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Abstract. We investigate a new method of solving the problem of fluid-structure
interaction of an incompressible elastic object in laminar incompressible viscous
flow. Our proposed method is based on a fully implicit, monolithic formulation of
the problem in the arbitrary Lagrangian-Eulerian framework. High order FEM is
used to obtain the discrete approximation of the problem. In order to solve the
resulting systems a quasi-Newton method is applied with the linearized systems
being approximated by the divided differences approach. The linear problems of
saddle-point type are solved by a standard geometric multigrid with local multilevel
pressure Schur complement smoothers.

1 Overview

We consider the problem of viscous fluid flow interacting with an elastic body
which is being deformed by the fluid action. Such a problem is encountered
in many real life applications of great importance. Typical examples of this
type of problem are the areas of aero-elasticity, biomechanics or material
processing. For example, a good mathematical model for biological tissue
could be used in such areas as early recognition or prediction of heart muscle
failure, advanced design of new treatments and operative procedures, and
the understanding of atherosclerosis and associated problems. Other possible
applications include the development of virtual reality programs for training
new surgeons or designing new operative procedures (see [12]).

1.1 Fluid structure models in biomechanics

There have been several different approaches to the problem of fluid-structure
interaction. Most notably these include the work of [13, 14, 15, 16] where an
immersed boundary method was developed and applied to a three-dimensional
model of the heart. In this model they consider a set of one-dimensional elas-
tic fibers immersed in a three-dimensional fluid region and using a parallel
supercomputer they were able to model the pulse of the heart ventricle.

⋆ This work has been supported by German Reasearch Association (DFG),
Reasearch unit 493.



A fluid-structure model with the wall modelled as a thin shell was used
to model the left heart ventricle in [3, 4] and [18, 17]. In [7, 8] a similar
approach was used to model the flow in a collapsible tube. In these models
the wall is modelled by two-dimensional thin shells which can be modified to
capture the anisotropy of the muscle. In reality the thickness of the wall can
be significant and very important. For example in arteries the wall thickness
can be up to 30% of the diameter and its local thickening can lead to the
creation of an aneurysm. In the case of heart ventricle the thickness of the
wall is also significant and also the direction of the muscle fibers changes
through the wall.

1.2 Theoretical results

The theoretical investigation of fluid structure interaction problems is com-
plicated by the need of mixed description. While for the solid part the natural
view is the material (Lagrangian) description, for the fluid it is the spatial
(Eulerian) description. In the case of their combination some kind of mixed
description (usually referred to as the arbitrary Lagrangian-Eulerian descrip-
tion or ALE) has to be used which brings additional nonlinearity into the
resulting equations.

In [10] a time dependent, linearized model of interaction between a vis-
cous fluid and an elastic shell in small displacement approximation and its
discretization is analyzed. The problem is further simplified by neglecting all
changes in the geometry configuration. Under these simplifications by using
energy estimates they are able to show that the proposed formulation is well
posed and a global weak solution exists. Further they show that an indepen-
dent discretization by standard mixed finite elements for the fluid and by non-
conforming discrete Kirchhoff triangle finite elements for the shell together
with backward or central difference approximation of the time derivatives
converges to the solution of the continuous problem.

In [19] a steady problem of equilibrium of an elastic fixed obstacle sur-
rounded by a viscous fluid is studied. Existence of an equilibrium state is
shown with the displacement and velocity in C2,α and pressure in C1,α un-
der assumption of small data in C2,α and domain boundaries of class C3.

A numerical solution of the resulting equations of the fluid structure in-
teraction problem poses a great challenge since it includes the features of
nonlinear elasticity, fluid mechanics and their coupling. The easiest solution
strategy, mostly used in the available software packages, is to decouple the
problem into the fluid part and solid part, for each of those parts to use
some well established method of solution then the interaction is introduced
as external boundary conditions in each of the subproblems. This has an
advantage that there are many well tested finite element based numerical
methods for separate problems of fluid flow and elastic deformation, on the
other hand the treatment of the interface and the interaction is problematic.
The approach presented here treats the problem as a single continuum with



the coupling automatically taken care of as internal interface, which in our
formulation does not require any special treatment.

2 Continuum description

Let Ω ⊂ R
3 be a reference configuration of a given body. Let Ωt ⊂ R

3 be a
configuration of this body at time t. Then a one-to-one, sufficiently smooth
mapping χΩ of the reference configuration Ω to the current configuration

χΩ : Ω × [0, T ] 7→ R
3, (1)

describes the motion of the body, see figure 1. The mapping χΩ depends on
the choice of the reference configuration Ω which can be fixed in a various
ways. Here we think of Ω to be the initial (stress-free) configuration Ω0.
Thus, if not emphasized, we mean by χ exactly χΩ = χΩ0

.

Ω0

Ωt

Ω

χΩ0
(t)

χΩ(t)

χΩ(0)

Fig. 1. The referential domain Ω, initial Ω0 and current state Ωt and relations
between them. The identification Ω ≡ Ω0 is adopted in this text.

