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Abstract

A new realization of a finite element level set method for simulation
of immiscible fluid flows is introduced and validated on numerical bench-
marks. The new method involves a mixed discretization of the dependent
variables, discretizing the flow variables with non-conforming Rannacher-
Turek finite elements while keeping a simple first order conforming dis-
cretization of the level set field. A three step segregated solution approach
is employed, first using a discrete projection method to decouple and com-
pute the velocity and pressure separately, after which the level set field
can be computed independently.

The developed method is tested and validated on a static bubble test
case and on a numerical rising bubble test case for which a very accurate
benchmark solution has been established. The new approach is also com-
pared against two commercial simulation codes, Ansys Fluent and Comsol
Multiphysics, which shows that the developed method is a magnitude or
more accurate and at the same time significantly faster than state of the
art commercial codes.

KEY WORDS: numerical simulation; multiphase flow; level set method;
finite element method

∗Department of Mathematics, Shanghai Jiaotong University, 800 Dongchuan Road, Shang-
hai 200240, China (shuren.hysing@sjtu.edu.cn, shuren.hysing@math.tu-dortmund.de).

1



1 INTRODUCTION

Modern computer hardware together with improved simulation algorithms has
made computer simulations a commonly used tool by engineers today. Simu-
lations of industrially relevant flows can now seemingly be made both quickly
and easily. However, although problems involving complex physical phenomena
or large geometries can be simulated, there is still room for improvement with
regard to accuracy and computational efficiency. Typical applications involving
two-phase flows and free interfaces, which is the main concern of this paper, can
for example be to understand droplet generation in inkjet printing and spray
processes, to study wave generation and force impact on ships and offshore
structures, and design microfluidic lab-on-chip devices for medical analysis.

Numerical simulation of immiscible fluid flows has come a long way since the
early Marker-and-Cell method of Harlow and Welch [6] which eventually evolved
into the Volume of Fluid (VOF) method by Hirt and Nichols [7]. In these ap-
proaches a scalar function for the fluid volume fraction is tracked throughout the
simulation from which the interfaces are reconstructed. The level set method
by Osher and Sethian [20] was alternatively designed to implicitly track inter-
faces by representing and embedding them as an iso-contour level of a higher
dimensional function. In these Eulerian immersed interface approaches the free
boundaries are allowed to move arbitrarily through a fixed computational grid
and do not have to be resolved sharply. This simplifies the implementation and
can lead to significant performance gains in contrast to moving mesh methods
where the interfaces always are aligned with the edges of the grid cells. An
approach to combine the advantages of a sharp Lagrangian interface represen-
tation with an Eulerian representation of the other flow variables is the Front
Tracking method by Unverdi and Tryggvason [27]. All of these methods have
their respective strengths and weaknesses and much work has been done to
improve them in an effort to yield more accurate and faster algorithms.

With all this in mind a new methodology is introduced for simulation of
immiscible fluid flows which essentially consists of combining a non-conforming
finite element flow solver with a conforming level set interface tracking method.
This technique, although somewhat unconventional, has resulted in a simulation
code which has proven to be both significantly faster and at the same time more
accurate than two major commercial computational fluid dynamics (CFD) and
simulation software tools.

This paper first describes the numerical algorithms and methods necessary
to realize the new simulation approach which then is applied to both standard
test problems and also benchmarked against the commercial simulation codes
Ansys Fluent and Comsol Multiphysics. The following section first presents an
efficient method to discretize and realize a solver for the fluid flow and also
discusses how to efficiently incorporate surface tension effects. Section 3 focuses
on interface tracking, deriving the level set method, discussing its discretization
in space and time, level set reinitialization, and computation of normals and
curvature. The flow and interface tracking algorithms are combined in Section 4
to establish a complete solution approach. Section 5 presents results from testing
and validation of the developed code on both a static bubble test case, as well as
a rising bubble benchmark problem for which very accurate reference solutions
have previously been obtained. Lastly, a comparison with current commercial
codes is presented in Section 6 together with a summary and conclusions.
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2 FLOW SOLVER

This section discusses discretization and solution techniques for the Navier-
Stokes equations which are the mathematical model equations describing flow
of incompressible fluids. The task is to solve the following saddle point system

ρ(x)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ ·

(
µ(x)(∇u +∇uT )

)
+ ρ(x)g (1)

∇ · u = 0

for the unknown velocity, u, and pressure, p, in a given domain Ω ⊂ Rd. For
immiscible fluid flows, where one has a mixture of two or more fluids, the density,
ρ, and viscosity, µ, fields will be discontinuous at the d−1 dimensional interface,
Γ ⊂ Ω, separating the different fluids. A single field representation of them,
ρ = ρ(x) and µ = µ(x), will only be piecewise constant and thus vary with the
spatial coordinates x ∈ Ω. The right hand side vector g represents an external
force field such as gravity.

The presented methodology shares concepts from and continues to build on
the FeatFlow software suite (short for Finite Element Analysis Tools for Flow)
which has been developed to be able to accurately and efficiently simulate single
phase laminar fluid flows [1, 26].

2.1 Surface tension effects

When surface tension or capillary effects are present and cannot be considered
negligible the following boundary conditions apply

[u]|Γ = 0, − [−pI + µ(∇u +∇uT )]
∣∣
Γ
· n̂ = σκn̂

at the interface Γ. Here n̂ denote the interface normal and [A]|Γ is the jump of
property A across the interface. These conditions imply continuity of the velocity
in the normal direction across the interface and also a jump in the normal stress
proportional to the coefficient of surface tension, σ, and the curvature of the
interface, κ. The interface conditions can also conveniently be rewritten as
volumetric forces and then take the form

fst = σκn̂δ(Γ,x) (2)

where δ(Γ,x) is a Dirac delta function localizing the surface tension force to
the interface between the different fluids. The force term fst will be added to
the right hand side of the momentum equations (1) similar to the gravity force.
This means that the term will be evaluated explicitly in time, that is the normal
and curvature contributions will be calculated from the interface position at the
previous time step. This is called an immersed interface (or alternatively an
immersed boundary) approach and has its roots in the early work on blood
flow by Peskin [21], and its extension to volume of fluid (VOF) calculations
with surface tension forces by Brackbill, Kothe, and Zemach who dubbed it the
continuum surface force (CSF) method [2].

The surface tension force can also be rewritten semi-implicitly in time by first
expressing the curvature as a function of the interface coordinates x|Γ. After
applying partial integration and using the fact that the interface position at the
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new unknown time step can be rewritten as the old position plus an update,
x|n+1

Γ = x|nΓ + ∆tu, one will arrive at the following weak form of the surface
tension force

fst =

∫
Ω

σ δ(Γ,x) ∇(x|nΓ) · ∇v dx (3)

+ ∆t

∫
Ω

σ δ(Γ,x) ∇u · ∇v dx (4)

where v represents suitably chosen test functions and ∇ = ∇− n̂(n̂ ·∇) denotes
the gradient in the tangential direction of the interface. The first term (3) is sim-
ply another form of the explicit CSF force (2), while the additional second term
(4) is implicit in the velocity u. The advantage this semi-implicit discretization
has over the purely explicit one is that the additional new term represents dif-
fusion in the tangential direction of the interface. This stabilizing diffusion is
scaled by both the time step and the coefficient of surface tension which results
in a more physical implementation of capillary effects. An increased coefficient
of surface tension or a larger time step will now generate more interface diffu-
sion which balances the destabilizing source term. In this way the effects of the

capillary time step restriction, ∆t
(ca)
num <

√
〈ρ〉h3/2πσ, can be reduced allowing

for larger time steps and an overall more efficient method [11].

