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1 Introduction introduced a class of numerical methods for the treatment
of DDEs based on the well-known Runge-Kutta-Fehlberg
Delay differential equations (DDEs) have a wide range ofmethods. The retarded argument is approximated by an
applications in science and engineering. They arise irappropriate Hermite interpolation. The same methods are
models where the rate of change of process is not onlysed by Arndt [2] with a different step size control
determined by its present state, but also by a certain pagnechanism. Bellen and Zennaro [4] developed a class of
state. As for instance, the natural delay in the populatiornumerical methods to approximate the solution of DDEs.
responding to overcrowding. Many examples of DDEs These methods are based on implicit Runge-Kutta
from practice can be found in Driver [7]. We consider the methods. Paul and Baker [19] used explicit Runge-Kutta

following initial-value problem for DDEs, method for the numerical solution of singular DDEs.
Torelli and Vermiglio [20] considered continuous
y(X) = f(xy(x),y(a(x))), a<x<b, (1) numerical methods for differential equations with several
y(X) = g(x), v<x<a (2) constant delays. These methods are based on continuous

quadrature rules. Hayashi [10] used continuous
Here f, a andg denote given functions wittr (x) < x for Runge-Kutta methods for the numerical solutions of
X > a, the functiona is usually called the delay or lag retarded and neutral DDEs. Engelborghs et al. [6]
function andy is unknown solution foxx > a. Also, the ~ Presented collocation methods for the computation of
function f and the initial functiorg satisfy the following ~ Periodic solution of DDEs. Hu and Cahlon [12]

conditions: considered the numerical solution of initial-value
discrete-delay systems.
H1: The Lipschitz condition holds: The most obvious of the above methods for solving
problem (1) numerically aref-methods given in the
If(xy1,z1) — F(X,Y2,2)| < L1fy1 —yo| +La|za — Z€|37) following form
whereL; andL; are Lipschitz constants. Vo+1=Yn+h[(1—6)fn+0fr1], n=0,1,...,N—-1
H2: For any y € C!lv,b, the mapping (4)
x— f(X,y(x),y(a(x))) is continuous. where 8 is a parameter set to be<06 < 1, N is the

. number of nodedy is the uniform step length ang is an
Under the conditionsll andH2, the problem (1, 2) has a approximation to the exact solutioy(x,) at the mesh

unigue solution Driver (see [7]). ointx, = a-+ nh. Furthermore,
Many methods have been proposed for the numericaP
approximation of problem (1, 2). Oberle and Pesch [18] fn = (X, Yn, Y(O (%n))) (5)
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where yn(X) = g(x) for x < a and yp(x) with x > a is In order to determine the coefficients, a1 and ap, we
defined by piecewise linear interpolation, i.e. rewrite (8) in the exact form
i) = e =X Y1) = Y(%n) +haof (%, yOa), y(a (%))
~ T h K + a1 f (X1, Y041), V(@ (%n11))
XX + 0T (ni2. Y0012, (@i 2)))]
+7yk+17 for XkSXSXk+1; k:0717 2 42, Y(Xn+2),Y n+2
h
(6) Ft(Xnt2)-

In general the9-methods described by (4), (6) and (5) are e expand the left and right sides of (10) in the Taylor
of first order and they are at most of second orderffor geries at the poiNntn, 1, equate the coefficients up to the
set to equal G. The stability of 8-methods has been thirg order termsO(h?) and solving the resulting system

considered with respect to the following linear DDEs of equations, we obtain

Y/(X) = Ay(X) + puy(x—1), x>0 e 2 _2 __ 1

0= 75 al_ ) az__i (11)
y(X) = 9(x), —T<x<0 (7) 12 3 12
and ,

where A and u are complex numbers and > 0. It is h @
known, see Al-Mutib [1], that under the following two t0ni1) = 57 (8) (12)
conditions

wherex, < & < xpy2. Substituting the alpha coefficients

1. g(x) is continuous from (11) into (8), we obtain

2. P-stabilit < —RgA), A
Ik ) Yn+1=Yn+ h [5fn+8fni1 — fui2] (13)
the solutiony(x) of linear DDEs (7) tends to zero &sends 12
to infinity. The adaptation of-methods has already been Here, and in the following
considered in the literature, Calvo and Grande [5], Liu and
Spijker [16], In't Hout and Spijker [13], Guglielmi [8] and Y'(X)=g(x) for x<a
Van Den Heuvel [21] and [22].