If we denote by X a material point in the reference configuration Ω then
the position of this point at time t is given by

x = χ(X, t). (2)

Next, the mechanical fields describing the deformation are defined in a stan-
dard manner. The displacement field, the velocity field, deformation gradient
and its determinant are

u(X, t) = χ(X, t) − X, v =
∂χ

∂t
, F =

∂χ

∂X
, J = detF . (3)

Let us adopt the following useful notations for some derivatives. Any field
quantity ϕ with values in some vector space Y (i.e. scalar, vector or tensor
valued) can be expressed in the Eulerian description as a function of the
spatial position x ∈ R

3

ϕ = ϕ̃(x, t) : Ωt × [0, T ] 7→ Y.



Then we define following notations for the derivatives of the field ϕ

∂ϕ

∂t
:=

∂ϕ̃

∂t
, ∇ϕ =

∂ϕ

∂x
:=

∂ϕ̃

∂x
, div ϕ := tr∇ϕ. (4)

In the case of Lagrangian description we consider the quantity ϕ to be defined
on the reference configuration Ω, then for any X ∈ Ω we can express the
quantity ϕ as

ϕ = ϕ̄(X, t) : Ω × [0, T ] 7→ Y,

and we define the derivatives of the field ϕ as

dϕ

dt
:=

∂ϕ̄

∂t
, Gradϕ =

∂ϕ

∂X
:=

∂ϕ̄

∂X
, Div ϕ := tr Gradϕ. (5)

These two descriptions can be related to each other through following rela-
tions

ϕ̄(X, t) =ϕ̃(χ(X, t), t), (6)

dϕ

dt
=

∂ϕ

∂t
+ (∇ϕ)v, Gradϕ =(∇ϕ)F ,

∫

Ωt

ϕdv =

∫

Ω

ϕJdV (7)

dF

dt
=Gradv,

∂J

∂F
=JF−T ,

dJ

dt
=J div v. (8)

For the formulation of the balance laws we will need to express a time deriva-
tives of some integrals. The following series of equalities obtained by using
the previously stated relations will be useful

d

dt

∫

Ωt

ϕdv =
d

dt

∫

Ω

ϕJdV =

∫

Ω

d

dt
(ϕJ) dV =

∫

Ωt

(

dϕ

dt
+ ϕdiv v

)

dv

=

∫

Ωt

(

∂ϕ

∂t
+ div (ϕv)

)

dv =

∫

Ωt

∂ϕ

∂t
dv +

∫

∂Ωt

ϕv · nda

=
∂

∂t

∫

Ωt

ϕdv +

∫

∂Ωt

ϕv · nda.

(9)

And also the Piola identity will be used, Div(JF−T ) = 0, which can be
checked by differentiating the left hand side and using (8) together with an
identity obtained by differentiating the relation FF−1 = I.

2.1 Balance laws

In this section we will formulate the balance relations for mass and momen-
tum in three forms: the Eulerian, the Lagrangian and the arbitrary Eulerian-
Lagrangian (ALE) description.



The Eulerian (or spatial) description is well suited for a problem of fluid
flowing through some spatially fixed region. In such a case the material par-
ticles can enter and leave the region of interest. The fundamental quantity
describing the motion is the velocity vector.

On the other hand the Lagrangian (or referential) description is well suited
for a problem of deforming a given body consisting of a fixed set of material
particles. In this case the actual boundary of the body can change its shape.
The fundamental quantity describing the motion in this case is the vector of
displacement from the referential state.

In the case of fluid-structure interaction problems we can still use the
Lagrangian description for the deformation of the solid part. The fluid flow
now takes place in a domain with boundary given by the deformation of the
structure which can change in time and is influenced back by the fluid flow.
The mixed ALE description of the fluid has to be used in this case. The
fundamental quantity describing the motion of the fluid is still the velocity
vector but the description is accompanied by a certain displacement field
which describes the change of the fluid domain. This displacement field has
no connection to the fluid velocity field and the purpose of its introduction
is to provide a transformation of the current fluid domain and corresponding
governing equations to some fixed reference domain. This method is some-
times called a pseudo-solid mapping method [see 20].

Let P ⊂ R
3 be a fixed region in space (a control volume) with the bound-

ary ∂P and unit outward normal vector nP , such that

P ⊂ Ωt for all t ∈ [0, T ].

Let ̺ denote the mass density of the material. Then the balance of mass in
the region P can be written as

∂

∂t

∫

P

̺dv +

∫

∂P

̺v · nPda = 0. (10)

If all the fields are sufficiently smooth this equation can be written in local
form with respect to the current configuration as

∂̺

∂t
+ div(̺v) = 0. (11)

It will be useful to derive the mass balance equation from the Lagrangian
point of view. Let Q ⊂ Ω be a fixed set of particles. Then χ(Q, t) ⊂ Ωt is a
region occupied by these particles at the time t, and the balance of mass can
be expressed as

d

dt

∫

χ(Q,t)

̺dv = 0, (12)

which in local form w.r.t. the reference configuration can be written as

d

dt
(̺J) = 0. (13)



In the case of an arbitrary Lagrangian-Eulerian description we take a
region Z ⊂ R

3 which is itself moving independently of the motion of the
body. Let the motion of the control region Z be described by a given mapping