2.2 Temporal discretization

The first step in the numerical discretization process is to select an appro-
priate time stepping scheme. A good compromise between accuracy, robust-
ness, computational cost, and ease of implementation is the θ-scheme approach.
This method allows one to simultaneously implement and easily switch between
the first order Backward Euler, second order Crank-Nicolson, and multi-step
schemes such as the strongly A-stable Fractional-step-θ-scheme. The θ-scheme
applied to the Navier-Stokes equations results in the following general semi-
discrete system for each time step

Given un at time t = tn and time step ∆t = tn+1 − tn, then solve for u = un+1

and p = pn+1

ρ
u− un

∆t
+ θ

[
ρ(u · ∇)u−∇ ·

(
µ(∇u + (∇u)T )

)]
+∇p = bn+1

∇ · u = 0
(5)

with right hand side

bn+1 = θfn+1 + (1− θ)fn

− (1− θ)
[
ρn(un · ∇)un −∇ ·

(
µn(∇un + (∇un)T )

)]
.

(6)

The parameter θ is chosen according to the time stepping scheme, θ = 1 for
the Backward Euler scheme and θ = 1/2 for the Crank-Nicolson scheme. The
Fractional-step-θ-scheme is a multi-step scheme involving the following time
stepping parameters [3]
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θ = 1−
√

2

2
, θ′ = 1− 2θ, α =

1− 2θ

1− θ
, β = 1− α

where the whole time interval ∆t is split into the following three sub time steps

ρ
un+θ − un

∆t/3
+ αθN(un+θ)un+θ + θ∇pn+θ =

= αθfn+θ + βθfn − βθN(un)un

∇ · un+θ = 0, (7)

ρ
un+1−θ − un+θ

∆t/3
+ βθ′N(un+1−θ)un+1−θ + θ′∇pn+1−θ =

= βθ′fn+1−θ + αθ′fn+θ − αθ′N(un+θ)un+θ

∇ · un+1−θ = 0, (8)

ρ
un+1 − un+1−θ

∆t/3
+ αθN(un+1)un+1 + θ∇pn+1 =

= αθfn+1 + βθfn+1−θ − βθN(un+1−θ)un+1−θ

∇ · un+1 = 0. (9)

Here N(w)u =
[
ρ(w · ∇)u−∇ ·

(
µ(∇u + (∇u)T )

)]
represents the in compact

form of the nonlinear convective and diffusive terms.

2.3 Spatial discretization

The next step is to discretize the unknown dependent variables u and p in
space. Commonly employed discretization schemes are finite volume (FVM),
finite difference (FDM), and finite element methods (FEM). A suitable but
not always obvious choice is the non-conforming Rannacher-Turek Q̃1Q0 Stokes
finite element pair which has been shown to be very robust and computation-
ally efficient for solving the incompressible Navier-Stokes equations on arbitrary
grids [24, 26]. In the following, this methodology is used and extended to be
able to efficiently treat two-phase flows involving immiscible fluids.

The first step in deriving the finite element formulation of the Navier-Stokes
equations follows the usual procedure of multiplying the equations (5) with
arbitrary test functions v and integrating over the whole domain Ω. Partial
integration by using using the Gaussian theorem on the second order viscous
diffusion term is also applied, which reduces the smoothness requirements of the
involved variables.

The discretization step itself consists of subdividing or triangulating the
domain Ω into smaller cells. This triangulation is denoted by Th where h(K)
is the diameter or width of cell K. The employed Rannacher-Turek elements
requires that Th is built up of quadrilateral cells in two dimensions or hexahedral
cells in three dimensions. The approximation of the velocity components, ui,
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in each cell is then represented as multilinear polynomial shape functions, Q̃1,
defined as

Q̃1(K) :=
{
q ◦ ψ−1

K : q ∈ span
〈
1, xi, x

2
i − x2

i+1, i = 1, . . . , d
〉}

where ψK : R̂ → K is the multilinear (bilinear in two dimensions and trilinear
in three dimensions) transformation from the reference element R̂ = [−1, 1]d to
the cell K. The corresponding degrees of freedom are determined by either of
the functionals

F
(a)
E := |E|−1

∮
E

v ds or F
(b)
E := v(mE)

where E ⊂ ∂Th denotes the cell edges (or faces in three dimensions). Using

the functional F
(a)
E will result in degrees of freedom corresponding to the mean

values over the edges, and using F
(b)
E will similarly correspond to pointwise

values on the edge midpoints mE . Alternatively, one can employ the non-
parametric counterparts which, although computationally expensive, are better
suited on grids with high anisotropies [26].

The pressure field, p, is approximated by piecewise constant values on each
cell, the so called Q0 element, defined by the space

Lh = {qh ∈ L2
0 : qh|K ≡ const, ∀ K ∈ Th}.

Finally, the test function space v is normally taken as the same function
space which approximates the dependent variables, the standard Galerkin for-
mulation, but can also be modified to include certain desirable properties, for
example stabilization of convective terms in the form of streamline diffusion or
streamline upwind Petrov-Galerkin (SUPG) stabilization [4, 9].

Discretization in both time and space now yields the following saddle point
system which must be solved to advance the solution:

Given un and time step ∆t = tn+1 − tn, solve for u = un+1 and p = pn+1{
Su + ∆tBp = b

BTu = 0
(10)

where the system or iteration matrix S is defined as

S =
[
Mρ + θ∆tNρ,µ(u)

]
.

Here Mρ denotes the density weighted mass matrix

Mρ =

∫
Ω

ρ(x)u · v dΩ

arising from the discretization of the time derivative. The transport operator
N(·) is given by

Nρ,µ(w) =

∫
Ω

ρ(x) ((w · ∇)u) · v + µ(x)
(
∇u + (∇u)T

)
· ∇v dΩ
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and contains the nonlinear convective and diffusive contributions which, similar
to the mass matrix, depend on the variable density and viscosity fields. B and
BT are simply discrete analogs of the gradient and divergence operators, and
are used to include the pressure gradient and to enforce the incompressibility
constraint. The discrete right hand side is finally given by

b =

∫
Ω

bn+1
h · v dΩ,

where bn+1
h is the discrete analog to equation (6). A suitable and efficient

method to solve this system, with proper treatment of the pressure and conti-
nuity equation, will be discussed next.

2.4 Discrete projection method

Due to the incompressibility constraint special care must be taken when solv-
ing the saddle point system (10). Standard direct and iterative solvers which
are capable of dealing with zeros on the diagonal can be applied to invert the
coupled system directly. However, as the mesh size decreases and the number
of unknowns increases direct solvers will require huge amounts of memory while
iterative solvers will require more and more iterations to converge.