Our work aims to extend the curreBtmethods to be
of third order. Moreover, as these methods depend on a(y) — By, + Bryy. 1
free parameter, we determine the range of the free hiB,f f f - k=01
parameter which guarantees the stability of these +h[Befk+ Bafir], for e <x<Xei1; k=0, &15)
methods. The paper is organized as follows: In the nex . .
Section, we derive our third order methods for solvingtln or_derto dgtermme the coefficierfts, £y, B> andfss, we
DDEs. Section 3 is devoted to the investigation therewnte (15) in the exact form
stability of the methods and the determination of the Y(X) = Boy(X«) + Bry(Xic+1)
stability regions. In Section 4, we determine the
convergence factor of the present methods. The proof of 1B f (%6 Y04, Y(@ (X)) (16)
convergence of the present methods is given in Section 5. + Baf (et 1, Y1), Y00 (1)) (Xt 1)

Finarllly(,j in Sedction E we test anmericaIIy_our ext.ehndehd Similarly, we expand the left and right sides of (16) with
methods and make numerical comparison With theryy6r series at point. 1 and equate the coefficients up to

andy"(x) with x > ais defined by

§-methods. the terms of second ord€(h?). We obtain the resulting
system of equations
2 Extended one-step third-order methods PotPri=1
Bo—B2—PBs=—05(x) (17)
In this section, we extend the work of Usmani and Bo—20B2 = 62(x)
Agarwal [23], Jacques [14] and Kondrat and Jacques [151Nh
to derive the present methods. We start with the following /€€ 1
discretization for the numerical solution of (1) o(x) = H(x—xk+1) (18)
Ynt1=Yn The solution of the above system (17) is
+h[aofn+alfn+1+a2fn+2], n=01...,.N—1 Bo=1-P1
(8) 1 )
where B = 5(1_ Br— 6%(x)) (19)

friz = f(ni2, ni2, V(A (Xni2))) ) Ps= %(52()() +26(x) —P1+1)
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and
e (28%(x) +38%(x) + B — 1)y (n)

17 (20)

t(Xi1) =

where (1 is a free parameter andy < n < X1
Substituting from (19) into (15), we obtain

y'(%)

(1= B)Yi+ BrYs1
DB &)

(8% +25(x) = B+ 1) ficra] ,
for x<x<x1;, k=0,1,...

- (21)
+

Finally, from ( 21), the approximatiow, > is determined

in the form

. h
Yni2 = (1= B1)Yn+ Bryni1— 5 (Bfn+ (B —4) faid]
(22)

with a constant step siZe satisfying the constraint (23).
The characteristic polynomial associated with (24) takes
the form

Win(2) = [24—2X(8— B1) + X?(4— B1)] 2™
— [24+2X(4+ 1) + X2B1] 2"
—Y [10+ XB1 + (16— X(4— B1))z— 27|
=0, m=12...

(25)

It is clear that(X,Y) € S if and only if all roots of the
polynomialsW, are inside the unit disc fan=1,2,....
Let

P(2) := [24—2X(8— By) + X?(4— By)] 2™
— [24+2X(4+4 B) + X2B1)| 27,
Q(2) :=—Y [10+XB1+ (16— X (4— B1))z— 27]

and z" denotes the only nonzero root Bfz). It follows
from Rouche’s theorem, see Marden [17], that
(X,Y) € S if [Z] <1 and|P(2)| > |Q(z)| on the unit

(26)

Equations (13), (21) and (22) are the basis of the presentircle. Furthermore, on the unit circle we have

methods.

3 Stability definitions and results

The stability investigations are based on the linear

equation (7) and the concept Bfstability introduced by
Barwell [3]

Definition 1.1. (P-stability region) Given a numerical
method for solving (7), theP-stability region of the
method is the set S of the pairs
(X,Y), X =Ah andY = ph, such that the numerical
solution of (7) asymptotically vanishes for step-lengths
satisfying

h= (23)

T
m
with mis positive integer.

Definition 1.2. (P-stability) A numerical method for (7) is
said to beP-stable if

2R

where
R={(X,Y):Y < —=X}.

P(2)] > |(|24—2X(8— B1) +X?(4— B1)])
— (|24+2X(4+ 1) + X?Ba|) |
Q)| <[Y[(|210-+Xp1|
+ 16— X(4—B1)|+2).

