion and shock-capturing operator

We adjust the streamline diffusion and shock-capturing terms in order to account for the
presence of the diffusion term. Different to (10]), the intra-element residual is now given by

2 2
Res'” = U(VA), + S FE(V )0, = 3 (Ara (VP VE, + Apa(V!) V];2>Ik - (29
k=1 k=1

One could then define a shock-capturing term Bé% without further changes (other than using
Res'™ in the definition of Res,, i, cmp. (12d)), instead of Res). For the streamline diffusion, one
needs to make the following adjustment

BE (Vh &) = Z/ / (UV VY@L + ZFV vhe!
n,K k=1
2

-> (AM(V}‘) B!+ Aj2(VH @22) ) - (D5 Res'™) axdt. (29)
k=1 Tk

This adjustment is necessary in order to ensure the entropy stability of the resulting method.

If we use these formulations of Bé and BSD in E, we will observe suboptimal convergence
rates of O(h¥) for tests involving smooth flow (compare the corresponding one-dimensional
results in [29]). This was not the case for the original scheme for conservation laws when
the artificial diffusion terms were included. We believe that this is due to the fact that now
second-order derivatives enter the computation of the residual and therefore reduce the order

11



of convergence of the residual. In [16], Hartmann presents shock-capturing terms for the
compressible Navier-Stokes equations. If we multiplied Bé% (on a cell-wise level) with h%9,
the shock-capturing terms would have certain similarities. However, in this case our resulting
shock-capturing term would not reduce to the shock-capturing term for the compressible Euler
equations if the physical diffusion is not sufficiently resolved; as a result, oscillations might not
be sufficiently damped.

We therefore adjust the formulation of the streamline diffusion and shock-capturing term
differently: In [20], the authors introduced a pressure scaling term in Bgc in order to capture
contact discontinuities for the compressible Euler equations more sharply: they changed the
term DES{ in in the following way

D% — DS - DE (30)

» 5 A \K\ f[n fK \/ S het Py dadt
Dy, = hi . (31)
WW Jin S pdadt
The authors did not include this term in their formulation of Bgc (for general systems of
conservation laws) as this adjustment is specific to the compressible Euler equations. We
will use this formulation in our method for the compressible Navier-Stokes equations. To be
consistent, we also change the streamline diffusion term and scale DTSL]?K defined in with

DZ - We summarize our changes compared to the streamline diffusion and shock-capturing
terms of the original scheme:

with

e use the definition of the cell-wise residual Res't given by (instead of Res given by
(10])); also change this in the definition of Res,, i in (12d);

e use the definition of B given by ([29)) instead of Bgp given by @
e multiply D K in and D K in with the pressure scaling term defined in :
DiGe — DG - DY o and DR — D - DI (32)

4.3. Boundary conditions

We now present the details of Bﬂ;"c’e for the case of Dirichlet and adiabatic solid wall boundary
conditions. Let e € Fr belong to a cell K and denote by v, the exterior unit normal of triangle
K on edge e.

4.3.1. Dirichlet boundary conditions

For imposing the Dirichlet boundary conditions U = g weakly on an edge e € Fr, the term

Bﬂ;nc’e in (27) uses the following modified versions of (B1) — (B3) from (27):

e[ [ () @ Dowa o
e v (52) (8 St
L7 (ot (3388 (3o

12



4.3.2. Adiabatic solid wall boundary conditions
We enforce on e € Fr the conditions

e u =v =0 (no slip condition) and

K aaf = 0 (no heat flux condition).

To this end, we define (based on the function value V%_ on the edge e) the vector

VF:(O, 0, 0, U47K7)T.

(We note that the entry vy x_ will not play a role in the following.) Further, we define A#(vr)
as A(vy) but with the heat conduction terms %v% in entries (A(vr))s4 and (A(vr))ss
4

I''n.,e

being removed. Then, for e € Fr, the term By e in (which captures the appropriate
modifications of (B1) — (B3)) is given by

Bl (Vh, @ty = / / <A“ vr) ( ilK >> @: Z;) do(x) dt (B1)
ee o (e (@) (WU e o
L (e (G 200R)) () oo o9

We note that the vector A*(vpr)vp has only zero entries. We keep it though for consistency
with the formulation for interior edges and Dirichlet boundary conditions.