ζZ : Z × [0, T ] 7→ R
3, Zt ⊂ Ωt ∀t ∈ [0, T ],

with the corresponding velocity vZ = ∂ζZ
∂t

, deformation gradient FZ = ∂ζZ
∂X

and its determinant JZ = detFZ . The mass balance equation can be written
as

∂

∂t

∫

Zt

̺dv +

∫

∂Zt

̺(v − vZ) · nZt
da = 0, (14)

this can be viewed as an Eulerian description with a moving spatial coordinate
system or as a grid deformation in the context of the finite element method.
In order to obtain a local form of the balance relation we need to transform
the integration to the fixed spatial region Z

∂

∂t

∫

Z

̺JZdv +

∫

∂Z

̺(v − vZ) · F−T
Z nZJZda = 0, (15)

then the local form is

∂

∂t
(̺JZ) + div

(

̺JZ(v − vZ) · F−T
Z

)

= 0. (16)

The two previous special formulations can be now recovered. If the region
Z is not moving in space, i.e. Z = Zt,∀t ∈ [0, T ], then ζZ is the identity
mapping, FZ = I, JZ = 1,vZ = 0 and (16) reduces to (11). If the region Z
moves exactly with the material, i.e. ζZ = χ|Z then FZ = F , JZ = J,vZ = v

and (16) reduces to (13).
The balance of linear momentum is postulated in a similar way. Let σ

denote the Cauchy stress tensor field, representing the surface forces per unit
area, f be the body forces acting on the material per unit mass. Then the
balance of linear momentum in the Eulerian description is stated as

∂̺v

∂t
+ div(̺v ⊗ v) = div σT + ̺f , (17)

or with the use of (11) we can write

̺
∂v

∂t
+ ̺(∇v)v = div σT + ̺f . (18)

From the Lagrangian point of view the momentum balance relation is

d

dt
(̺Jv) = Div

(

JσT F−T
)

+ ̺Jf , (19)



or using (13) we can write

̺J
dv

dt
= Div

(

JσT F−T
)

+ ̺Jf . (20)

In the arbitrary Lagrangian-Eulerian formulation we obtain in the local form

∂̺JZv

∂t
+ div

(

̺JZv ⊗ (v − vZ)F−T
Z

)

= div
(

JZσT F−T
Z

)

+ ̺JZf , (21)

or with the use of (16) we can write

̺JZ
∂v

∂t
+ ̺JZ(∇v)F−T

Z (v − vZ) = div
(

JZσT F−T
Z

)

+ ̺JZf . (22)

In the case of angular momentum balance we assume that there are no
external or internal sources of angular momentum. It then follows that the
Cauchy stress tensor has to be symmetric, i.e. σ = σT . Assuming isothermal
conditions the energy balance is satisfied if the choice of the constitutive
relation for the materials is compatible with the balance of entropy.

3 Fluid structure interaction problem formulation

At this point we make a few assumptions that allow us to deal with the task
of setting up a tractable problem. Let us consider a flow between thick elastic
walls as shown in figure 2. We will use the superscripts s and f to denote
the quantities connected with the solid and fluid. Let us assume that both
materials are incompressible and all the processes are isothermal, which is a
well accepted approximation in biomechanics, and let us denote the constant
densities of each material by ̺f , ̺s.

3.1 Monolithic description

We denote by Ω
f
t the domain occupied by the fluid and Ωs

t by the solid at

time t ∈ [0, T ]. Let Γ 0
t = Ω̄

f
t ∩ Ω̄s

t be the part of the boundary where the
solid interacts with the fluid and Γ i

t , i = 1, 2, 3 be the remaining external
boundaries of the solid and the fluid as depicted in figure 2.

Let the deformation of the solid part be described by the mapping χs

χs : Ωs × [0, T ] 7→ R
3, (23)

with the corresponding displacement us and the velocity vs given by

us(X, t) = χs(X, t) − X, vs(X, t) =
∂χs

∂t
(X, t). (24)

The fluid flow is described by the velocity field vf defined on the fluid
domain Ω

f
t

vf (x, t) : Ω
f
t × [0, T ] 7→ R

3. (25)
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Fig. 2. Undeformed (original) and deformed (current) configurations.

Further we define the auxiliary mapping, denoted by ζf , to describe the
change of the fluid domain and corresponding displacement uf by

ζf : Ωf × [0, T ] 7→ R
3, uf (X, t) = ζf (X, t) − X. (26)

We require that the mapping ζf is sufficiently smooth, one to one and has
to satisfy

ζf (X, t) = χs(X, t), ∀(X, t) ∈ Γ 0 × [0, T ]. (27)

In the context of the finite element method this will describe the artificial
mesh deformation inside the fluid region and it will be constructed as a
solution to a suitable boundary value problem with (27) as the boundary
condition.

The momentum and mass balance of the fluid in the time dependent fluid
domain according to (16) and (21) are

̺f ∂vf

∂t
+ ̺f (∇vf )(vf −

∂uf

∂t
) = div σf in Ω

f
t , (28)

div vf = 0 in Ω
f
t , (29)

together with the momentum (17) and mass (11) balance of the solid in the
solid domain

̺s ∂vs

∂t
+ ̺s(∇vs)vs = div σs in Ωs

t , (30)

div vs = 0 in Ωs
t . (31)

The interaction is due to the exchange of momentum through the common
part of the boundary Γ 0

t . On this part we require that the forces are in balance
and simultaneously the no slip boundary condition holds for the fluid, i.e.