Therefore,(X,Y) € S if the following set of inequalities
are satisfied

|(|24—2X(8~ 1)+ X*(4— By)|)
—(|24+2X(4+ 1)+ X?R))| > (28)
Y[ (]20+XBa| +[16—X(4—B1)| +2),

(27)

and
24+ 2X(4+ 1) +X?B1

24— 2X(8— 1) +X?(4—B1)
It can be seen thaX € Sy where Sy is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (29) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (29) is satisfied if
B1 € (—,2]. Moreover, theP-stability region for various
values of 31 € (—»,2] is determined by solving the
system of inequalities (28) and (29). Thus we establish
the following.

<1 (29)

Theorem 1. For the present methods, the region of P-

In order to solve the Problem (7), the present methods aretability satisfies the relation

written as follows

[24—2Ah(8— B1) + (AN)2(4— B1)] Yns1 =
[24+2Ah(4+ B1)
+ (AN)?B1] Yo + ph[(10+ AhB1)y(% — T)

+ (16—Ah(4—B1))y(Xnt1— T) — 2uhy(Xn 2 — T)]
(24)

SNR={(X,Y):|Y|< =X and|Y| < ¢(X)}
where
X2 —6X
7—X
X2 -2X+12
7—X

P(X) =

for X< -3
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for By =0.
Proof. The proof follows immediately from inequality
(28).

Theorem 2. For the present methods the region of

P-stability satisfy the relation
SNR={(X,Y):Y <—Xand|Y| < ¢(X)},

where
(2—By)X2-12X . -10
o) W@ mx LT
| @opeoax 10
22=X) 7 B’

for B1 € (0,2].
Proof. The proof follows immediately from inequality
(28).

Theorem 3. For the present methods the region of

P-stability satisfy the relation
S$NR={(xy):|Y| <X andY< ¢(X)}.

where
(BL—2)X?—12X . Bi+4
ipxin (%)
B (314-4)2_24
o(X) = B B’

2X2 — (1-2B1)X 424 _(B1+4>
w-xa-py X< g

for B1 € (—,0).

Proof. The proof follows immediately from inequality
(28).

The Fig. 1 shows the different regions of tHe-stability
with respect to different values .

4 Convergence factor for the present methods

N (Blﬁt‘l)zf;’

Y=-X
/ 40|

20+

___________ 220

40|

Fig. 1 TheP-stability region for3; parameter set equal te10, 2
and 0 (Top-Bottom).

whereyﬁ)1 is an initial approximation to the solutignat
j

Xn+1 andyfw)l, j > 1 are Picard iterations.
Now, we state and prove the following theorem.

In this section, we present the main result concerning the M _ _
convergence factor of the methods ( 13), (21) and (22) with heorem 4. If the sequence(y, ;} given by (30) is

B1 = 0. This case may be expressed in the form

Vi = yn+ 5[5+ 81 nen Y .Y (@ (601))

- f(xn+259|§114227yh(”(a<xn+2))) J = 17' B

V000 = yect 3 (1809 et (L4800,

for xc<x<x1; k=0,1,...

(30)

bounded by a constant C and the condition

—2R1+2,/RE+6R,

hL
< R,

(31)
Ri=4+3rf

Ro=r3+42r,45

is satisfied, whereitr, € (0,1] and L= max{Lj,L>}.
Then, the method (30) is convergent.
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Proof. From (21) with pB; = 0, when 5 Error estimate
a(Xn+1) € (% Xr1], k=0,1,...,n—1, we have
H We state and prove the error estimate for the methods (13),
_ N 52 (21) and (22). Our error estimate is given by the following
V(0 0052)) = Yie+ 5 [1— 8(01(%012)) i 32 theorem:
2
+ (140 (a(41)))* fira] Theorem 5. Let y, be obtained by the methods (13),
Moreover, ifa (Xni1) € (X, Xn11], We put (22) a_nd (22). Th(_an, at each mesh poipt we have the
following error estimate:
h
V(@) =yt 511 @baa)fe oy e = ly0) —yn| SCih® n=12...N  (40)

+(1+8(a (Xnr1)))? ]
and
YD (@) = Yot 5 [(L- 82(@(ns0)

(14 8(alar)))?F Oni s, Yol 1Y (@)
(34)
Sincea (Xnt1) — X0 < h, we leta(Xn+1) — X = r1h with
ri € (0,1]. Then, from (33) and (34) we obtain