Two-phase flow applications most often are time dependent in nature and
involve phenomena that occur on very small time scales, for example break up
and coalescence, which poses natural restrictions on the maximum allowable
time step size. Projection method approaches have previously been shown to
be very efficient for solving time dependent incompressible flow problems [25].
The essence of this methodology is to split the momentum equations and the
continuity equation, leading to smaller Poisson type problems which very effi-
ciently can be solved independently from each other. A correction or projection
step must also be added to account for the incompressibility constraint.

The projection method, in this case the discrete pressure Schur complement
approach, applied to (10) involves the following steps to obtain the new velocity
field un+1 and pressure field pn+1:

1. Solve the momentum equations for the approximate velocity field ũ (while
ignoring the incompressibility constraint):

Sũ = bn+1 −∆tBpn

2. Construct the pressure right hand side:

fp =
1

∆t
BT ũ

3. Approximate the exact pressure matrix P ∗ = BTS−1B with P = BTM−1
ρ,l B

and solve the pressure Poisson problem:

Pq = fp

4. Update the pressure field:

pn+1 = pn + αRq + αDM
−1
p,l fp
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where αR and αD are appropriately chosen damping parameters, and M−1
p,l

is the discrete lumped pressure mass matrix.

5. Project the approximate velocity field to a divergence free space:

un+1 = ũ−∆tM−1
ρ,l Bq

The key to efficiency lies in optimizing the two computationally intensive
parts, the sparse matrix inversions in steps 1 and 3, as well as the finite element
matrix assembly.

An efficient method to solve the discretized momentum equations in step 1
of the discrete projection method is to use a geometric multigrid approach. The
idea behind multigrid is to assemble and iteratively solve the linear systems on a
sequence of grids. This allows for the slowly converging low frequency errors on
the finest grid to quickly be filtered out on the coarser grids (the low frequency
error is seen as having a higher frequency on the coarser grids). A near linear
efficiency can in this way be achieved in the optimal case (with linear meaning
that the cost of solving the systems increase linearly with the number of degrees
of freedom) [5]. This is in contrast to standard iterative solvers which require
an increasing number of iterations to converge as the computational grids are
refined.

For solving the momentum equations and establishing the approximate ve-
locity fields an F-cycle multigrid solver with two or three grid levels is used.
A stabilized biconjugate gradient method (BiCGStab) is chosen as a smoother
applying one smoothing step between grid level changes, and successive over-
relaxation (SOR) is used as a solver on the coarsest grids. More details on
implementing this multigrid approach to solving the momentum equations is
described in references [12, 26].

The solution of the pressure Poisson problem, step 3 above, is the second
computationally expensive part of the discrete projection method. To handle
this efficiently a similar approach to solving the momentum equations is used.
An important difference between single and multiphase flow is in the choice
and construction of the lumped mass matrix, which is the main constituent of
the approximate projection matrix P = BTM−1

ρ,l B. For multiphase flow appli-
cations the lumped mass matrix needs to be weighted with the discontinuous
density field and there are a number of ways of accomplishing this leading to
quite different results.

The two main approaches is either to first lump the standard mass matrix
and then scale it with the density, or first assemble the full density weighted mass
matrix exactly and lump it afterwards. The first approach is easy and cheap,
the standard row-sum lumped mass matrix is computed and stored once, after
which it is multiplied with a corresponding density field vector. The density field
can either be evaluated pointwise in the nodes (or midpoints) or alternatively
averaging on the cells first, after which a mean density for each cell can be
evaluated.

The second alternative is to construct the mass matrix exactly to resolve the
density jumps on the elements accurately, after which a lumping procedure can
be applied. For a mass matrix constructed from the Q̃1 basis functions one can in
general not use the standard row-sum lumping procedure since negative diagonal

8



entries can be created. This is due to the combination of the density jump and
non-positiveness of parts of the basis functions which can create dominating off-
diagonal entries. However, there are two other approaches available, diagonal
lumping where only the positive diagonal entries are kept, and HRZ-lumping
(from Hinton, Rock, and Zienkiewicz [8]) where the diagonal mass matrix is
scaled locally so that the total mass of each element is preserved.

The different approaches were evaluated by simulating a standard rising
bubble test problem and recording the average number of multigrid iterations
required to reduce the residual norm in the pressure Poisson equation to 10−10.
The results are shown in Table 1. It is clear that the exact assembly plus
HRZ-mass lumping is by far the best choice, requiring on average around 10
iterations. For the variants where the standard lumped mass matrix is scaled
by the density it is preferable to calculate an average density for each cell. This
approach did however take 2-3 times more iterations to converge compared to
using the HRZ-lumped mass matrix. The most costly method is to scale with
the density evaluated directly in the nodes, requiring over 100 iterations to
achieve convergence on the coarser grid levels.

Table 1: Average number of multigrid iterations required to solve the pres-
sure Poisson problem. (Pw.) denotes pointwise evaluation of the density,
(Avg.+Pw.) density averaging before pointwise evaluation, and (Exact+HRZ)
exact assembly with HRZ-lumping.

Grid level Pw. Avg.+Pw. Exact+HRZ

3 111 31 14
4 109 33 12
5 40 23 8
6 35 23 7
7 26 27 5

2.5 Convective stabilization

High Re-number flows, where convective terms dominate over diffusive often re-
quire special numerical treatment. This is mainly due to the limited resolution
(the number of cells) that can be afforded in the simulations. The unresolved
subgrid effects will eventually cause oscillations and unphysical solution behav-
iors if not suppressed. A mechanism to handle this consists of locally adding
small amounts of numerical diffusion to counterbalance the dominating convec-
tive terms.

An elegant approach to add artificial stabilization in the finite element con-
text consists of introducing the following modification to the test function space
vPG := v + δ∇v, where δ = δ(Reh, h) is locally tuned to apply the correct
amount of stabilization. This classical Petrov-Galerkin (PG) approach only
introduces artificial diffusion in the flow or streamline directions, and is thus
called streamline diffusion (SD) or streamline upwind Petrov-Galerkin (SUPG)
[4, 9]. The method is consistent, meaning that the stabilization disappears for
the exact solution, linear with respect to the solution variables, and is also easy
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to implement. However, a major drawback of the streamline diffusion approach
is that it is not monotonicity preserving thus allowing unphysical under- and
over-shoots to appear. Depending on the nature of the phenomena under study
it can be very critical to limit or even completely suppress this behavior (for
example when solving for turbulence variables or chemical reactions).

An alternative is to use total variation diminishing (TVD) and flux-corrected
transport (FCT) schemes. These schemes allow for very accurate solutions at
the cost of introducing an additional nonlinearity. However, if treated properly,
or if the problem is already nonlinear, the additional cost will be quite low. A
very elegant and general approach used here to introduce TVD, in particular
with respect to the FEM context, is to use the FEM-TVD method developed by
Kuzmin [15, 16]. In this type of approach one modifies the standard Galerkin
discretization by adding diffusive and antidiffusive fluxes on the matrix level.
The fluxes are determined by comparing the physical diffusive and convective
contributions, computing the required stabilizing flux terms, and applying an
appropriate flux limiter. The reader is referred to the works of Kuzmin et al.
for further details [17, 18].