σfn = σsn on Γ 0
t , vf = vs on Γ 0

t . (32)



The remaining external boundary conditions can be of the following kind. A
natural boundary condition on the fluid inflow and outflow part Γ 1

t

σfn = pBn on Γ 1
t , (33)

with pB given value. Alternatively we can prescribe a Dirichlet type boundary
condition on the inflow or outflow part Γ 1

t

vf = vB on Γ 1
t , (34)

where vB is given. The Dirichlet boundary condition is prescribed for the
solid displacement at the part Γ 2

t

us = 0 on Γ 2
t , (35)

and the stress free boundary condition for the solid is applied at the part Γ 3
t

σsn = 0 on Γ 3
t . (36)

We introduce the domain Ω = Ωf ∪ Ωs, where Ωf , Ωs are the domains
occupied by the fluid and solid in the initial undeformed state, and two fields
defined on this domain as

u : Ω × [0, T ] → R
3, v : Ω × [0, T ] → R

3,

such that the field v represents the velocity at the given point and u the
displacement on the solid part and the artificial displacement in the fluid
part, taking care of the fact that the fluid domain is changing with time,

v =

{

vs on Ωs,

vf on Ωf ,
u =

{

us on Ωs,

uf on Ωf .
(37)

Due to the conditions (27) and (32) both fields are continuous across the
interface Γ 0

t and we can define global quantities on Ω as the deformation
gradient and its determinant

F =I + Gradu, J =detF . (38)

Using this notation the solid balance laws (30) and (31) can be expressed
in the Lagrangian formulation with the initial configuration Ωs as reference,
cf. (19),

J̺s dv

dt
= Div P s in Ωs, (39)

J = 1 in Ωs. (40)

The fluid equations (28) and (29) are already expressed in the arbitrary
Lagrangian-Eulerian formulation with respect to the time dependent region



Ω
f
t , now we transform the equations to the fixed initial region Ωf by the

mapping ζf defined by (26)

̺f ∂v

∂t
+ ̺f (Gradv)F−1(v −

∂u

∂t
) = J−1 Div(JσfF−T ) in Ωf , (41)

Div(JvF−T ) = 0 in Ωf . (42)

It remains to prescribe some relation for the mapping ζf . In terms of the
corresponding displacement uf we formulate some simple relation together
with the Dirichlet boundary conditions required by (27), for example

∂u

∂t
= ∆u in Ωf , u = us on Γ 0, u = 0 on Γ 1. (43)

Other choices are possible. For example, the mapping uf can be realized as a
solution of the elasticity problem with the same Dirichlet boundary conditions
[see 20].

The complete set of the equations can be written as

∂u

∂t
=

{

v in Ωs,

∆u in Ωf ,
(44)

∂v

∂t
=

{

1
J̺s Div P s in Ωs,

−(Gradv)F−1(v − ∂u
∂t

) + 1
J̺f Div(JσfF−T ) in Ωf ,

(45)

0 =

{

J − 1 in Ωs,

Div(JvF−T ) in Ωf ,
(46)

with the initial conditions

u(0) = 0 in Ω, v(0) = v0 in Ω, (47)

and boundary conditions

u = 0, v = vB on Γ 1, u = 0 on Γ 2, σsn = 0 on Γ 3. (48)

3.2 Constitutive equations

In order to solve the balance equations we need to specify the constitutive
relations for the stress tensors. For the fluid we use the incompressible New-
tonian relation

σf = −pfI + µ(∇vf + (∇vf )T ), (49)

where µ represents the viscosity of the fluid and pf is the Lagrange multiplier
corresponding to the incompressibility constraint (29).



For the solid part we assume that it can be described by an incompressible
hyper-elastic material. We specify the Helmholtz potential Ψ and the solid
stress is given by

σs = −psI + ̺s ∂Ψ

∂F
F T , (50)

the first Piola-Kirchhoff stress tensor is then given by

P s = −JpsF−T + J̺s ∂Ψ

∂F
, (51)

where ps is the Lagrange multiplier corresponding to the incompressibility
constraint (40).

Then the material is specified by prescribing the Helmholtz potential as
a function of the deformation

Ψ = Ψ̂(F ) = Ψ̃(C), (52)

where C = F T F is the right Cauchy-Green deformation tensor. Typical
examples for the Helmholtz potential used for isotropic materials like rubber
is the Mooney-Rivlin material

Ψ̃ = c1(IC − 3) + c2(IIC − 3), (53)

where IC = trC, IIC = tr C2 − tr2 C, IIIC = detC are the invariants of the
right Cauchy-Green deformation tensor C and ci are some material constants.
A special case of neo-Hookean material is obtained for c2 = 0. With a suitable
choice of the material parameters the entropy inequality and the balance of
energy are automatically satisfied.

