
Proceedings of ALGORITMY 2005
pp. xx–yy

THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS.

ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS

SHU-REN HYSING∗ AND STEFAN TUREK †

Abstract. This paper presents a study of the computational efficiency, that is accuracy versus
computational effort, for solving the Eikonal equation on quadrilateral grids. The algorithms that
are benchmarked against each other for computations of distance functions are the following: the fast
marching method, the fast sweeping method, an algebraic Newton method, and also a ”brute force”
approach. Some comments are also made on the solution of the Eikonal equation via reformulation
to a hyperbolic PDE. The results of the benchmark clearly indicate that the fast marching method
is the preferred algorithm due to both accuracy and computational speed in our tested context.

Key words. Hamilton-Jacobi equations, Eikonal equations, distance functions

AMS subject classifications. 65M12, 65Y20, 70H20

1. Introduction. The Eikonal equation, defined by

|∇φ(x)| = f(x), x ∈ Rn(1)

with boundary condition φ(x) = g(x), x ∈ Γ ⊂ Rn, is of general interest in
fields such as computational geometry, multiphase flow, path planning etc. In the
simplest case where the speed function f(x) is a constant, usually equal to one, then
the solution of the Eikonal equation will represent the shortest distance from a point
x to the zero distance curve, usually given by Γ, that is if g(x) = 0.

The simple looking Eikonal equation has generated quite a substantial amount of
interest due to both its usefulness and also its inherent nonlinear character making
it a challenging task to solve. Many solution schemes have been proposed, and the
ones that this investigation is concerned with are the most commonly used ones: the
brute force method, the fast sweeping method, the fast marching method, an algebraic
Newton method, and finally via reformulation of (1) to a hyperbolic problem.

Up to this date few papers have been published that compares and investigates
which solution scheme most efficiently solve the Eikonal equation on computational
grids. To mention one study done on strictly Cartesian grids we refer to a paper
by Gremaud and Kuster [2], which focuses on solving (1) with inhomogeneous speed
functions. Intuitively one is lead to think that the algorithmic efficiency and benefits
of O(N) versus O(N log N) methods should be higher, where N is the number of
unknowns or grid points. As shall be seen this is far from the whole truth in a fully
general context.

∗ Institute of Applied Mathematics (LS III), Univeristy of Dortmund, Vogelpothsweg 87, D-44227
Dortmund, Germany (shuren.hysing@math.uni-dortmund.de).

† Institute of Applied Mathematics (LS III), Univeristy of Dortmund, Vogelpothsweg 87, D-44227
Dortmund, Germany (stefan.turek@math.uni-dortmund.de).

1

This paper is structured as follows. The following section contains brief descrip-
tions of various schemes used to solve equation (1). In section 3 we describe some
algorithms needed to implement these solution schemes on quadrilateral grids. There-
after follows a section describing the test case and the results for the various methods.
Finally a summary with conclusions is presented.

2. Algorithms. In this section we describe the most common algorithms used
to solve the Eikonal equation (1) with a speed function f(x) equal to unity. The
solution methods are presented in increasing order of algorithmic complexity.

2.1. The fast sweeping method. The fast sweeping method described in the
papers by Tsai, Osher et al. [12, 13] essentially consists of applying upwind type
difference formulas, see section 3.1 later, while using Gauss-Seidel type of iterations,
to update the distance function field. The key to fast sweeping is to update the points
in a certain order that tries to follow the characteristics of the solution, that is the
sweeping direction should ideally correspond to the real propagation of information.
The basic method is described as follows

• Select a sweeping direction and calculate the corresponding grid point order.
• Loop over all points in accordance with the above sequence and update the

distance for each point if the newly calculated distance is smaller than the
previous one.

• Repeat this procedure for all sweeping directions.
• Repeat until convergence for all grid points has been achieved.

It is easy to see that the complexity of this algorithm is of order O(N), and has
the potential to be very fast if the number of sweeps can be kept to a minimum. The
sweeping orders may be chosen as follows for a two dimensional tensorproduct mesh

1. i = 1 : I, j = 1 : J , 2. i = I : 1, j = 1 : J
3. i = I : 1, j = J : 1, 4. i = 1 : I, j = J : 1

where i is the node position in the x-direction and j is the corresponding posi-
tion in the y-direction. I and J are the maximum number of nodes in the x- and
y-directions respectively.