2.6 Nonlinear iteration techniques

The convective term in the momentum equations contains a non-linearity which
must be treated appropriately. An efficient way to solve the nonlinear model
problem A(u)u = f is to use the following iterative defect correction approach

uj = uj−1 + ω C−1rj−1, j = 0, 1, 2, . . .

where rl = f −A−1(ul)ul is the defect vector in iteration l, and ω is a damping
parameter. The preconditioning matrix C should ideally be chosen so that it is
cheap to construct and easy to invert while still allowing for fast convergence.
Typically one will use C = A for the standard fixed point approach while full
Newton schemes require more elaborate constructions. The iterative procedure
is stopped when a predefined convergence criterion has been reached, for exam-
ple when the norm of the residual error ||rj || has decreased sufficiently or the
solution difference between iterates ||uj − uj−1|| is small enough.

The iterative defect correction scheme applied to the Navier-Stokes equations
leads to the following linearization of the convective term

(uj · ∇)uj ≈ (uj−1 · ∇)uj

where uj−1 is the solution from the previous step in the defect loop. An alter-
native for time dependent problems is to use extrapolation backwards in time
by replacing

(un+1 · ∇)un+1 by either (un · ∇)uj or ((2un − un−1) · ∇)uj .

In certain cases it is even possible to treat the convective term completely ex-
plicit transferring it to the right hand side. Although these extrapolation tech-
niques remove the nonlinearities, and thus are computationally favorable, they
should be used with caution since the time step size may have to be reduced
dramatically if the nonlinearity is strong.
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3 LEVEL SET SOLVER

The level set method introduced by Osher and Sethian [20] has proved to be ap-
plicable in many diverse fields such as image processing, crystal growth, inverse
problems, and multiphase flow [19]. The main idea of the level set method is to
embed an interface Γ(t) (represented by a curve in two dimensions or surface in
three dimensions) in a higher dimensional function φ, that is

Γ(t) = {x ∈ Rd | φ(x, t) = vls},
where vls is the contour level or isosurface value implicitly representing the
interface. The choice of vls is arbitrary but is usually taken as zero, since it
is then possible to identify the different phases by simply using the sign of the
level set function. It is appropriate to initialize φ as a signed distance function

φ(x, 0) = d(Γ,x) =

 dist(Γ,x), x ∈ Ω1,
vls, x ∈ Γ,

−dist(Γ,x), x ∈ Ω2,

where Ω1 and Ω2 denote the two regions that the fluids occupy. Advantages of
using a distance function as a level set field is that it for the most part is smooth
and simplifies construction and regularization of Heaviside and delta functions.
Methodologies using local grid adaptation and grid deformation can also make
use of the distance function to quickly and easily identify where to refine the
grid. Additionally, normals, n̂, and curvature, κ, can globally be defined as

n̂ =
∇φ
|∇φ|

, κ = −∇ · n̂. (11)

The starting point for deriving an evolution equation for the level set function
is to recognize that the following must hold for the moving interface (from here
on taken as the zero level set, that is vls = 0)

φ(x(t), t) = 0.

Direct differentiation with the chain rule yields

∂φ

∂t
+∇φ · ∂x(t)

∂t
= 0.

The speed with which the front propagates in the normal direction is given by

F = n̂ · ∂x(t)
∂t . Using this and the definition of the normal vector in (11) results

in the following evolution equation

∂φ

∂t
+ F |∇φ| = 0

which must hold globally for all values of φ. The speed function F can depend
on many variables such as mean curvature, external forces, but when coupled
with the Navier-Stokes equations will only depend on the fluid velocity, that is
F = n̂ · u, which gives

∂φ

∂t
+ (u · ∇)φ = 0, (12)

where the definition of the normal (11) has been used once more.
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What essentially has been achieved is a fully implicit formulation of the
interface and its evolution in space at the cost of operating in a higher dimension.
Additionally, geometrical properties such as interface normals and curvature are
also implicitly defined and are possible to reconstruct globally.

3.1 Numerical treatment

The level set equation (12) is a pure hyperbolic transport equation and thus
allows for application of standard solution tools, such as those used to treat the
momentum equations in Section 2. As for the Navier-Stokes equations time dis-
cretization can also be implemented here by applying the single step θ-scheme,
which results in the following problem formulation

Given φn and the time step ∆t = tn+1 − tn, then solve for φ = φn+1

φ− φn

∆t
+ θ(u · ∇)φ = b

with the right hand side
b = (θ − 1)(u · ∇)φn.

Alternatively, one can as before apply the A-stable Fractional-step-θ-scheme
which leads to a three step method analogous to equations (7)-(9).

It is natural to choose the same discretization scheme in space as for the
Navier-Stokes equations, in this case the finite element method. However, a
continuous representation is appropriate in the level set context since the inter-
faces and the level set function for the most part should be smooth. By using
the same approximation order as for the velocities the choice falls upon first
order continuous basis functions, the Q1 space, which is defined by

Q1(K) =
{
q ◦ F−1

K : q ∈ span
〈
1, xi, xixmod(i,d)+1, i = 1, . . . , d

〉}
.

After discretization in space, the discrete form of the level set equation will read

[M(l) + ∆tθA]φn+1 = bn,

bn = [M(l) −∆t(1− θ)A]φn,
(13)

where M(l) =
∫

Ω
v1v2 dΩ is the mass matrix which can be lumped if appropriate.

A is the transport matrix, responsible for convecting the level set function and
thus also implicitly the interface, and is given by

A =

∫
Ω

(u · ∇)v1v2 dΩ. (14)

Here v1 and v2 denote the Q1 basis and test function spaces, respectively. A is
a trilinear form involving the explicit velocity field u which must be evaluated
appropriately in the assembly step. Since u is continuously changing A needs
to be re-assembled in each time step in contrast to the mass matrix which only
has to be computed once.
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Since equation (12) is a hyperbolic transport equation without including any
diffusion, some form of artificial stabilization is necessary. At first it might seem
that a linear scheme, such as the SUPG streamline diffusion scheme described
previously, is more appropriate than FEM-TVD which renders the problem
nonlinear. In practice this is not the case since the cost of solving the level set
equation for the most part can be rendered almost negligible [12]. Furthermore
FEM-TVD has the additional benefits of generally being more accurate than
linear stabilization schemes, monotonicity preserving, and also completely free
of artificial tuning parameters [16, 17, 18].

For the numerical solution and inversion of the linear system in equation (13)
one can apply standard iterative techniques, such as BiCGStab and multigrid
schemes. When using FEM-TVD an iterative defect approach, like the one
described in Section 2.6, is necessary to treat the added nonlinearity. To achieve
fast convergence the preconditioning matrix, C, in the defect loop should as
closely as possible resemble the iteration matrix

C ≈ [M(l) + ∆t θA].

It does not need to be exact, and can in fact be approximated with just the
mass matrix, M , if the time steps are small enough. If the mass matrix also is
lumped, Ml, the inversions become trivial and will cost next to nothing. For
larger time steps this approach will usually also work but will require more
iterations in the defect correction loop to converge.

3.2 Reinitialization

Even if the level set function is initialized as a perfect distance function it will
generally distort significantly with time causing convergence difficulties and re-
ducing accuracy for normal and curvature computations. The velocity with
which the level set field is transported will preserve the distance function prop-
erty if ∇φ · ∇F = 0 is fulfilled, which means that the normal velocity has to be
constant along the characteristics normal to the interface. This is unfortunately
not the case for the velocity fields arising from fluid flow simulations. To remedy
this it is common practice to periodically apply what is known as redistancing
or reinitialization of the distorted level set field to recover the distance function
property. Reinitialization is equivalent to solving the Eikonal equation

|∇φ(x)| = F (x) (15)

with boundary condition φ(x) = 0, x ∈ Γ. The speed function is here taken as
unity, F (x) = 1, in order to recover the standard distance function.