3.3 Weak formulation

We non-dimensionalize all the quantities by a given characteristic length L

and speed V as follows

t̂ = t
V

L
, x̂ =

x

L
, û =

u

L
, v̂ =

v

V
,

σ̂
s = σs L

̺fV 2
, σ̂

f = σf L

̺fV 2
, µ̂ =

µ

̺fV L
, Ψ̂ = Ψ

L

̺fV 2
,

further using the same symbols, without the hat, for the non-dimensional
quantities. The non-dimensionalized system with the choice of material rela-



tions, (49) for viscous fluid and (51) for the hyper-elastic solid is

∂u

∂t
=

{

v in Ωs,

∆u in Ωf ,
(54)

∂v

∂t
=



















1
β

Div
(

−JpsF−T + ∂Ψ
∂F

)

in Ωs,

−(Gradv)F−1(v −
∂u

∂t
)

+ Div
(

−JpfF−T + JµGradvF−1F−T
) in Ωf ,

(55)

0 =

{

J − 1 in Ωs,

Div(JvF−T ) in Ωf ,
(56)

and the boundary conditions

σfn = σsn on Γ 0
t , v = vB on Γ 1

t , (57)

u = 0 on Γ 2
t , σfn = 0 on Γ 3

t . (58)

Let I = [0, T ] denote the time interval of interest. We multiply the equa-
tions (54)-(56) by the test functions ζ, ξ, γ such that ζ = 0 on Γ 2, ξ = 0

on Γ 1 and integrate over the space domain Ω and the time interval I. Using
integration by parts on some of the terms and the boundary conditions we
obtain

∫ T

0

∫

Ω

∂u

∂t
· ζdV dt =

∫ T

0

∫

Ωs

v · ζdV dt −

∫ T

0

∫

Ωf

Gradu · Grad ζdV dt,

(59)

∫ T

0

∫

Ωf

J
∂v

∂t
· ξdV dt +

∫ T

0

∫

Ωs

βJ
∂v

∂t
· ξdV dt

= −

∫ T

0

∫

Ωf

J GradvF−1(v −
∂u

∂t
) · ξdV dt

+

∫ T

0

∫

Ω

JpF−T · Grad ξdV dt

−

∫ T

0

∫

Ωs

∂Ψ

∂F
· Grad ξdV dt

−

∫ T

0

∫

Ωf

JµGradvF−1F−T · Grad ξdV dt,

(60)

0 =

∫ T

0

∫

Ωs

(J − 1)γdV dt +

∫ T

0

∫

Ωf

Div(JvF−T )γdV dt. (61)



Let us define the following spaces

U = {u ∈ L∞(I, [W 1,2(Ω)]3),u = 0 on Γ 2},

V = {v ∈ L2(I, [W 1,2(Ωt)]
3) ∩ L∞(I, [L2(Ωt)]

3),v = 0 on Γ 1},

P = {p ∈ L2(I, L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is
to find (u,v−vB , p) ∈ U ×V ×P such that equations (59), (60) and (61) are
satisfied for all (ζ, ξ, γ) ∈ U ×V ×P including appropriate initial conditions.

3.4 Discretization

In the following, we restrict ourselves to two dimensions which allows system-
atic tests of the proposed methods in a very efficient way, particularly in view
of grid-independent solutions. The time discretization is done by the Crank-
Nicholson scheme which is only conditionally stable but which has better
conservation properties than for example the implicit Euler scheme [see 6, 9].
The Crank-Nicholson scheme can be obtained by dividing the time interval I

into the series of time steps [tn, tn+1] with step length kn = tn+1−tn. Assum-
ing that the test functions are piecewise constant on each time step [tn, tn+1],
writing the weak formulation (59)-(60) for the time interval [tn, tn+1], approx-
imating the time derivatives by the central differences

∂f

∂t
≈

f(tn+1) − f(tn)

kn

(62)

and approximating the time integration for the remaining terms by the trape-
zoidal quadrature rule as

∫ tn+1

tn

f(t)dt ≈
kn

2
(f(tn) + f(tn+1)), (63)

we obtain the time discretized system. The last equation corresponding to
the incompressibility constraint is taken implicitly for the time tn+1 and the
corresponding term with the Lagrange multiplier pn+1

h in the equation (60)
is also taken implicitly.

The discretization in space is done by the finite element method. We
approximate the domain Ω by a domain Ωh with polygonal boundary and
by Th we denote a set of quadrilaterals covering the domain Ωh. We assume
that Th is regular in the sense that any two quadrilateral are disjoint or have
a common vertex or a common edge. By T̄ = [−1, 1]2 we denote the reference
quadrilateral.

Our treatment of the problem as one system suggests that we use the
same finite elements on both, the solid part and the fluid region. Since both
materials are incompressible we have to choose a pair of finite element spaces
known to be stable for the problems with incompressibility constraint. One



possible choice is the conforming biquadratic, discontinuous linear Q2, P1

pair, see figure 3 for the location of the degrees of freedom. This choice
results in 39 degrees of freedom per element in the case of our displacement,
velocity, pressure formulation in two dimensions and 112 degrees of freedom
per element in three dimensions.

vh, uh

ph, ∂ph

∂x
, ∂ph

∂y

x

y

Fig. 3. Location of the degrees of freedom for the Q2, P1 element.