5. Entropy stability

In this section, we examine under which conditions the suggested formulations of the ST-SDSC-
NIPG and the ST-SDSC-SIPG method are entropy stable for the compressible Navier-Stokes
equations. For now, we will focus on the case of both the discrete and the continuous solution
having compact support. Details concerning the entropy conditions in the presence of adiabatic
solid wall boundary conditions will be presented in section

Theorem 5.1 (Entropy stability for ST-SDSC-NIPG). Consider the compressible Navier-
Stokes equations and let the entropy pair (S, Q) be given by . For simplicity, assume
that the exact and approximate solution have compact support inside the spatial domain 2. Let
the final time be denoted by tn. Then, the approximate solutions generated by the scheme
with ¢ =1 and o > 0 satisfy

[ SUVE ) dx < [ SUIVE () dx
(0] 02

Theorem 5.2 (Entropy stability for ST-SDSC-SIPG). Let Assumption and the assump-
tions of Theorem hold true. Then, the approrimate solutions generated by the scheme
with ( = —1 satisfy

[ SUVE ) dx < [ SUIVE_(x) dx
(9} 2
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provided o is chosen sufficiently large such that

Cinv /A
g
- 2

where \, A are defined in Lemma and the constant cy, will be specified below in Lemma

54

In order to prove these theorems, we need the following auxiliary results.

(33)

Lemma 5.1. For the ST-SDSC-NIPG method, under the assumptions of Theorem[5.1], there
holds
BIP’l(Vh,Vh) > 0.

Proof. By definition, there holds for V/* having compact support

- £ [ (s () () e

T (e () ()

no

25 (e () (1)
TS L L7 (o (V) (W)

The terms in the second and third line cancel each other. As A is positive semi-definite
according to Lemma and o > 0, the terms in the first and last line are non-negative. This
implies the claim. O

Lemma 5.2. For the ST-SDSC-SIPG method, under the assumptions of Theorem[5.3, there
holds
Bip_1(V", V") > 0.

The proof is fairly lengthy and given below. With these prerequisites, we first want to
present the proof of Theorems [5.1] and [5.2] - keeping in mind that Lemma [5.2] still needs to be

shown.

Proof of Theorems[5.1] and[5.2 Testing in with ®" = V" results in
Bpa(V", V") + BE(VE, V) + BE (VR V) + Bp ((V, V) =0

We consider each of the four terms individually:

1. Term Bpc(V", V"): According to Lemma [2.1} there holds
Bpa(V, vh) > / S(U(VY _(x))) dx / S(U(V{_(x))) dx.
Q 10

(The proof transfers directly from compressible Euler equations to compressible Navier-
Stokes equations.)

14



2. Term B (V" V1) Claim: There holds
BV, V) > 0.

Proof: We essentially follow the proof of Theorem 3.1 in [20]. Based on our new definition
of the streamline diffusion term given by , there holds by chain rule

BE,(VI V) =) /I /K Res'” - (DS Res™) dx dt.
With the definition of Dg% given by and and due the entropy S being strictly
convex, this implies Bé% (VR Vh) > 0.
3. Term BE,(V", V1): Claim: There holds
BE,(Vh VR > 0.
Proof: By definition (compare and section

BSL (V" Vvhy

. 2 2 )
-3 [ [ o (V?. (Uv (Vs VE) + 3 th)2vgk.(van,,{)vgk))d}(dt
n,K*'n —

k=1

with DS(}( being given by and (12b]) but with Res,,  being based on Res'’ instead
of being based on Res. Due to the strict convexity of the entropy function .S, both Uy
and U{,l are strictly positive definite. This implies D7SLCK > 0. This also directly implies

B, (Vi V1) > 0.

4. Term Bip (V" V"): Based on Lemmata |5.1and [5.2f there holds for both the ST-SDSC-
NIPG and the ST-SDSC-SIPG method (under the respective assumptions)

BIP’C(V}L, Vh) > 0.

Summarizing the estimates for the four terms results in
0 = Bpg (Vh> Vh) + Bg])) (Vh, Vh) + Bé% (Vha Vh) + BIP,C (Vh’ Vh)

> [ SUVE (o) ix— [ SOV () dx+0+0+0.

which implies the claim. O

This concludes the proof of entropy stability for ST-SDSC-NIPG. In order to show entropy
stability for ST-SDSC-SIPG, it remains to prove Lemma To do so, we need the following
lemma.

Lemma 5.3. Let the matriz C : R™ — R™ be symmetric positive semi-definite. Then there
holds for arbitrary vectors v,w € R™ and § >0

1
20T Cv < swl ' Cw + gvTCv.