2.2. Algebraic Newton method. This method utilizes an existing approxi-
mate distance field ψ by solving for each grid point x0 the following equations for the
unknown point x

L(x) =

[

ψ(x)
∇ψ(x) × (x − x0)

]

= 0.(2)

The operator L(x) specifies that the point x should lie on the zero distance curve
and, additionally, that the vector pointing from the original point x0 to x should be
parallel to the normal of the zero distance curve. Since each grid point x0 is only
visited once the algorithmic complexity is of order O(N).

The system (2) is solved by way of a Newton scheme, as described in Persson and
Strang [4]; also a variant as a two step Newton scheme is presented in a paper by
Chopp [1] where the second order derivatives of the Jacobian has been omitted, this
approach was tried but eventually dropped due to slow convergence.

2

For our purposes the two dimensional version of the operator and Jacobian will
look like:

L(x) =

[

ψ(x, y)
(x− x0)ψy − (y − y0)ψx

]

J(x) =
∂L

∂x
=

[

ψx ψy + (x− x0)ψxy − (y − y0)ψxx

ψy −ψx − (y − y0)ψxy + (x− x0)ψyy

]T

The typical iteration employed is xk+1 = xk − δJ−1(xk)L(xk), where δ is a
relaxation parameter which can be adaptively adjusted to reduce the stepsize and
to keep the updates from diverging. After each iteration convergence is checked by
taking the residual norm of the operator L(x), if convergence has been achieved the
new distance is given by φ(x0) = |x − x0|.

The convergence properties of the algebraic Newton method depends on the
smoothness of the given approximate distance field ψ. Should this field be non-smooth
then the method will fail to find the exact distance in regions where the gradient is
undefined (such as the corners of a square). Thus the algebraic Newton method can
not be seen as a truly general method to compute distance functions for arbitrary dis-
tance fields, but the distance fields must belong to class C2, that is have continuous
second derivatives.

2.3. The fast marching method. The fast marching method originally de-
vised by Sethian [6, 7] takes into account the characteristics of the solution, knowing
that information will only propagate outward from the zero distance curve. Starting
from there, each grid point is updated in order of increasing distance in an upwind
fashion. Initialization of the fast marching algorithm is done with the following steps

• Tag all points on the cells intersecting the zero distance curve as Accepted,
and calculate exact distance values to these points.

• Tag all grid points that lie in the neighboring cells to the boundary points as
Trial, also compute an initial approximate distance value to these.

• All other points lie in the Unknown set and should be given distance values
that are bigger than the largest possible distance value.

After these initial steps the algorithm proceeds as follows

1. Find the point with the smallest distance value in the set of Trial points.
2. Remove this point from the Trial set and add it to the Accepted set.
3. Add all points of neighboring cells to the newly accepted point, that do not

belong to the Accepted set to the Trial set. Now compute new distance values
of all Trial points that are neighbors to the newly accepted point.

4. Repeat the procedure until the Trial set is empty.

The key to efficiency of fast marching is the realization of a heap structure for the
Trial set. This enables the sorting and finding of the minimum distance within the
Trial set (step 1.) to be executed on average in O(log N) operations [5]. Thus the
algorithmic complexity of the fast marching method is of order O(N log N) [6]. If we
compare the fast marching and fast sweeping methods we see that fast marching costs
O(log N) operations more to sort out the real propagation order, while fast sweeping
assumes this is known in advance thus escaping the added cost.

3

2.4. Brute force redistancing. The simple brute force method consists of sub-
dividing or approximating the zero distance curve with linear line segments or just
sampling points for an even easier version. Then the distance for each grid point to all
approximated zero distance segments is computed from which the minimum is taken
as the new distance. This algorithm is obviously of order O(N ·M) with N being the
number of grid points and M the number of zero distance segments. Thus if we have
many interface segments the algorithm could approach quadratic costs while on the
other hand for very few interface segments the algorithm is close to linear.

2.5. Hyperbolic PDE. The commonly used PDE based redistancing scheme
uses the following time dependent PDE for redistancing the given approximate dis-
tance function φ0 [10]:

∂φ

∂t
= S(φ0)(1 − |∇φ|)(3)

This equation is solved to the stationary limit together with homogeneous Neu-
mann boundary conditions and initial condition φ(x, 0) = φ0(x).

S(d) is a sign function introduced to propagate the information out from the zero
distance curve. Usually not the pointwise sign function is chosen but a smoothed ver-
sion, such as S(d) = d2/

√
d2 + ǫ2 where ǫ is proportional to the grid size or smoothing

distance. This also leads to a problem that the zero distance curve will eventually
wander off its initial position. Additional constraints can be introduced to minimize
this effect such as done in a paper by Sussman and Fatemi [11].