A reinitialization method must fulfill a number of requirements to be of
practical interest . Firstly, the chosen method should ideally not move the zero
level set interface, which would cause unphysical mass loss. Secondly, it should
be as accurate as possible, since an accurate level set field will result in better
normal and curvature computations. Thirdly, the computational overhead can
not be so significant that the computations are dominated by the redistancing
step. After carefully examining and comparing five different reinitialization
algorithms in [10] the one method that proved to posses the best combination
of speed and accuracy, especially on very dense meshes, was the fast marching
method by Sethian [23].
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The fast marching method takes into account the characteristics of the so-
lution, knowing that information only propagates outward from the zero level
set. Starting from there, each grid point is updated node by node in order of
increasing distance in an upwind fashion. The key to efficiency of fast marching
is the realization of a heap structure for the uncorrected nodes and thus the al-
gorithmic complexity of the fast marching method can be estimated to be order
O(N log N) where N is the number of nodes [23]. The fast marching reinitial-
iztion must first be initialized by computing and correcting the distance of the
nodes belonging to cells intersected by the interface. This is accomplished by
computing and choosing the smallest Euclidean distance to the closest interface
segments.

3.3 Normal and curvature computation

Geometric properties such as normal vectors, n̂, and curvature, κ, can easily be
recovered globally from the level set function. Direct differentiation of the level
set function φ again gives

n̂ =
∇φ
|∇φ|

, κ = −∇ · n̂.

Although the finite element method allows for this approach, it is not the best
alternative since accuracy is lost when differentiating φ. The recovered normals
will also be discontinuous at the cell edges if C0-functions are used (for example
with the Q1 elements used in this approach). This will also cause ambiguous
evaluations necessitating some form of averaging procedure. Furthermore, first
order basis functions are not two times differentiable. It is therefore preferable
to find another method to reconstruct the curvature.

More accurate approaches include reconstruction via L2-projection and patch
recovery techniques. The L2-projection approach minimizes the following vari-
ational forms

M(l)ni,h = Biφh, M(l)κh = −
∑
i

(Bini,h), i = 1, . . . , d

where M(l) is the (possibly lumped) mass matrix, ni,h the recovered normal vec-

tor in direction i, and Bi the gradient matrix Bi =
∫
∂v1
∂xi

v2 dΩ. An underscore
h indicates the discrete counterpart to the continuous variable. Once recovered,
the discrete normals and curvature now exist in the corresponding finite ele-
ment space and can be evaluated accordingly. If the mass matrix is lumped the
inversion is trivial, otherwise appropriate linear solvers have to be applied.

The main idea behind patch based gradient recovery techniques is to use
information available in the surrounding cells to construct a more accurate rep-
resentation of the gradients. In the following the ZZ-patch recovery technique
(from Zienkiewicz and Zhu [29, 30]) and the PPR-technique (short for polyno-
mial preserving recovery [28]) will be explored. The idea of the ZZ-technique is
to evaluate the gradients in superconvergent points of the cells neighboring the
node of interest, after which a local least-squares fitting is applied. This con-
struction has been shown to achieve better convergence on regular grids than
otherwise possible [29]. The PPR-technique alternatively constructs a high or-
der polynomial around the evaluation point from which the gradients can be
recovered in a robust way.
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The described gradient recovery techniques have been applied to a test prob-
lem in order to assess the accuracy of the resulting normal and curvature fields.
The test configuration considered a circle with radius 0.25 centered in a 2 × 2
domain. Errors could easily be calculated since the analytic normal and curva-
ture fields around a circle are known. Figure 1(a) shows the maximum norm
of the error of the normal reconstruction, which was evaluated pointwise along
the circumference of the circle. The computations were performed for regular
refinements of a perfect tensor product grid, and it is clear that all methods
yielded second order convergence. However, when the grid nodes were stochas-
tically perturbed by 20% some clear differences became apparent (Figure 1(b)).
The direct differentiation (DIFF) and L2-projection (L2) methods now only
converged with first order accuracy. The ZZ-technique still converged with sec-
ond order on the coarser grids but decreased to first order as the grids were
refined. The PPR approach was as robust as before and achieved full second
order convergence.
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Figure 1: Normal reconstruction errors on tensor product grids with and without
perturbation of the nodes.

The curvature must be recovered in a second step using the previously com-
puted normals. In this way it is essential that the normals are recovered as
exact as possible in order to be able to compute an accurate representation of
the curvature. Figure 2(a) shows the results for the tensor product grids which,
as for the normals, achieved full second order convergence for all methods. This
is not surprising since the recovery methods are the same, and the employed
grids are computationally favorable. The absolute values of the curvature errors
were a magnitude higher than for the normals, but this is also to be expected
since some accuracy must be lost in the additional reconstruction step. When
the grids were perturbed on the other hand the results were completely dif-
ferent (Figure 2(b)). Now the direct differentiation (DIFF) and L2-projection
(L2) methods completely stopped converging (note that their respective curves
overlap each other). The ZZ-patch recovery shows a quite low initial error but
also stopped converging as the grid was refined. The only method that still
converged was the PPR-technique. Clearly, if one works with anything but per-
fectly regular grids, the PPR-technique, although expensive, is the safest choice
giving at least first order convergence in the curvature reconstruction.
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Figure 2: Curvature reconstruction errors on tensor product grids with and
without perturbation of the nodes.

4 SOLUTION APPROACH

The two previous sections have discussed the different components needed to
numerically simulate two-phase flows. The interface is always implicitly coupled
to the flow variables through the density, viscosity, and surface tension. The flow
variables are in return coupled to the interface through the velocity field. In the
solution process the order and way in which these variables are solved for needs
to be considered carefully. The following section will cover the construction
of an appropriate solver sequence or structure, and discuss various efficiency
aspects relating to it.

4.1 Solution procedure

Both the solution of the Navier-Stokes equations, including the interface track-
ing algorithms, can in essence be treated in a fully coupled monolithic way, that
is to set up and simultaneously solve the following large system for all unknowns



ρ(φ)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ ·

(
µ(φ)(∇u +∇uT )

)
+ f ,

f = ρ(φ)g + σκ(φ)n̂(φ)δ(φ),

∇ · u = 0,

∂φ

∂t
+ (u · ∇)φ = 0.

(16)

A monolithic approach may seem convenient and robust, but is not very
efficient from a computational point of view. It is generally always less costly
to invert and solve a series of smaller matrix systems than a single large one.
For example, the discrete projection method presented in Section 2 allows for
this by separating the velocity computations from the pressure.
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The interface tracking algorithm, in this case the level set equation, should
theoretically also be included implicitly so that all interfaces, which move with
the velocity field, are updated continuously. This is usually not very practical
since the density and viscosity fields, gravitational force, and surface tension in
(16) all depend on the position of the interface. In practice it is more convenient
to treat the interface explicitly, that is to regard it as fixed, for example using the
interface position at the old time step, while the other quantities are computed.