15



Proof. The proof follows directly from

1 1
0< 5 ((5w —)TC(6w — v)) = swl'Cw — 2w Cuv + SUTCU.

O

In the proof of Lemma we also need to apply the following inverse trace estimate [33], [38].
Lemma 5.4. There holds for p" € P*(K)

h/on2 Cinv B2
/Mp ) da(x)f,w/Kp (x)2dx

with ciny = ¢ k? and with hi denoting the diameter of the cell K.

We can now proceed to proving Lemma

Proof of Lemma[5.9 We exploit that the solution has compact support and that therefore the
contributions from edges e € Fp drop out. For simplicity, we will just write ) __ in the following
with the meaning of ) . 7,- Using that A is symmetric, there holds

Bip,_1(V", Vh) = Z/ / (Vh AV (X:) dx dt
g o wvaneen ({f o

g hV
e[ [ E v v Ay GX,{;) do(x) di.

Applying Lemma with arbitrary § > 0 to the terms in the middle line gives
2V v Ay (i)
h yl
<on (v} (vED AV (Ivi]) + 5 v v aavi (R%)

with § to be determined later. We note that for o > %, the second term can trivially be
bounded by the penalty term. Let us therefore focus on the first term. Applying Lemma
and using the therein defined matrices R and A implies

S o v (G ) aea
>, /e she (V2 ) VEDAQVD (fyi]) doteo a
> /I v Ve RTAVIR (Vi) axa
—Z /1 / she ({Vi} {Vi,}) RTA({V'HR GXZ )dU(X)dt.

N
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We note that A is positive definite and that by Assumption its eigenvalues are uniformly
bounded. Therefore, the above term can be bounded from below by

Z/I / (vl RTR@:)dxdt
—Z/j /e/whe ({vh} {Vi1)RTR GXh 7}f> do (x) dt

- Z /1 / ( ((v:»,)m + (2)2)” + (04)7, + (v3)3, + (04)§2> dx dt

2
D> | [ aon. ( Ty <{<vz>zl}+{<v2>x2}>2+{<vg>z2}2+Z{<v4>xk}2) do(x) dt.

k=1
We want to transform the boundary integral to a domain integral. Let e be the edge between
cells K' and K? and note that

2 1 ? 1 2 2
(@202 = (5(@ess + @hr)) <5 (WR, 0 +0202). GO

Denote by e}(, eﬁ{, and e:;{ the three edges of a triangle K. Further note that for fixed ¢
(vj)ay(t, z1,22) is a polynomial of degree k — 1 in (x1,22). We can apply the inverse trace
estimate from Lemma [5.4] to get

Ciny
Z [, @ dot0 = [ i doo) < 5 [ (s

K

This implies

2
> | [ asn. ( o))+ 3 ({(09) m+<v2>x2}>2+{<v3>x2}2+2{<v4>xk}2) o () di

k=1
< Z/n/eAah < (2% g+ W22 g2 )+t s (002 + (v4)i27K2>> dor(x) dt
_Z/I k=17 ek

1 h_k 1 2
< —C; _ %K 2 - 2 9 9
< %/}n /K 2cmV/15 P <(U2)x1 +3 ((v3)zy + (v2)ay)” + (v3), + Z(U‘l)xk) dx dt,

k=1

A0y (0202, +.ot ()2, ) dox) dt

where we have reordered the sum over edges as sum over triangles and have ignored contribu-
tions from the domain boundary I'. As the length of each triangle edge hez;( can be bounded
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by the diameter of the cell hx, this implies

S [ [ viRR (Vi) axa
o) (s

2
>3 / [ 0= om0 (( 22 g ((U)ey + (02)a)? + (v, + kz(“ﬁ’“) dx d.
=1

To summarize results, there holds

Bip_1(V", V")

1 2
> Z/] / CanA(S) (( )2 + 5 ((v3)ay + (U2)w2)2 + (U3);2r2 + Z<U4)ik> dx dt

k=1
5[ [ e v Av ([GaE) e an

e

which implies the claim if § < - A and o > %, resulting in the condition o > %, as given

by. O

5.1. Boundary conditions

We now examine whether Theorems [5.1] and [5.2] still hold true in the presence of adiabatic
solid wall boundary conditions, Wh1ch are commonly used for the compressible Navier-Stokes
equations. For these boundary conditions, there should hold

jt/QS(U(x,t)) dx < 0.