Equation (3) can also be rewritten as

∂φ

∂t
+ u · ∇φ = S(φ0), u = S(φ0)

∇φ
|∇φ|

taking on the guise of a normal, but nonlinear, convection and diffusion transport
problem. Since there are a vast number of methods and discretization schemes to solve
this problem (FDM, FEM, FVM, coupled with ENO methods, etc.), all resulting in
different accuracies and computation timings, no results for this method are presented.
Redistancing by this hyperbolic PDE could probably be a benchmark all by itself.

3. Algorithmic components. In this section we describe some algorithms that
are needed for some of the solution schemes in a general context.

3.1. Unstructured difference update. Both the fast marching method and
the fast sweeping method depend on the ability to solve the Eikonal equation for a
given grid point by using the distance values from the surrounding points. While
this is rather straightforward given a strict Cartesian grid, this is not so if we have a
perturbed or even unstructured grid. To manage this we follow the general approach
taken by Sethian and Vladimirsky [8] which allows for both first and second order
updates. Another more geometrically oriented approach is taken by Kimmel et al.
[3, 9], which however only allows for updates of first order accuracy.

To construct an approximation to the Eikonal equation for a grid point x using
the surrounding points xi, · · · ,xn, first define the unit directional vector pointing from
point xi to point x as Pi = (x − xi)/||x − xi||. Then let vi(x) be the value of the
approximate directional derivative in direction Pi and point x. Thus we can write

4

that vi(x) = Pi · ∇φ(x), taking all directions i, substituting this into the Eikonal
equation (1), and squaring gives the following

v(x)T (PPT)−1v(x) = f(x)2(4)

where the matrix P is constructed by placing the directional vectors Pi as its
rows and v(x) is simply a column vector with elements vi(x). Since P has to be
nonsingular the updates are restricted to come from simplices, that is triangles in 2D
and tetrahedra in 3D.

To solve equation (4) we need to be able to write the directional derivatives
vi(x) as functions of the unknown distance φ(x). First and second order difference
approximations are given as follows:

vi(x)O(1) =
φ(x)

||x − xi||
− φ(xi)

||x − xi||

vi(x)O(2) =
2φ(x)

||x − xi||
− 2φ(xi)

||x − xi||
− Pi · ∇φ(xi)

Both of these formulas permit the rewriting of vi(x) into the form vi(x) = aiφ(x)+
bi. Thus the Eikonal equation is finally reduced to a quadratic equation for the
distance φ(x) in the form

(aT Qa)φ(x)2 + (2aT Qb)φ(x) + (bT Qb) = f(x)2

where Q is defined as Q = (PPT)−1 and the vectors a and b by their respective
constituents ai and bi. This equation is then solved to find two roots of which the
largest one is taken as a possible new distance for φ(x). This new distance can only
be accepted if the update comes from within the polygon spanned by x,xi, · · · ,xn

and if the calculated distance value is smaller than the old one. Thus we only update
if the vector components Qv(x) ≈ Q(aφ(x)+b) are all positive and if φ(x) < φold(x) .

3.2. Nodal point update and simplex construction. Given a point, A, to
update with the unstructured update in a quadrilateral grid we proceed in the follow-
ing way.

• Loop over all quadrilaterals that include grid point A as one of the defining
vertices.

• Construct virtual triangles from grid point A and the other grid points of each
quadrilateral. For an arbitrary quadrilateral with node numbering A to D
then the virtual triangles will have node combinations A−B−C, A−C−D,
and A−B −D.

• Apply the unstructured difference update to grid point A for each virtual
triangle in turn.

This splitting of the quadrilateral is quite effective to handle the imposed stability
constraint of the unstructured update, that is to only update from acute triangles
[3]. It is easy to see that the possibility to update point A from an acute angle is
always present. This possibly eliminates or at least reduces the need for splitting and
unfolding of obtuse triangles described in references [8, 3]. The quadrilateral splitting
procedure is illustrated in Figure 1.

5

A B

C

D

A B

C

D

A B

C

D

Fig. 1. Simplex construction from a quadrilateral, the updating of point A comes from the gray

triangle

−1

−0.5

0

0.5

1

0
0.5

1
1.5

2
2.5

3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Zero distance curve and distance function field for the test case

4. Numerical experiments. This section describes the test benchmark and
results for the various solution schemes. For the interested reader we can say that the
benchmarks were entirely written in Fortran 77, compiled with the Portland Group
PGI F77 Compiler, and run on a 1.8 GHz AMD Opteron machine. In the following
tables the column CPU denotes the actual required number of CPU seconds for a
given method to converge.