The spaces U, V, P on an interval [tn, tn+1] would be approximated in the
case of the Q2, P1 pair as

Uh = {uh ∈ [C(Ωh)]2,uh|T ∈ [Q2(T )]2 ∀T ∈ Th,uh = 0 on Γ2},

Vh = {vh ∈ [C(Ωh)]2,vh|T ∈ [Q2(T )]2 ∀T ∈ Th,vh = 0 on Γ1},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}.

Let us denote by un
h the approximation of u(tn), vn

h the approximation
of v(tn) and pn

h the approximation of p(tn). Further we will use following
shorthand notation

F n = I + Gradun
h, Jn = detF n Jn+ 1

2 =
1

2
(Jn + Jn+1),

(f, g) =

∫

Ω

f · gdV , (f, g)s =

∫

Ωs

f · gdV , (f, g)f =

∫

Ωf

f · gdV ,

f, g being scalars, vectors or tensors.
Writing down the discrete equivalent of the equations (59)-(61) yields

(

un+1
h ,η

)

−
kn

2

{

(

vn+1
h ,η

)

s
+

(

∇un+1
h ,∇η

)

f

}

− (un
h,η) −

kn

2

{

(vn
h,η)s + (∇un

h,∇η)f

}

= 0,

(64)



(

Jn+ 1
2 vn+1

h , ξ
)

f
+ β

(

vn+1
h , ξ

)

s
− kn

(

Jn+1pn+1
h (F n+1)−T ,Grad ξ

)

s

+
kn

2

{ (

∂Ψ

∂F
(Gradun+1

h ),Grad ξ

)

s

+ µ
(

Jn+1 Gradvn+1
h (F n+1)−1,Grad ξ(F n+1)−1

)

f

+
(

Jn+1 Gradvn+1
h (F n+1)−1vn+1

h , ξ
)

f

}

−
1

2

(

Jn+1 Gradvn+1
h (F n+1)−1(un+1

h − un
h), ξ

)

f

−
(

Jn+ 1
2 vn

h, ξ
)

f
− β (vn

h, ξ)s

+
kn

2

{ (

∂Ψ

∂F
(Gradun

h),Grad ξ

)

s

+ µ
(

Jn Gradvn
h(F n)−1,Grad ξ(F n)−1

)

f

+
(

Jn Gradvn
h(F n)−1vn

h, ξ
)

f

}

+
1

2

(

Jn Gradvn
h(F n)−1(un+1

h − un
h), ξ

)

f
= 0,

(65)

(

Jn+1 − 1, γ
)

s
+

(

Jn+1 Gradvn+1
h (F n+1)−1, γ

)

f
= 0. (66)

Using the basis of the spaces Uh, Vh, Ph as the test functions ζ, ξ, γ we obtain
a nonlinear algebraic set of equations. In each time step we have to find
X = (un+1

h ,vn+1
h , pn+1

h ) ∈ Uh × Vh × Ph such that

F(X) = 0, (67)

where F represents the system (64–66).

3.5 Solution algorithm

The system (67) of nonlinear algebraic equations is solved using Newton
method as the basic iteration. One step of the Newton iteration can be written
as

Xn+1 = Xn −

[

∂F

∂X
(Xn)

]−1

F(Xn). (68)

This basic iteration can exhibit quadratic convergence provided that the ini-
tial guess is sufficiently close to the solution. To ensure the convergence glob-
ally, some improvements of this basic iteration are used.

The damped Newton method with line search improves the chance of
convergence by adaptively changing the length of the correction vector. The
solution update step in the Newton method (68) is replaced by

Xn+1 = Xn + ωδX, (69)



where the parameter ω is determined such that a certain error measure de-
creases. One of the possible choices for the quantity to decrease is

f(ω) = F(Xn + ωδX) · δX. (70)

Since we know

f(0) = F(Xn) · δX, (71)

and

f ′(0) =

[

∂F

∂X
(Xn)

]

δX · δX = F(Xn) · δX, (72)

and computing f(ω0) for ω0 = −1 or ω0 determined adaptively from previous
iterations, we can approximate f(ω) by a quadratic function

f(ω) =
f(ω0) − f(0)(ω0 + 1)

ω2
0

ω2 + f(0)(ω + 1). (73)

Then setting

ω̃ =
f(0)ω2

0

f(ω0) − f(0)(ω0 + 1)
, (74)

the new optimal step length ω ∈ [−1, 0] is

ω =















−
ω̃

2
if

f(0)

f(ω0)
> 0,

−
ω̃

2
−

√

ω̃2

4
− ω̃ if

f(0)

f(ω0)
≤ 0.

(75)

This line search can be repeated with ω0 taken as the last ω until, for ex-
ample, f(ω) ≤ 1

2f(0). By this we can enforce a monotone convergence of the
approximation Xn.

1. Let Xn be some starting guess.
2. Set the residuum vector Rn = F (Xn) and the tangent matrix A = ∂F

∂X
(Xn).

3. Solve for the correction δX
AδX = R

n.

4. Find optimal step length ω.
5. Update the solution Xn+1 = Xn

− ωδX .

Fig. 4. One step of the Newton method with the line search.