Y9 (@ 004) Y (@ (nea))| =

h . )
2 (1 8(a(xr2))2 | (o2, Y 1, Y0 (@ (6142))
— 1001 Ye2.Y(0 ()
(35)
Using the Lipschitz condition, it follows that
- hLr? i
Y (@012 =Y (@0002))| € L (Yl ~ o
2—hLrg
(36)
Similarly, leta (Xn12) — Xn+1 = r2hwith rp € (0, 1], we get
- hL(14712)2 | (i
@)~y @) | < 5 i yma
(37)
From (37), it follows
(i hL -
y§1]+>2 _yn+2‘ < 2-hLe yr(1]JZl _yn+1‘ . (38)
Using (36), (37) and (38), we obtain
Vo <You| <Cly - ynia| =02 (39)
where
hL(16+4hL+hL(1+r2)?)

12(2—hLr2)

where G is independent of n and h.
Proof. Without loose of generality, we tak@; = O.

Subtracting (13) from (10) with the coefficients in (11),
we obtain

Y(Xnt1) = Yntr1 = Y(Xn) — ¥n
15 [5( (e y00). (@ ()
— (%, Y, Y'(0 (X0))))
+8(f (X1, Y(Xn11), Y(A (%n+1)))

- f(Xn+17Yn+1,yh(a(Xn+1))))
— (F(Xnr2,Y(Xns2), (A (Xn12)))
(

~ {02902, (%n12))))|
+t(Xn+1)

From the definition ofe, in (40) and the Lipschitz
condition (3), we obtain

(41)

h
€nt1 < €n+ — [5(L1en + Lo€q,)

12
+ 8(L1eni1+ Lo€g,, ;) (42)
+L1én2+ Loy, , )
+ [t(Xn41)]
where
e = V(@ () ~Y(@(x0))| (43)
and
éni2 = [Y(Xn12) = Yni2|- (44)

Form (15), the inequality (42) can be rewritten as follows

h
eni1<ent 5 [5(L1€n+ Lo€q,)

+ 8(L1ens1+L2eq,.,)
+L16ns2 + Lo€q,,,| +O(h?).

(45)

Now, we estimates the quantitieg,, €q,, ;, €a,,, aNd€n 2

The constantC is referred as the convergence factor. in (42). From (16) and (21) with the coefficient in (19), we

Thus, the iterative process (30) is converger@ ¥ 1, or

if hL satisfies the condition (31). This completes proof of

the theorem.

Remarkin the same manner, one can determine the

convergence factor for different valuesfgf

obtain
€ < &+ 01(%n) (L16x + L€, )
+02(%n) (L1611 + Lo€gy, )

+ [t (1)1
for xx < o (%) <xkr1; k=0,1,...

(46)
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where h

91(x) = 5(1-8%(a(x))) (@7
and h

%00 = 5(1+ 5(a(x)))%. (48)
Let us consider

En = otien X
and
Ea, = Orgka%eak.

Then (46) with (20) leads to the following estimation

Eanﬂ- < En+gl(xn+j)(L1En+L2Ean)

+02(Xn+j) (L1Eny1 + LoEq,.,) (49)
+0(h%; j=0,1,2
and
Eni2 < En+20(L1Eni1+ LoEq,.,) +O(®),  (50)

where .
Enio= max &
27 cksni2
Assume thah is sufficiently small to satisfg; (X)L, < 1
andgz(x)Lz < 1. Using (49), we rewrité&,, ; in terms of
En.j, for j =0,1, as follows

Eq, < Wlxn) (G4 (%)En + G2 (%) LiEns1) + O(h®) (51)

and
1
E, .. < E,+ Enr1)+0O(h%), (52
it < o) (95(%0)En+G6(Xn)Eny1) +O(h°), (52)
where

93(X) = 1—0g1(X)L2 — G2(x+h)L2
+01(X)g2(X+ h)L3 — g1 (x+ h)g2 (X)L3,
94(X) = 1+ g1(X)L1 — G2(Xx+h)L2
—01(X)g2(x+h)L1Ls +g2(x)L2
+01(x+h)gz2(x)L1Lo,
O5(X) = 1—g1(X)L2 + g1 (x+h) (L1 +L2),
O6(X) = G2(x+h)L1 —g1(X)g2(x+h)Lil>
—|—gl(X—|— h)gz(X)Lle.