4.1. Test case. For the computational experiments a non trivial test case was
chosen that both reflects typical features of an engineering computation, and also
allows for an analytical solution. The test case is given by the following exact distance
function field

φ(x) = min(2.25 − y,
√

x2 + (y − 1)2 − 0.4.

The computational domain is a rectangle spanned by x = [−1, 1], y = [0, 3].
Both the zero distance curve and distance function field can be seen in Figure 2. The
distance field contains both singularities, where the gradient is essentially undefined,
and also parts where the solution is smooth, giving us an interesting test case.

The basic coarse Cartesian grid consists of 24 conforming quadrilaterals with cell
edge length h = 0.5, which correspond to level 1. Successive mesh levels are created
by uniform subdivision, that is simply by splitting each cell into four new ones via its
centroid coordinate. To test the unstructured capabilities of the solution algorithms
presented in section 2, stochastic perturbations were introduced corresponding to 10%
and 25% of the approximate mean cell edge length h = 1/(

√
N − 1).

6

4.2. Error estimation. The computed solution vectors for all gridpoints were
measured against the exact solutions in the following relative error norms

l1 error : ||u||1 =
1

N

N
∑

i=1

|φi,exact − φi,computed|
|φi,exact|

l2 error : ||u||2 =

√

√

√

√

1

N

N
∑

i=1

(|φi,exact − φi,computed|
|φi,exact|

)2

l∞ error : ||u||∞ = max
i

|φi,exact − φi,computed|
|φi,exact|

The error norms were only computed for points that did not belong to the cells
intersecting the zero distance curve, or to points with a distance greater than a pre-
scribed maximum, thus precluding the influence of singularities. Also convergence
rates for the various methods in the difference error norms were established as

ROC = log10(
||ul−1||
||ul||)/log10(

hl−1

hl
)

where l is the level of refinement and h the mean cell edge length.

4.3. The fast marching method. Tables 1 and 2 give the results for the fast
marching method on levels 6 through 9 with 1st and 2nd order accuracy respectively.
Only points with a smaller distance than 3.4 were included in the error calculation
showing the local properties of the method. It can be seen that the convergence rates
very accurately approach the expected values with successive grid refinements. Also
note that the grid distortion only causes a small reduction in accuracy.

4.4. The Fast Sweeping Method. Fast sweeping should ideally produce iden-
tical results to the fast marching method since it uses the same difference update
formula. From our calculations we do obtain identical results for non distorted grids.
Unfortunately as the grids become more and more distorted the update procedure
often fails since we cannot be sure that the sweeping order is correct for an unstruc-
tured grid. In our benchmarks we used the same update order for distorted grids as
for the purely Cartesian one.

Regarding computational time, the fast sweeping method require more and more
sweeps to converge when the grid size decreases, especially for truly unstructured
grids. All in all it can be said that even on fully Cartesian grids the fast marching
method is quicker if we use the unstructured update.

4.5. Algebraic Newton method. Table 3 presents the results from the alge-
braic Newton redistancing scheme with an approximate distance function given by a
bilinear polynomial on each quadrilateral cell (the standard finite element Q1 basis
function). This field approximation was quite challenging since it is only piecewise
differentiable, although it was a representative choice since one can rarely rely on to
have a nice analytical approximate distance function in practice.

A convergence criteria of 10−9 and a maximum number of nonlinear iterations
equal to 200 were used with the Newton method. The stepsize was also restricted not
to exceed one coarse mesh cell edge length.

7

Level CPU ||u||1 ROC1 ||u||2 ROC2 ||u||∞ ROC∞

No mesh perturbation
6 0.05 0.211E-02 0.82 0.435E-02 0.82 0.241E-01 0.72
7 0.24 0.113E-02 0.90 0.232E-02 0.91 0.139E-01 0.80
8 1.18 0.582E-03 0.96 0.119E-02 0.96 0.738E-02 0.91
9 6.47 0.297E-03 0.97 0.609E-03 0.97 0.388E-02 0.93

10% mesh perturbation
6 0.05 0.214E-02 0.85 0.438E-02 0.85 0.242E-01 0.74
7 0.25 0.114E-02 0.91 0.232E-02 0.92 0.139E-01 0.80
8 1.27 0.585E-03 0.96 0.119E-02 0.96 0.738E-02 0.91
9 7.10 0.298E-03 0.97 0.607E-03 0.97 0.387E-02 0.93