We assume the boundary of {2 to be split into parts [aqia, the part of the boundary on which
we enforce adiabatic solid wall boundary conditions, and Iyemainder, the remaining part of
the boundary. We assume the two parts to be separated. We will ignore the boundary part
I emainder Dy assuming compact support of the solution inside 2 U I,4;2. A classic application
for this setup is flow around an airfoil (compare section , where [I,4;, corresponds to the
airfoil boundary and I emainder corresponds to the far field boundary. There holds the following
theorem.

Theorem 5.3 (Entropy stability for adiabatic solid wall boundary conditions). Consider the
compressible Navier-Stokes equations. Let the assumptions of Theorems[5.1] and[5.3 hold true,
but require o > C”‘" for the ST-SDSC-SIPG method and only assume compact support of the
solution inside QUFadla For the numerical enforcement of boundary conditions on I ,4in follow
section for the Bip ¢-term and the description below for the Bpg-term. Follow [22] for
the definition of the entropy conservative flux F** and use Rusanov diffusion for the operator
D. Then, the approximate solutions generated by the scheme with ( =1 or { = —1 satisfy

/ S(UVE_(x))) dx < / S(UVE_(x))) dx.
(9 2
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Like in the proof of Theorems 1] and we again need to examine all four quasilinear
forms appearing in : Bpa, BSD? Bé%, and Bip ¢. Examining the definitions of the artificial
diffusion terms B and BSC» we find that only spacetime domain terms enter the formulation,
no spatial boundary terms. Therefore, the proof of Theorems [5.1] and [5.2] directly transfers.

Next, we consider the term Bpg. In the proof for the case of compact support inside {2,
we referred to Lemma [2.1] (which is shown in Hiltebrand and Mishra [20]) for an estimate for
this term. The same estimate as claimed in Lemma [2.I] can be shown for the case considered
in Theorem As the focus of this contribution is on the viscous terms, we provide the
corresponding result as Lemma in appendix [A] Here, we shortly describe how we enforce
the boundary conditions: like for interior edges, we compute a numerical flux for edges on
L'aqia- One input argument is the state from the interior of the flow domain, denoted by V’}(’_
We define the other input argument for the numerical flux F as

T
oo (h h _h h
V4= (”1,[(,7 Vo s UK ”4,K,) ~ (35)

This corresponds to inverting the velocity vector and ensures that the second and third com-
ponent of % (V'}(’_ + V?ﬂ +> vanish.
Finally, we need to show (in the presence of adiabatic solid wall boundary conditions)

Bip (V" V") > 0. (36)

We will do that in the following by examining the special case of a cell K that has edges
e € Fr, 4., on which adiabatic solid wall boundary conditions are enforced.

5.1.1. ST-SDSC-NIPG

Let us focus on the case of a boundary edge e € Fr, ... There holds A#(vp)vp = 0. Therefore,

due to the symmetry of A¥, the boundary terms (B1’) and (B2') in the definition of Bﬂ-,ne
cancel each other for ¢ = 1. Further, due to A* being positive semi-definite, the term (B3') is
non-negative. Together with the considerations for interior edges, this implies .

5.1.2. ST-SDSC-SIPG

For interior edges e € F;, we proceed as described in the proof of Lemma[5.2] Let us therefore
focus on the boundary edge e € Fr, .. . Different to the ST-SDSC-NIPG method, we need to

include the domain term
h
/ / (Vh o vh YAV (Vv;gl> dx dt
n VIQ

in our considerations. Using A*(vp)vp = 0, we consider

A%
/n/ Vi, A(V)<Vh)d"dt
Vh vl
- /n / (V;ZI’K’_ V';Z??K’_) AM(VF) (Vh’ y§> dU(x) dt

o Vh ’/el
o Vet Vi) arter) (G0 ) dot an

e
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We proceed as in the proof of Lemma and apply Young’s inequality to split the term in the
middle line. Then, we bound one part by the penalty term. The other part can be bounded
by the domain term following the proof of Lemma (together with the boundary terms
from interior edges). Note that we did not change the matrix occurring in the domain term.
Therefore, we can bound this term from below using the lower bound for the eigenvalues A
provided Assumption holds true. Note further that the eigenvalues of A#(v) can still be
bounded from above by A from Lemma [3.3

Comparing with the proof of Lemma we find that there is a factor of % (which was
present for interior edges, compare ) missing. Therefore, we need to increase the penalty
parameter o by a factor of 2 on boundary cells to guarantee entropy stability for adiabatic
solid wall boundary conditions compared to the case considered in Theorem .