An adaptive time-step selection was found to help in the nonlinear con-
vergence. A heuristic algorithm was used to correct the time-step length



according to the convergence of the nonlinear iterations in the previous time-
step. If the convergence was close to quadratic, i.e. only up to three Newton
steps were needed to obtain the required precision, the time step could be
slightly increased, otherwise the time-step length was reduced.

The structure of the Jacobian matrix ∂F

∂X
is

∂F

∂X
(X) =





Suu Suv 0
Svu Svv Bu + Bv

BT
u BT

v 0



 , (76)

and it can be computed by finite differences from the residual vector F(X)

[

∂F

∂X

]

ij

(Xn) ≈
[F ]i(X

n + αjej) − [F ]i(X
n − αjej)

2αj

, (77)

where ej are the unit basis vectors in R
n and the coefficients αj are adaptively

taken according to the change in the solution in the previous time step. Since

α/TOL 10−8 10−4 10−2 10−1

10−8 7 /107 [21.52] 12 /57 [26.52] 12 /47 [23.75] 17 /33 [27.38]

10−4 7 /108 [24.57] 8 /62 [17.77] 10 /42 [18.95] 18 /31 [29.05]

10−2 16 /109 [51.65] 20 /47 [38.28] 25 /29 [38.58] 56 /16 [73.83]

10−1 44 /116 [141.30] 48 /35 [81.72] 49 /17 [65.77] –

Table 1. nonlinear solver it. / avg. linear solver it. [CPU time] for
BiCGStab(ILU(0)): TOL denotes the stopping criterion of the linear problems.

we know the sparsity pattern of the Jacobian matrix in advance, it is given by
the used finite element method, this computation can be done in an efficient
way so that the linear solver remains the dominant part in terms of the CPU
time. However, as table 1 shows, the resulting nonlinear and linear solution
behavior is quite sensitive w.r.t. the parameters.

3.6 Multigrid solver

The solution of the linear problems is the most time consuming part of the
solution process. A good candidate seems to be a direct solver for sparse
systems like UMFPACK [see 5]; while this choice provides very robust linear
solvers, its memory and CPU time requirements are too high for larger sys-
tems (i.e. more than 20000 unknowns). Large linear problems can be solved
by Krylov space methods (BiCGStab, GMRes [see 1]) with suitable precon-
ditioners. One possibility is the ILU preconditioner with special treatment of
the saddle point character of our system, where we allow certain fill-in for
the zero diagonal blocks [see 2]. The alternative option for larger systems is
the multigrid method presented in this section.



We utilize the standard geometric multigrid approach based on a hierarchy
of grids obtained by successive regular refinement of a given coarse mesh. The
complete multigrid iteration is performed in the standard defect-correction
setup with the V or F-type cycle. While a direct sparse solver [5] is used for
the coarse grid solution, on finer levels a fixed number (2 or 4) of iterations
by local MPSC schemes (Vanka-like smoother) [23, 21] is performed. Such
iteration can be written as





ul+1

vl+1

pl+1



 =





ul

vl

pl



 − ω
∑

Patch Ωi





Suu|Ωi
Suv|Ωi

0
Svu|Ωi

Svv|Ωi
kB|Ωi

cuBT
s|Ωi

cvBT
f |Ωi

0





−1 



def l
u

def l
v

def l
p



 .

The inverse of the local systems (39×39) can be done by hardware optimized
direct solvers.

The full nodal interpolation is used as the prolongation operator P with
its transposed operator used as the restriction R = P T .

In table 2 we compare the performance of the multigrid solver with the
Krylov space based iterative solvers with ILU preconditioner. The comparison

timestep 10−2

Level ndof MG(2) MG(4) BiCGStab(ILU(1)) GMRES(ILU(1),200)

1 12760 2/8 [66] 2/8 [92] 2/51 [32] 2/50 [27]
2 50144 2/8 [190] 2/5 [198] 2/120 [200] 2/117 [151]
3 198784 2/9 [744] 2/6 [852] 2/311 [1646] 2/358 [1432]
4 791552 2/13 [3803] 2/7 [3924] MEM. MEM.

timestep 100

Level ndof MG(2) MG(4) BiCGStab(ILU(1)) GMRES(ILU(1),200)

1 12760 4/12 [118] 4/11 [177] 20/160 [631] 20/801 [1579]
2 50144 4/12 [466] 4/7 [470] 2/800 [] diverg. 13/801 [] diverg.
3 198784 4/13 [1898] 4/7 [2057] 2/800 [] diverg. 4/801 [] diverg.
4 791552 4/15 [8678] 4/8 [9069] MEM. MEM.

Table 2. Comparison of different solvers (nonlinear solver it. / avg. linear solver
it. [CPU time]).

is presented for two different sizes of the timestep to illustrate the behavior
of the solvers for different level of nonlinearity involved.

4 Examplary applications in biomechanics

In this section we present a few example applications to demonstrate the
described methods. As a motivation we consider the numerical simulation
of some problems encountered in the area of cardiovascular hemodynamics,
namely flow interaction with thick-walled deformable material, which can



become a useful tool for deeper understanding of the onset of diseases of
the human circulatory system, as for example blood cell and intima damages
in stenosis, aneurysm rupture, evaluation of the new surgery techniques of
heart, arteries and veins.