In an analogous way it is natural to also add the interface tracking algorithm
explicitly, that is updating the positions of the interfaces after the new velocity
and pressure fields have been computed. In this case it is the velocity field in the
trilinear form (14) convecting the interfaces that is assumed to be known and
is treated explicitly. All together this will lead to a segregated solver structure
with the following form:

Segregated solver structure

• Initialization

• Time stepping loop:

For tn+1 ∈ [0, T ], and time step ∆t = tn+1 − tn do

1. Flow solver (Discrete projection method):

Given Γ = Γn, and implicitly ρ = ρ(Γn) and µ = µ(Γn),
update the velocity field un+1 and pressure pn+1

2. Interface tracking solver (Level set method):

Given u = un+1 update the interface Γn+1

3. Postprocessing

The initialization step includes input of parameters, grid generation, and allo-
cation of memory blocks for arrays, vectors, and matrices. It is advantageous to
incorporate the discrete projection method and interface tracking, steps 1 and
2, modularly so that the code easily can be extended if one for example wants
to include chemical reactions or heat transfer and solidification effects. This
also allows one to easily and conveniently activate and deactivate modules, for
example to only use the flow solver if one is studying single phase flow. Steps
1-3 can also be repeated iteratively in each time step until convergence in a
suitable norm has been reached. The postprocessing step contains routines for
graphical and data output, and time stepping control. Local grid adaption and
grid deformation techniques can either be added in this step, or between steps
1 and 2, depending on which variables are least sensitive to interpolation.

4.2 Flow solver

The solution of the flow variables, even when using the discrete projection
method, is the most costly component and hence should be given most at-
tention. A corresponding flow solver module (treating step 1 above) will have
the following structure:
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Flow solver: Discrete projection method module

1. Given the interface Γ = Γn construct the variable density, ρ =
ρ(Γn),
and viscosity, µ = µ(Γn), fields

2. Assemble mass and diffusion matrices

3. Generate projection matrix

4. Assemble right hand side vector (gravity and surface tension
effects)

5. Assemble convective terms and calculate initial defect

6. Defect correction loop for the momentum equations:

(a) Assemble convective terms and generate iteration matri-
ces

(b) Solve the linearized momentum equations

(c) Calculate new defect

(d) Check for convergence (go to step 6a if necessary)

7. Calculate the right hand side for the pressure Poisson problem

8. Solve the pressure Poisson problem

9. Update pressure and velocity fields

In this algorithmic structure, the mass and diffusion matrices are assembled once
outside the defect loop. This saves computational effort in direct proportion to
the number of required defect iterations compared to assembling everything in
the defect loop. Appropriate boundary conditions must also be applied to the
momentum equations at flow inlets, outlets and wall boundaries.

4.3 Interface tracking solver

An interface tracking module for treating the level set equation is in theory
quite easy to construct. The governing equation is a standard convection diffu-
sion equation transporting a relatively smooth scalar property for which many
techniques have been developed. The most costly component will again be the
assembly step even though only one convective transport operator needs to be
reassembled in each time step. The velocity field in the trilinear operator which
in this case comes from another finite element space, the non-conforming Q̃1

space, should be evaluated directly in the cubature points to achieve full accu-
racy. This is will increase the cost since it will require a higher order quadrature
rule than normal (up to a fourth order rule in the two dimensional case).
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Routines for periodical reinitialization, and normal and curvature compu-
tations are added in a postprocessing step after the level set field has been
computed. The level set interface tracking module is broken down into the fol-
lowing steps:

Interface tracking: Level set module

1. Assemble convection matrix

2. Generate right hand side vector

3. Calculate initial defect

4. Defect correction loop for the level set equation:

(a) Assemble contributions for artificial convective stabiliza-
tion

(b) Solve the level set equation

(c) Calculate new defect

(d) Check for convergence (go to step 4a if necessary)

5. Apply reinitialization of the level set field if necessary

6. Calculate normal and curvature fields

Note that the mass matrix is assembled once and then reused (under the as-
sumption that the grid is fixed and not moving). If the applied convective
stabilization is linear the defect correction loop 4(a)-(d) will converge in one
step and can then be omitted.

5 NUMERICAL VALIDATION

This section describes the testing undertaken to validate the simulation code im-
plemented according to the described methodology. The modular design makes
it easier to debug and validate the code by testing the solvers independently
before applying them to coupled and more complex problems. The flow solver
was first successfully validated on the DFG flow around cylinder benchmarks
for which very accurate reference solutions are available (for example from the
FeatFlow CFD benchmark database [31]). The level set module was then by
itself tested on stretching and tearing interface tracking test cases [22]. The fol-
lowing section describes how the implemented approach was able to treat more
complex two-phase flow problems.
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5.1 Static bubble

This test case models a perfectly stationary two dimensional bubble at equi-
librium. According to the Laplace-Young law the pressure inside the bubble
should be equal to pin = pout + σ/r, where r is the radius of the bubble. Since
everything is stationary the velocity should ideally be zero everywhere, however,
due to certain imbalances in the numerical method unphysical spurious velocity
currents will be generated.

The test configuration considers a bubble with radius r = 0.25 positioned in
the center of a unit square. The coefficient of surface tension, and the viscosity
inside and also outside the bubble were all set to unity while the densities were
given a magnitude of 104. This corresponds to a Laplace number of La =
(2r)σρµ−2 = 5 · 103. A fixed time step of ∆t = 0.01 was used in the simulations
which were run until t = 125.

In Table 2 the errors in the computed solution compared with the analytical
solution are given for four different mesh widths (h = 1/[20, 40, 80, 160]). The
middle column shows the error of the dimensionless velocity in the l1 norm,
1
N

∑N
i=1 |uiµ/σ|, where N is the number of nodes. As with all Eulerian interface

tracking methods there were spurious velocity currents present, however, the
errors quickly decreased and converged with 2nd order. The right column in
Table 2 additionally shows how well the pressure field fulfilled the Laplace-
Young law, that is |pin − pout − σ/r|. This error will be nonzero due to the
combination of the constant Q0 pressure approximation on each cell and the
Eulerian nature of the level set method which allows the interface to intersect
cells arbitrarily. These errors also decreased very rapidly and showed a full 2nd
order convergence rate.

1/h uµ/σ |pin − pout − σ/r|
20 6.7 · 10−4 4.8 · 10−2

40 1.9 · 10−4 1.2 · 10−2

80 5.2 · 10−5 3.1 · 10−3

160 1.4 · 10−5 7.8 · 10−4

ROC ≈ 1.9 2.0

Table 2: Errors and convergence rates (ROC) for the non-dimensional velocity
and pressure.

Figure 3 shows pressure cut-lines for various levels of grid refinement (using
mesh widths h = 1/20 to h = 1/160). It can be seen that the pressure ap-
proximation is quite sharp and non-oscillating even on fairly coarse grids. This
simple test case has shown that the two-phase flow module and surface tension
calculations were implemented correctly and produced accurate results.
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Figure 3: Pressure cut-line (y = 0.5) for different mesh sizes.