25% mesh perturbation
6 0.05 0.218E-02 0.85 0.432E-02 0.86 0.242E-01 0.79
7 0.26 0.117E-02 0.90 0.230E-02 0.91 0.138E-01 0.81
8 1.46 0.599E-03 0.96 0.118E-02 0.96 0.731E-02 0.92
9 6.45 0.305E-03 0.97 0.601E-03 0.97 0.383E-02 0.93

Table 1

Results for redistancing by the fast marching method with 1st order update

Level CPU ||u||1 ROC1 ||u||2 ROC2 ||u||∞ ROC∞

No mesh perturbation
6 0.05 0.531E-04 1.84 0.104E-03 1.86 0.111E-02 1.45
7 0.26 0.141E-04 1.92 0.271E-04 1.93 0.354E-03 1.64
8 1.36 0.360E-05 1.97 0.686E-05 1.98 0.901E-04 1.98
9 7.54 0.911E-06 1.98 0.173E-05 1.99 0.232E-04 1.96

10% mesh perturbation
6 0.07 0.544E-04 1.88 0.105E-03 1.87 0.119E-02 1.46
7 0.29 0.145E-04 1.91 0.275E-04 1.94 0.361E-03 1.72
8 1.46 0.374E-05 1.96 0.700E-05 1.97 0.915E-04 1.98
9 8.09 0.957E-06 1.96 0.177E-05 1.98 0.234E-04 1.97

25% mesh perturbation
6 0.06 0.594E-04 1.84 0.112E-03 1.85 0.130E-02 1.55
7 0.27 0.162E-04 1.87 0.296E-04 1.91 0.376E-03 1.79
8 1.66 0.423E-05 1.94 0.764E-05 1.95 0.944E-04 1.99
9 8.14 0.109E-05 1.96 0.195E-05 1.97 0.240E-04 1.98

Table 2

Results for redistancing by the fast marching method with 2nd order update

From the table we can see that the overall accuracy were almost unaffected by
grid distortion. Also the accuracy and convergence rates seem to be restricted for the
Q1 construction of the approximate distance field.

8

Level CPU ||u||1 ROC1 ||u||2 ROC2 ||u||∞ ROC∞

No mesh perturbation
6 0.51 0.247E-03 1.68 0.492E-03 1.51 0.355E-02 0.86
7 2.55 0.752E-04 1.72 0.174E-03 1.50 0.176E-02 1.01
8 13.44 0.221E-04 1.76 0.614E-04 1.50 0.881E-03 1.00
9 81.02 0.638E-05 1.79 0.217E-04 1.50 0.442E-03 1.00

10% mesh perturbation
6 0.55 0.253E-03 1.70 0.501E-03 1.51 0.396E-02 0.88
7 2.80 0.765E-04 1.72 0.178E-03 1.49 0.221E-02 0.84
8 14.91 0.225E-04 1.77 0.626E-04 1.51 0.102E-02 1.11
9 88.99 0.645E-05 1.80 0.220E-04 1.51 0.519E-03 0.98

25% mesh perturbation
6 0.56 0.267E-03 1.69 0.539E-03 1.51 0.547E-02 0.72
7 2.73 0.804E-04 1.73 0.192E-03 1.49 0.304E-02 0.85
8 14.44 0.237E-04 1.77 0.675E-04 1.51 0.210E-02 0.53
9 90.36 0.680E-05 1.80 0.237E-04 1.51 0.716E-03 1.55

Table 3

Results for the algebraic Newton method with tolerance 10−9

Level CPU ||u||1 ROC1 ||u||2 ROC2 ||u||∞ ROC∞

No mesh perturbation
6 0.42 0.258E-03 1.69 0.570E-03 1.50 0.500E-02 0.80
7 3.36 0.759E-04 1.76 0.193E-03 1.56 0.249E-02 1.00
8 26.69 0.211E-04 1.85 0.648E-04 1.58 0.127E-02 0.98
9 215.62 0.609E-05 1.80 0.229E-04 1.50 0.654E-03 0.96

10% mesh perturbation
6 0.48 0.266E-03 1.71 0.588E-03 1.52 0.613E-02 0.77
7 3.77 0.777E-04 1.78 0.199E-03 1.56 0.296E-02 1.05
8 30.22 0.214E-04 1.86 0.658E-04 1.59 0.149E-02 0.99
9 243.15 0.617E-05 1.79 0.232E-04 1.50 0.729E-03 1.04