6. Numerical results

In the following, we present numerical examples, mostly comparing with standard tests from
the literature, to test our claims about high-order accuracy in smooth flow and robustness of
the scheme. Following (8), the numerical flux F is split into two parts: We follow [22] for
the definition of F** (the entropy-conservative flux in z-direction) for the compressible Euler
equations and use Rusanov diffusion for the operator D [20]. Also, we will slightly change our
notation and use (x,y) to denote coordinates (instead of (x1,x2)) for our tests in two space
dimensions. We will start with the Sod test in one space dimension in order to confirm the
appropriate behavior of our artificial diffusion terms close to shocks and contact discontinuities.

In many test cases, the results for ST-SDSC-SIPG and ST-SDSC-NIPG are very similar
to each other. We will therefore only present results for ST-SDSC-NIPG unless otherwise
specified. We use 0 = 10 and ¢ = 20 for our computations for ST-SDSC-NIPG and ST-SDSC-
SIPG, respectively.

For our one-dimensional test, we use a uniform mesh. For our tests in two dimensions, we
use a structured or unstructured triangle mesh in space. Although not needed for stability,
we typically use for our time-dependent test problems a CFL condition with CFL number 0.5
(taken with respect to the convective part of the equations) for accuracy reasons.

6.1. Sod test in 1d

We start with a version of the Sod test, similar to the test in [37, 29]. Although the focus of
this contribution is on 2d, we start with this 1d test problem as it is very well-understood and
very suitable for testing the behavior of our artificial diffusion terms. We consider initial data

(p,m,E) = .
(0.125,0.0,0.25) if 2 >0,

{(1.0, 0.0,2.5) if <0,
on the domain 2 = (—0.5,0.5). The viscosity v = 2.5 - 1079 is fairly small.

Figure [1| shows the result for density for the final time 7" = 0.2 for polynomial degrees one,
two, and three and for two different grid resolutions h = 1.0-1072 and h = 1.25-10~*. Although
we solved the compressible Navier-Stokes equations, the small diffusion terms could not be
resolved on the coarse grid with mesh width A = 1.0 - 1072 and therefore the solution behaves
similar to the solution of the compressible Euler equations: we observe oscillations around
contact discontinuity and shock when not using artificial viscosity terms. The oscillations are
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Figure 1: Sod test: Result for density for varying polynomial degree and grid resolution. The
plots show the solution for using the methods both without Bé% and Bé% terms
(‘w/o’) and with BLY, and BL, terms (‘w/").
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mostly gone when the BYY) and BLY, terms included. This shows that (a) stabilization terms are
needed in underresolved regions of the flow and (b) that our BE) and BL, terms are suitable
for that purpose.

If we solve the compressible Navier-Stokes equations on a finer grid with width A = 1.25-10~4
the physical diffusion will serve as stabilization. We observe in Figure [1| that with increasing
polynomial degree the overshoot decreases due to a better resolution of the physical diffusion.
Thus artificial stabilization is not really needed. But the results also show that our artificial
terms still slightly enhance the solution for this scenario.

6.2. Manufactured solution

To test the accuracy of our scheme in smooth flow we use the test of a manufactured solution
provided in the literature [I5] but we use a square domain (—3,3)? without the cylinder cut
outll As our artificial diffusion terms are not meant to deal with source terms we do not
include them in the simulation.

The results for the L' error over all 4 components at the final time 7' = 0.1 for v = 0.01
for ST-SDSC-SIPG and ST-SDSC-NIPG (without BL}, and BL,) are shown in Figure [2| We
observe convergence rates of O(h**1) for all scenarios. Also, the actual errors for ST-SDSC-
SIPG and ST-SDSC-NIPG are almost identical. We expected to see suboptimal convergence
rates of O(h?) for ST-SDSC-NIPG for V2. We attribute the surprisingly good convergence rate
to the fact that the test problem is too simple and uses u = v = 1.

——y!
107 ——\2
—— V3
107
107

107 10
(a) ST-SIPG (b) ST-NIPG

Figure 2: Results for manufactured solution: L' error measured over all components. The
z-axis denotes the mesh width h, the y-axis the L' error.