5.2 Rising bubble

This complex benchmark test case has been throughly studied by three inde-
pendent research groups who managed to determine accurate and quantitative
reference solutions for the circularity, rise velocity, and center of mass of a bub-
ble in a liquid column [13]. The test case begins with a circular bubble with
radius r = 0.25 centered in the lower half of a 1 × 2 rectangular domain. The
buoyancy force will cause the bubble to rise and also deform. Aside from track-
ing the bubble shape the following quantities are also measured:

Center of Mass. The center of mass of the bubble is defined by

Xc = (xc, yc) =

∫
Ω2

x dx∫
Ω2

1 dx

where Ω2 denotes the region that the bubble occupies.

Circularity. The degree of circularity is in two dimensions defined as

/c =
Pa
Pb

=
perimeter of area-equivalent circle

perimeter of bubble
=
πda
Pb

.

Pa denotes the perimeter or circumference of a circle with diameter da which
has an area equal to that of a bubble with perimeter Pb. For a perfect circular
bubble the circularity will be equal to unity and decrease as the bubble is de-
formed.

Rise Velocity. The mean velocity with which a bubble is rising and moving is
defined as

Uc =

∫
Ω2

u dx∫
Ω2

1 dx
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where Ω2 again denotes the region that the bubble occupies. The rise velocity
is simply the corresponding velocity component in the direction the bubble is
moving.

The physical parameters of the two fluids and dimensionless numbers defin-
ing the test case are given in Table 3. A subscript 1 is assigned to the heavier
surrounding fluid and 2 the lighter fluid of the bubble.

Table 3: Physical parameters and dimensionless numbers defining the rising
bubble test case.

ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1000 100 10 1 0.98 24.5 35 10 10 10

Computations were performed on rectangular tensor product grids with mesh
widths h = 1/[40, 80, 160, 320]. The time step was scaled with the mesh size as
∆t = h/16. Table 4 shows the simulation statistics for the different grid levels
where the number of elements is denoted by NEL, the total number of degrees
of freedom by NDOF, and the total number of time steps by NTS.

Table 4: Simulation statistics for the rising bubble test case.

1/h NEL NDOF NTS

40 3200 19561 1920
80 12800 77521 3840

160 51200 308641 7680
320 204800 1231681 15360
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Figure 4: Computed bubble shapes at time t=3 on successively refined grids
(solid red) compared to the reference solution (dashed blue).
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In Figure 4 the symmetric right half of the bubble shapes on various grids at
the final time t=3 are compared with the reference solution established in the
benchmarks [14]. It is apparent that the solution on the coarsest grid h = 1/40
(Figure 4(a)) is already very good but differs somewhat from the reference solu-
tion. The computation on a one level finer grid (h = 1/80 shown in Figure 4(b))
is clearly better and further refinements yield bubble shapes which are visually
indistinguishable from the reference shape. Qualitatively looking at the bubble
shapes is clearly not sufficient to say anything about the accuracy on the finer
grids. One therefore has to switch to a quantitative analysis instead and study
the defined benchmark quantities.

The relative error norms for the circularity, center of mass, and rise velocity
are shown in Table 5 together with the estimated convergence rates (ROC). The
reference solution is as before taken from the benchmarks. It is evident that
all quantities converge with a more than linear convergence order, approach-
ing quadratic convergence in the l1 and l2 norms. In the maximum norm the
convergence order decreased to 1.16 for the circularity and 1.39 for the rise
velocity.

Table 5: Relative error norms and convergence orders for the three benchmark
quantities.

1/h ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞

Circularity

40 1.00e-03 1.22e-03 2.89e-03
80 3.01e-04 1.74 3.63e-04 1.75 9.67e-04 1.58

160 8.83e-05 1.77 1.10e-04 1.72 4.32e-04 1.16

Center of mass

40 2.65e-03 2.99e-03 3.56e-03
80 9.64e-04 1.46 1.02e-03 1.55 1.14e-03 1.64

160 2.62e-04 1.88 2.71e-04 1.91 2.96e-04 1.95

Rise velocity

40 1.19e-02 1.29e-02 1.49e-02
80 2.90e-03 2.04 3.07e-03 2.07 5.08e-03 1.55

160 7.73e-04 1.91 7.85e-04 1.97 1.94e-03 1.39

The following figures depict the time evolution of the benchmark quantities.
From Figure 5(a), which shows the circularity, it is quite hard to discern any
significant differences between the different grids. Only for the coarsest grid
(h = 1/40) is it possible to see some deviations; the circularity drops too quickly
up until t = 0.7, after which the correct solution behavior is recovered. A close
up around the point of minimum circularity is shown in Figure 5(b) from where
it is possible to see the convergence behavior. Most notable is that there are
irregularities or small jumps in the curves for the two coarsest grids which is
due to the reinitialization procedure which was applied every 20 time steps.
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Figure 5: Time evolution of the circularity.

Table 6 shows that the inflection point of minimum circularity converges
towards a value of 0.9013 around t = 1.90. This compares very well with the
suggested reference minimum at t = 1.9 with value 0.9012±0.0001[13].

Table 6: Minimum circularity (/cmin) and maximum rise velocity (Vc,max), with
corresponding incidence times, and the final position of the center of mass (yc).

1/h 40 80 160 320

/cmin 0.9016 0.9014 0.9014 0.9013
t|/c=/cmin

1.9234 1.8734 1.9070 1.9041
Vc,max 0.2418 0.2418 0.2419 0.2417
t|Vc=Vc,max

0.9141 0.9375 0.9281 0.9213
yc(t = 3) 1.0818 1.0810 1.0812 1.0813

Both the center of mass, shown in Figure 6(a), and the mean rise velocity of
the bubble, shown in Figure 6(b), converge very nicely. From Table 6 one can
see that the maximum rise velocity of Vc,max = 0.2417 is attained quite early
at time t = 0.92. This can be compared to the target range 0.2419±0.0002 at
time 0.932. The center of mass of the bubble can asymptotically be described
as a linear function of time and approaches yc = 1.0813 towards the end of the
simulation which lies in the reference value range 1.081±0.001.

By having used the rising bubble benchmark in the validation process one
can be very confident that the developed code can simulate complex two-phase
flow problems accurately. This is in contrast to comparing with experimental
measurements and data for which there can be large uncertainties.
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Figure 6: Center of mass and rise velocity of the bubble.

6 SUMMARY AND CONCLUSIONS

This paper has presented a novel mixed finite element level set method for
simulation of flows with immersed interfaces. The new method combines an
efficient finite element flow solver based on the non-conforming Rannacher-Turek
Q̃1Q0 elements with a conforming Q1 level set solver to track the interfaces. The
two solvers are coupled in a segregated and modular way sequentially solving
for each of the dependent variables. This modular approach is computationally
efficient and also allows each solver module to be tested and used completely
independent from each other.

The governing equations are discretized in time with a θ-scheme approach
resulting in robust and accurate single and multi-step schemes. In space the
Q̃1Q0 discretization allows the construction of an efficient discrete projection
method which decouples the velocity and pressure variables from each other.
One important key to efficiency here is to use HRZ-mass lumping when assem-
bling the density weighted mass matrix used in the projection operator. The
resulting sparse linear equation systems can then be inverted and solved inex-
pensively using a multi-grid approach. Furthermore, FEM-TVD stabilization
is applied when necessary to treat the case of dominating convection terms in
both the flow and level set solvers. Surface tension effects are included with an
implicit approach which circumvents the capillary time step restriction allowing
for larger time steps.