25% mesh perturbation
6 0.48 0.283E-03 1.68 0.632E-03 1.52 0.815E-02 0.82
7 3.78 0.823E-04 1.78 0.215E-03 1.55 0.399E-02 1.03
8 30.13 0.224E-04 1.87 0.704E-04 1.61 0.198E-02 1.01
9 240.69 0.650E-05 1.79 0.248E-04 1.50 0.942E-03 1.07

Table 4

Results for the brute force method with two line segment interface approximation

4.6. Brute force method. In Table 4 one can see the results for brute force
redistancing where each quadrilateral has been subdivided into two triangles. From
there straight line segments were constructed by taking the zero distance points on
the triangle edges. Also here as expected the accuracy is virtually independent of
grid distortion. As for the increase in time it is obvious that this method scales quite
unfavorably.

9

5. Conclusions. From the tables it can clearly be seen that the fast marching
method outperforms all other methods with respect to speed, accuracy and robustness.
It is also notable that the second order method is only marginally more expensive than
the first order method and actually produces the most accurate results of all. The
only drawback of the second order fast marching method is that we have to compute
and store arrays of the first derivatives causing some increase in memory consumption.

The fast sweeping method proved both slower than the fast marching method and
also quite unstable for highly perturbed grids. It is possible that these deficiencies
could be overcome by more precise definitions of the sweeping order, but as it stands
now this method is not competitive in a general context.

The algebraic Newton method is limited by the fact that it requires an approxi-
mate distance function for it to work. It is not possible to use the algorithm with a
simple step function as initial distance field. The choice of an approximate distance
function therefore influences the end results and requires careful tuning of the Newton
scheme. For the considered benchmark the timings were a factor of ten slower than
for the fast marching method, but this could vary somewhat depending on conver-
gence criteria, the maximum number of allowed iterations and the choice of relaxation
parameter.

Finally, redistancing via brute force does produce consistently good results for
general grids but the timings scale unfavorably for this method to be generally in-
teresting. The method could possibly prove useful to redistance a limited number of
cells, such as the cells intersecting the initial zero distance curve. Brute force redis-
tancing also shares a deficiency with the algebraic Newton method, that it can only
produce the Euclidean distance, which will not be correct unless the domain is simply
connected.

REFERENCES

[1] D. L. Chopp, Some improvements of the fast marching method, SIAM J. Sci. Computing. Vol.
23 (2001), No. 1, pp. 230-244.

[2] P. A. Gremaud and C. M. Kuster, Computational study of fast methods for the Eikonal

equation, NCSU-CRSC Tech Report CRSC-TR04-15, submitted to SIAM J. Sc. Comp.
[3] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proceedings of Na-

tional Academy of Sciences, Vol. 95 (1998), No. 15, pp. 8431-8435.
[4] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Review Vol. 46

(2004), No. 2, pp. 329-345.
[5] R. Sedgewick, Algorithms, 2nd Ed., Addison-Wesley, 1988.
[6] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceed-

ings of National Academy of Sciences, Vol. 93 (1996), No. 4, pp. 1591-1595.
[7] J. A. Sethian, Level set methods and fast marching methods, Cambridge University Press,

1999.
[8] J. A. Sethian and A. Vladimirsky, Fast methods for the Eikonal and related Hamilton-Jacobi

equations on unstructured meshes, Proceedings of National Academy of Sciences, Vol. 97
(2000), No. 11, pp. 5699-5703.

[9] A. Spira and R. Kimmel, An efficient solution to the Eikonal equation on parametric mani-

folds, Interfaces and Free Boundaries, Volume 6, Issue 3, 2004, pp: 315-327.
[10] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to

incompressible two-phase flow J. Comp. Phys., 94, pp. 146-159 (1994).
[11] M. Sussman and E. Fatemi, An efficient, interface preserving level set re-distancing algorithm

and its application to interfacial incompressible fluid flow SIAM J. Sci. Comput., Vol. 20,
No. 4, pp. 1165-1191 (1999).

[12] Y. R. Tsai, Rapid and accurate computation of distance function using grids, UCLA CAM
Report 00-36, 2000.

[13] Y. R. Tsai, H.-K. Zhao, and S. Osher, Fast sweeping algorithms for a class of Hamilton-

Jacobi equations, UCLA CAM Report 01-27, 2001.

10