In order to test the proposed numerical methods, simplified two-dimensio-
nal examples which include interaction of flow with deformable material are
computed. The first example is a flow in an ellipsoidal cavity and the second
is a flow through a channel with elastic walls. In both cases the flow is driven
by changing the fluid pressure at the inflow part of the boundary while the
elastic part of the boundary is either fixed or stress free.

The constitutive relations used for the materials are the incompressible
Newtonian model (49) for the fluid and the hyper-elastic neo-Hookean mate-
rial (53) with c2 = 0 for the solid. This choice includes all the main difficulties
the numerical method has to deal with, namely the incompressibility and sig-
nificant deformations.

ΩsΩsΩsΩsΩs

Ωf Γ0

Γ1 Γ2

Γ3

Ωf

Ωs

Γ 0

Γ 1

Γ 2

Γ 3

Fig. 5. Schematic view of the ventricle and elastic tube geometries.

4.1 Flow in an ellipsoidal cavity

The motivation for our first test is the left heart ventricle which is an ap-
proximately ellipsoidal chamber surrounded by the heart muscle. In our two-
dimensional computations we use an ellipsoidal cavity, see figure 5, with pre-
scribed time-dependent natural boundary condition at the fluid boundary
part Γ 1

p(t) = sin t on Γ 1. (78)

The material of the solid wall is modelled by the simple neo-Hookean consti-
tutive relation (53) with c2 = 0.

The figures 6 and 7 show the computational grid for the maximal and
minimal volume configuration of the cavity and the velocity field of the fluid



Fig. 6. Maximum and minimum volume configuration with the fluid flow.

for the same configurations. One of the important characteristics is the shear
stress exerted by the fluid flow on the wall material. This figure 7 shows the
distribution of the shear stress in the domain for three different times. In

Fig. 7. Shear stress distribution in the wall during the period.

figures 8 and 9 the volume change of the cavity as a function of the time and
the average pressure inside the cavity vs. the volume of the cavity is shown
together with the trajectory and velocity of a material point on the solid-fluid
interface. We can see that after the initial cycle which was started from the
undeformed configuration the system comes to a time periodic solution.

4.2 Flow in an elastic channel

The second application is the simulation of a flow in an elastic tube or in
our 2 dimensional case a flow between elastic plates. The flow is driven by
a time-dependent pressure difference between the ends of the channel of the
form (78). Such flow is also interesting to investigate in the presence of some
constriction as a stenosis, which is shown in figure 13.



Fig. 8. Volume of the fluid inside and the pressure-volume diagram for the ellip-
soidal cavity test.

Fig. 9. The displacement trajectory and velocity of a point at the fluid-solid inter-
face (inner side of the wall) for the ellipsoidal cavity test.

Fig. 10. Velocity field during one pulse in a channel without an obstacle.



Fig. 11. Volume of the fluid in the channel and the pressure-volume diagram.

Fig. 12. Displacement trajectory and velocity of a point at the fluid solid interface
(inner side of the wall).



For the flow in the channel without any constriction the time dependence
of the fluid volume inside the channel is shown together with the pressure
volume diagram in the figure and the trajectory and velocity of a material
point on the solid fluid interface in the figures 11 and 12. The velocity field
is shown in figure 10 at different stages of the pulse.

Finally in figure 13 the velocity field in the fluid and the pressure dis-
tribution throughout the wall is shown for the computation of the flow in a
channel with elastic obstruction. In this example the elastic obstruction is
modelled by the same material as the walls of the channel and is fixed to the
elastic walls. Both ends of the walls are fixed at the inflow and outflow and
the flow is again driven by a periodic change of the pressure at the left end.

Fig. 13. Fluid flow and pressure distribution in the wall during one pulse for the
example flow in a channel with constriction.



5 Summary and future development

In this paper we presented a general formulation of dynamic fluid-structure
interaction problem suitable for applications with finite deformations and
laminar flows. While the presented example calculations are simplified to al-
low initial testing of the numerical methods [see 22] the formulation is general
enough to allow immediate extension to more realistic material models. For
example in the case of material anisotropy one can consider

Ψ̃ = c1(IC − 3) + c2(IIC − 3) + c3(|Fa| − 1)2,

with a being the preferred material direction. The term |Fa| represents the
extension in the direction a. The system can be coupled with additional mod-
els of chemical and electric activation of the active response of the biological
material [see 11]. In the same manner the constitutive relation for the fluid
can be directly extended to the power law models used to describe the shear
thinning property of blood. Further extension to viscoelastic models and cou-
pling with the mixture based model for soft tissues together with models for
chemical and electric processes involved in biomechanical problems would
allow to perform realistic simulation for real applications.

To obtain the solution approximation the discrete systems resulting from
the finite element discretization of the governing equations need to be solved
which requires sophisticated solvers of nonlinear systems and fast solvers for
very large linear systems. The computational complexity increases tremen-
dously for full 3D problems and with more complicated models like visco-
elastic materials for the fluid or solid components. The main advantage of
the presented numerical method is its accuracy and robustness with respect
to the constitutive models. Possible directions of increasing the efficiency of
the solvers include the development of improved multigrid solvers, for in-
stance of global pressure Schur complement type [21], and the combination
with parallel high performance computing techniques.
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