6.3. Steady state test with smooth solution

To be able to also include our artificial diffusion term, we construct a smooth solution of
the compressible Navier-Stokes equations ourselves. We restrict ourselves to a steady state,
axisymmetric case such that we are able to construct a reference solution by numerical integra-
tion of a system of ODEs. More precisely, consider the steady state compressible Navier-Stokes

!Note that there is a typo in [I5, p. 276, eq (75)]: the term 3w in so and s3 needs to be replaced by 3k.
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(a) ST-SDSC-SIPG (b) ST-SDSC-NIPG

Figure 3: Results for steady state test with smooth solution: L' error measured over all com-
ponents. The z-axis denotes the mesh width h, the y-axis the L' error. Dashed lines
correspond to results with Bé% and Bé%, solid lines to results without Bé% and Bé%.

equations in polar coordinates (r,¢) with velocity components u” and u®. (In the following,
superscripts r and ¢ denote the respective components of u, subscripts denote partial deriva-
tives.) For simplicity, we set tangential velocity u® = 0. This results in

1
(pu")r = _;PUT
1 | R 1
(P + B = =2 p (0 1 (77— 7% 1)

1 1 1
(W (B +p))e = (B +p) + (7" ) + 1~ (10,),

with
u” u”
T = (24 Mul + A—, 79 = (2u+ \)— + I,
r r
P 1 2 p
E=—— 14 —pu" 0= —.
7_1+2MU), R

Here, unknowns density p, radial velocity u", and pressure p are functions of the radius r only.
We solve the first equation in for p analytically using integration. We solve the remaining
two equations with unknowns u” and p numerically with high accuracy. We use the initial
conditions p(1) =1, v"(1) =1, p(1) = 1, w.(1) = 0.1, and p,(1) = 0.1 and parameter values
p=2.5/4/10 and k/R = 1.1875 % v/10. We solve for r € [1,3]. We use the result as a reference
solution that we compare our numerical solution with.

For our numerical test, we use the following data: the initial and boundary data are given
by the reference solution, and we solve on the domain (1/v/2,1+1/+/2)? until we have reached
steady state.

Figure [3| shows the L! error measured over all components for the ST-SDSC-SIPG and the
ST-SDSC-NIPG scheme for both options of using the terms By and BL, (dashed line) and
not using them (solid line). We essentially observe optimal convergence rates of O(h**1) for
all scenarios. In particular,
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e we do not observe a decay of convergence order for the ST-SDSC-NIPG scheme for V?;

e our artificial diffusion terms Bé% and B:IS% do not deteriorate the convergence order of our
scheme; also in terms of the actual size of the errors, the results with Bé% and Bé% are
fairly close to the results without artificial diffusion terms; it is not clear why for V! the
solution with artificial diffusion shows smaller errors than without artificial diffusion; (for
one grid level finer, the results with B,IS% and B:IS% are still slightly better than without
BLY and B, but the quotient is close to 1.)

6.4. Blasius boundary layer

Next, we consider the classic Blasius boundary layer test for low-speed laminar flow along an
adiabatic plate. Under the assumptions that the flow is incompressible and that the Reynolds
number is sufficiently large, one assumes the solution of the compressible Navier-Stokes equa-
tions in the boundary layer to be close to the solution of the Prandtl boundary layer equations
that we want to compare our results with.

2
1 1.8 o
167
0.8} 1.4} 4
121
0.6
1t
0.8
0.4}
0.6
02l Rzefsol 1 0.4} R;zf sol |4
T 0.2} T
Y : ===\
0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
(a) nvs. @ (b) nvs. ©

Figure 4: Results for Blasius boundary layer: scaled velocities % and 9.

We solve the compressible Navier-Stokes equations with Mach number M = 0.1, Reynolds
number Re = 10°, and Prandtl number Pr = 0.72. Our grid uses 2544 cells and is chosen such
that there are sufficient cells in the boundary layer to resolve it. Therefore, we do not include
artificial viscosity terms in this test. We solve on the domain (—0.5,1) x (0,0.25) and assume
the flat plate to be located at [0, 1] x [0]. We evaluate scaled velocities @ and ¢ at z = 0.5 and
plot n vs. @ and 7 vs. © with

Y Uool . U . 2v
n=>vRe,, Rez=—— u=—, 0v=—+Rey,
x v Uoso Uso

with us denoting the far field velocity in z-direction, which satisfies Re = % with L denoting
the plate length.