The level set method is used as interface tracking method since the governing
equation is a standard hyperbolic transport equation and the level set field for
the most part is smooth. This allows for standard PDE solution techniques to
be applied. Moreover, both the interface, and normal and curvature fields can
be recovered globally if needed, as for instance in the implicit surface tension
model. It was shown that in order to achieve convergence for the normal and
curvature fields on anisotropic or distorted grids it was necessary to use a higher
gradient recovery method such as the PPR method. Although the level set field
will distort with time previous studies have determined that the most suitable
method to accurately and quickly recover the distance function property was to
periodically reinitialize it with the fast marching method.
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The simulation code that has been developed according to the described ap-
proach has been tested on several numerical benchmarks to assert its accuracy.
It was first tested on a flow around cylinder problem, for which very accurate
reference solutions are available, which showed that the flow solver produced re-
liable results for single phase flows. Furthermore, an equilibrium static bubble
problem confirmed that surface tension effects were implemented correctly. A
rising bubble problem finally validated the overall coupled approach and veri-
fied that the method could produce correct results for complex two-phase flow
problems.

Commercial software tools are widely used by industrial engineers today to
simulate various physical processes. Except for monetary cost, they offer many
benefits over academic tools; commercial codes are reasonably easy to use, are
often documented extensively, have user support, and usually include tried and
tested algorithms which produce qualitatively good results. However, what is
usually not known is how accurate these codes really are, on an absolute level
that is, and what performance can be expected for a specific problem. This
was, within the context of two-phase flows, examined by simulating one of the
previously described benchmark test cases with two different commercial codes,
the general and flexible PDE simulation package Comsol Multiphysics and the
dedicated CFD flow solver Ansys Fluent. The results from these codes was also
compared with those computed with the newly developed code.
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Figure 7: Averaged error in the circularity vs. CPU time.

The chosen test problem was the rising bubble benchmark previously de-
scribed in Section 5.2. Computations were performed on different grid levels
while measuring the required CPU time and calculating the error in the circu-
larity. Figure 7 shows the time averaged error against the CPU time for the
different codes. From the figure it is clear that the solution produced by Com-
sol initially had quite a large error but also converged at a high rate due to
the higher order Q2P1 finite element discretization. Unfortunately, solutions
at very fine grids were practically impossible to compute due to the strong de-
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pendence on direct solvers. Fluent on the other hand started with a somewhat
lower initial error but converged much slower. By the third grid level Fluent and
Comsol had achieved the same level of efficiency and surprisingly further refine-
ments yielded no improvements at all, Fluent completely stopped converging.
The new approach, labeled TP2D in the figure, converged with first order and
showed a much better overall efficiency, requiring about ten times less effort to
achieve a certain accuracy than the commercial codes would have had they been
able to compute on finer grids. Note that even the error on the very coarsest
grid was already lower that anything that either of the commercial codes could
produce.

Altogether, a new complete approach for simulation of immiscible fluid flows
with free interfaces has been described and validated on several numerical bench-
mark test cases. As a final test it was compared against two commercial codes
showing the merit of the developed code which was able to outperform them by
a magnitude or more.
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[18] Kuzmin D, Löhner R, Turek S. Flux-Corrected Transport: Principles, Algorithms,
and Applications, Scientific Computation, Springer, 2005, ISBN: 978-3-540-23730-
3.

[19] Osher SJ, Fedkiw RP. Level Set Methods and Dynamic Implicit Surfaces, Applied
Mathematical Sciences, Vol. 153, Springer, 2002, ISBN: 978-0-387-95482-0.

[20] Osher SJ, Sethian JA. Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics
1988; 79(1):12–49, DOI:10.1016/0021-9991(88)90002-2.

[21] Peskin CS. Numerical analysis of blood flow in the heart. Journal of Computa-
tional Physics 1977; 25(3):220–252, DOI:10.1016/0021-9991(77)90100-0.

[22] Rider WJ, Kothe DB. Stretching and tearing interface tracking methods. in the
proceeding of the 12th AIAA Computational Fluid Dynamics Conference. AIAA
95-1717, 1995.

[23] Sethian JA. A fast marching level set method for monotonically advancing fronts.
Proceedings of National Academy of Sciences 1996; 93(4)1591–1595.

[24] Turek S, Rannacher R. A simple nonconforming quadrilateral Stokes ele-
ment. Numerical Methods for Partial Differential Equations 1992; 8(2):97–111,
DOI:10.1002/num.1690080202.

[25] Turek S. On discrete projection methods for the incompressible Navier-Stokes
equations: an algorithmical approach. Computer Methods in Applied Mechanics
and Engineering 1997; 143(3-4):271–288, DOI:10.1016/S0045-7825(96)01155-3.

28

http://www.iam.fmph.uniba.sk/amuc/_contributed/algo2005/hysing-turek.pdf
http://www.iam.fmph.uniba.sk/amuc/_contributed/algo2005/hysing-turek.pdf
http://dx.doi.org/10.1002/fld.1147
http://eldorado.tu-dortmund.de:8080/bitstream/2003/24967/1/Hysing_PhD-Thesis.pdf
http://eldorado.tu-dortmund.de:8080/bitstream/2003/24967/1/Hysing_PhD-Thesis.pdf
http://dx.doi.org/10.1002/fld.1934
http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html


[26] Turek S. Efficient Solvers for Incompressible Flow Problems, An Algorithmic and
Computational Approach. Lecture Notes in Computational Science and Engineer-
ing Volume 6. Springer-Verlag, 1999, ISBN: 3-540-65433-X.

[27] Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompress-
ible, multi-fluid flows. Journal of Computational Physics 1992; 100(1):25–37,
DOI:10.1016/0021-9991(92)90307-K.

[28] Zhang Z. Polynomial preserving gradient recovery and a posteriori estimate for
bilinear element on irregular quadrilaterals. International Journal of Numerical
Analysis and Modeling 2004; 1(1):1–24.

[29] Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a pos-
teriori error estimators. Part 1: The recovery technique. International
Journal for Numerical Methods in Engineering 1992; 33(7):1331–1364,
DOI:10.1002/nme.1620330702.

[30] Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a pos-
teriori error estimates. Part 2: Error estimates and adaptivity. Interna-
tional Journal for Numerical Methods in Engineering 1992; 33(7):1365–1382,
DOI:10.1002/nme.1620330703.

[31] FeatFlow CFD benchmark repository:
http://www.featflow.de/en/benchmarks/cfdbenchmarking.html

29

http://www.featflow.de/en/benchmarks/cfdbenchmarking.html

	1 INTRODUCTION
	2 FLOW SOLVER
	2.1 Surface tension effects
	2.2 Temporal discretization
	2.3 Spatial discretization
	2.4 Discrete projection method
	2.5 Convective stabilization
	2.6 Nonlinear iteration techniques

	3 LEVEL SET SOLVER
	3.1 Numerical treatment
	3.2 Reinitialization
	3.3 Normal and curvature computation

	4 SOLUTION APPROACH
	4.1 Solution procedure
	4.2 Flow solver
	4.3 Interface tracking solver

	5 NUMERICAL VALIDATION
	5.1 Static bubble
	5.2 Rising bubble

	6 SUMMARY AND CONCLUSIONS