Figure (] shows the results for the scaled velocities & and o, both plotted against 7, for
polynomial degrees two and three. The results for @ match very well with the reference solution.
Even for coarser grids, it was very straight-forward to capture the scaled u-velocity well. A
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Figure 5: Airfoil test: Base mesh M with 1728 cells zoomed around the airfoil.

more challenging test is the approximation of the velocity © — for which we also observe a good
agreement with the ‘analytic’ solution. We notice the following though: as we compute the
discrete solution more accurately, the agreement with the reference solution seems to become
slightly worse, i.e., the computed solution then lies slightly above the reference solution. We
attribute this to the fact that our reference solution is not the true solution of the compressible
Navier-Stokes equations for the chosen setting — but for the boundary layer equations.

6.5. Flow around NACA 0012 airfoil

We conclude our numerical results with a standard test in the literature: flow around a two-
dimensional NACA 0012 airfoil. We use the following airfoil geometry

y = +0.594689181 - [0.298222773\/z — 0.127125232x
—0.3579079062% + 0.2919849712% — 0.1051746062"] .

Our base mesh M has 1728 triangles and uses a far field radius of 50 chords. It has been
generated using DistMesh [31]. Figure |5 shows the close neighborhood of the airfoil. We also
use once and twice globally refined meshes, denoted by M1 and M2, with 6912 and 27648
cells, respectively. We note that the results of airfoil tests strongly depend on the quality of
the mesh: the goal is to have enough cells in the boundary layer while having as little cells
as possible in total. Our mesh has not been optimized in that respect. The focus here is on
validation of our method, for which this mesh turned out to be sufficient. We use piecewise
cubic polynomials for our tests and Pr = 0.72. We use a higher-order boundary approximation
along the airfoil boundary to be consistent with using higher-order polynomial spaces.
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Table 1: Airfoil test: Results for Re=5000, Ma=0.5, o = 0°.

U U
C% ¢D CIL) €L

ST-SIPG, mesh M1 0.02409 0.03371 -3.33e-03 -1.22e-04
ST-NIPG, mesh M1 0.02385 0.03367 -3.38e-03 -1.05e-04
ST-SIPG, mesh M2 0.02231 0.03238 1.50e-04  1.31e-05
ST-NIPG, mesh M2 0.02229 0.03239 1.44e-04 1.28e-05

Hartmann & Houston [I7] 0.02229 0.03254
Swanson & Langer [35]  0.02279 0.03279
Theory 0 0

6.5.1. Re=5000, Ma=0.5, o = 0°

We start with one of the most popular tests and choose Re=5000, Ma=0.5, o = 0°. We do
not include artificial diffusion terms for this test. We evaluate the functionals [17]

2 2
o2 ) d o2 ) d
p IOOOuczxn /Sp(n wd) > L poo'Ugo /Sp(n wl) >
2 2
vo— . d v — . d
D poougo /S(Tn) Yads, L poougo /S(Tn) Yo ds,

with S denoting the airfoil surface, p, the far-field density, 7 the viscous stress tensor, and
(for 0° angle of attack) ¥y = (1 O)T and ¥ = (0 1)T. Note that due to 0° angle of attack,
¢} =¥ =0 for the exact solution.

Table[I| reports the results for meshes M1 and M2 using both SIPG and NIPG discretization
for the physical diffusion term. The results for SIPG and NIPG are very similar. Table 1] also
includes reference values reported by other researchers. Our results for the mesh M2 are in
very good agreement with these values, whereas the results for mesh M1 are slightly off. This
is consistent with our examination of how many cells one needs to resolve the boundary layer.
Based on our results from the Blasius test, we need at least roughly 3 cells in the boundary
for piecewise cubic polynomials to resolve the layer. This is satisfied for this test for mesh M2
but not for mesh M1.

6.5.2. Re=1000, Ma=1.2, o = 0°

In our final numerical test we combine flow around an airfoil with a shock. We follow Hartmann
[16] for the test setup. In this test we compare the performance of our method with and without
the artificial diffusion terms Bé% and Bé%.

Figure [6] shows the Mach contour lines for both versions for mesh M1. Without artificial
diffusion terms we observe oscillations in the neighborhood of the shock. These are mostly
removed when the Bé% and Bé% are employed. Away from the shock, the results are very
similar.
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Figure 6: Airfoil test: Results for Mach contours for mesh M1 for Re=1000, Ma=1.2, a = 0°.

7. Conclusions

In this paper, we presented two schemes, ST-SDSC-SIPG and ST-SDSC-NIPG, for solving the
compressible Navier-Stokes equations. The schemes are based on a spacetime DG approach
and use entropy variables as degrees of freedom. The schemes include streamline diffusion and
shock-capturing terms that vanish with the correct order of convergence in smooth flow. For
the discretization of the physical diffusion terms the NIPG and the SIPG formulation are used,
respectively. The resulting schemes satisfy entropy stability estimates. The provided numerical
results show that the schemes also perform well numerically. Possible future directions are the
extension to three dimensions or to goal-oriented adaptivity, compare, e.g., [1§].
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A. Proof of entropy stability for inviscid term

Lemma A.1. Let the assumptions of Theorem hold true. And let the input argument
V]}(’Jr in the computation of the numerical inviscid flux at the wall boundary be given by .
Then, there holds

Boa(V, V1) > /Q S(UVE,_(x))) dx — /Q SUVE_(x)) dx.
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Proof. The proof of this statement is very similar to the proof of Lemma which has been
shown as part of Theorem 3.1 in [20]. As that proof is quite long, we do not review the full
proof here. Instead we focus on the differences. In [20], Bpg (using upwind flux in time) is
split into temporal terms

Bho (Vv = Z//th VI dx dt
JFZ/UVH+1 A dx—Z/U hoyvh L dx

and spatial terms

By (Vh, Vh) = Z/ /KZFk (VM- VI dx dt

k=1

+y ) / F(VE VI vgwr) - Vi _ do(x) dt.

n,K K'e N (K Ok k!

As BEG does not include spatial boundary terms, one can follow the proof provided in [20] to
show

Bha (V" V) > / S(UVE_(x))) dx / S(UVE_(x))) dx.
(9} 0
We are now going to show that
By (Vh, Vi) >0 (38)

still holds true for the case considered in Theorem For the considered entropy pair (.5, @),
denote by * = V. FF — Q% k = 1,2, the corresponding entropy potential. Then, using
¢’;k =V, - F¥ [20, p.115], we get by means of the divergence theorem

2
/ /ZFk(Vh)-Vfgkdxdt:/ /Zzpk (Vh),, dx dt
mJK K

k=1

= Z // ZU) VK VKK/dU()d

K'eN(K) KK |=1

This implies
Bho (V" V") =

2
Z Z / /8 <— Z wk(v?{ﬁ)l/}ﬂg@ + F(V}f(ﬁ, V;L(Hr; VKK - V%) do(x) dt.

n,K K'e N(K k=1
(39)

We note that we slightly misused notation in the above considerations by assuming that every
cell K has (potentially fictitious) cell neighbors K’. In [20, p.115/116], it is shown under the
assumption of compact support inside {2 that implies . Here, we show the same claim
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for the special case of an edge e € Fr, .., which belongs to cell K. Using the definition of

the numerical flux, we consider

dia?

2 2
fo (-3t 3 (5% v Vi v
e\ k=1 k=1
1
—§D(Vg L=V V’}(7_> do(x) dt. (40)
T
According to (35)), we set on e (for given V?ﬂ_) V'}<+ = (vflﬂ7 —UQKJ —UQL’KJ ”Z,K,) :

The entropy conservative flux that we use [22] (see [14] for a two-dimensional version) is based
on evaluating various arithmetic and logarithmic means. Due to the specific relation of V%_

and V;‘( 4, most terms cancel; a short computation shows

T T
Flv*(v’;g_,vh):(o, P, 0) and IFQ’*(V’}Q_,V?{HF):(O, 0, pl | 0)

This implies (using )

2

k,x h h h k _ . h h 1 h h 2 __ h h 1 h h 2
E (IF (VK,,,VK’JF) .VK’f) Ve =Pk Uy Ve DK Vs Ve = PR Uk Ve + PR Vi V-
k=1

Furthermore, there holds [14], p. 567]
YN Vi) = pic_ule_, WAV ) = plic_vic_.

Therefore, the terms in the first line of cancel each other. It remains to show that the
diffusion operator in the second line results in a non-negative value. We use Rusanov diffusion
and consider the following formulation [19]

D(a, b; v) = max (Amax (U(@), 1), Amax(U(b), v)) Uy <5U (W»

2

with Amax(U, V) denoting the maximum eigenvalue, taken in absolute value, of the Jacobian
Fi;(U)v! + F4(U)v2. A short computation shows that the 4 x 4 matrix Uy ({7) with V =

Su (% (U(V?Q_) + U(V’[‘(7+)>) only has non-zero entries on the diagonal and for indices (1, 4)
and (4,1). Then, with p(\~7) denoting the pressure corresponding to entropy variable A%

—5 (Vi) Uy (V) (Ve = Vi) = (V)i P+ 0V )22 0

which concludes the proof. ]
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