(53)

Substituting (51) and (52) into (49) fgr= 2, we get

Eonio < (14+01(Xn12)L1)En +092(Xn2)L1Enta
Lo

- 03(Xn)

[94(Xn) 91 (Xn+2) En

+05(Xn)92(¥n12) En (54)

+02(%n) 91 (%n4-2) L1Ent1
+ 06(%n) G2 (Xn2) Ent1] + O(h®),

and

Eni2 <En+2h L1Ent1

2hL (55)
+ =2 [gs(%n)En + G6(%n)Enta] + O(h%).
g3(Xn)
Using (49-52) and (42), we obtain
Ent1 < (14 hg1(Xn))En+hG2(%)Eny1 + Bh',  (56)

whereB is a nonnegative constant and tpeahdd, are
defined as follows

) 1
G1(x) = 7 [6La+ Lo+ LaLogr (x-+21)

[(5+ gl(x+ Zh) L2)94(X) Lo
+(8+ 2hlL; + 92(X+ Zh) Lz)g5(X) Lz] ,

~ 1
gz(X) = 1—2 [8L1 + 2hL§ + gz(X—‘r Zh) L1L2]

1
1293 (X)

1
+ 5+ g1 (x+ 2h)L3)ga (X)L
1205 [(5+a( )L3)g2(X)La
+(8+2hLy)gs(X)L2] .
(57)
Thus, (56) can be rewritten as
1+ hgl(xn) 4

Enp1 < ~ + — h™. 58
n+1 > 1—hgz(Xn) n 1_hgz(Xn) ( )

Assume thah is sufficiently small to ensurbgz(x) < 1.
Then, there exists two positive constamtsandw, such

that R
14-hg1(xn)

1— (%) <1+hw, 59)
h74 < h4W2
1-h@2(xn) — '
Then,
Eni1 < (1+hwy)En + Bwoh?, (60)

Applying Henrici Lemma [11] to the inequality (60) yields

3
En < Eot T woB(e"M _ 1). (61)
W1
SinceEg = 0, then
h3 h
En < —woB(e"™ —1). (62)
Wy

This complete the proof of the Theorem 5.

6 Numerical tests

In this section, we validate our methods (13), (21) and

(22) numerically for different values of3;. The
comparison with6-methods for different values d is
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6-methods
considered as well. We restrict our study to equidistant NYl(X) \ zz(x) \
steps size time. N E R E R
Example 1 10 1.12E-02 8.93E-03

20 2.80E-03 2.00 2.23E-03 2.00

1« X X 40 7.00E-04 2.00 5.57E-04 2.00
y(X) = zezy(z)+ zy(x),0<x<1 80 1.75E-04 2.00 1.39E-04 2.00
27202 (63) 160 4.37E-05 2.00 3.48E-05 2.00
y(0)=1 Extended one-step methods
X X
The exact solution ig(x) = €*. N ENyl( ) RN ERJ/Z( ) RN
10 4.00E-06 3.49E-07
0-methods 20 5.00E-07 3.00 4.33E-08 3.01
6-0 0-05 0-1 40 6.26E-08 3.00 5.39E-09 3.01
N EN RN N RN EN RN 80 7.80E-09 3.00 6.73E-10 3.00
10  5.83E-02 6.93E-04 6.28E-02 160 9.74E-10 3.00 8.40E-11 3.00

20 207802 097 17304 200 30802 103 0.8 LEGTREEE A R O ol
40 1.50E-02 0.98 4.33E-05 200 1.52E-02 1.01 0.5 for Example 2.
80 7.52E-03 0.99 1.08E-05 2.00 7.59E-03 1.01
160 3.77E-03 0.99 2.70E-06 2.00 3.78E-03 1.00
Extended one-step methods

=0 =1
N ENﬁ RN EN g RN P-stability region has been investigated for different
10 5.37E-06 1.07E-05 values of parametep; € (—«,2]. We showed that the
20 6.63E-07 3.02 1.32E-06 3.01 larger P-stability region occurs foff = 0. Moreover, the
40 8.24E-08 3.01 1.65E-07 3.01 methods arelL-stable for solving ODEs for the case
80 1.03E-08 3.00 2.05E-08 3.00 corresponding t@ = 0. The effectiveness of our methods

160 1.28E-09 3.00 2.56E-09 3.00 is clearly indicated with the numerical results. Our

Table 1 Comparison of Extended one-step method with research perspective is to extend the current study for
parametef set to equal 0 and 1 with th@-methods withd set  jntegral-deferential equations.

to equal 0, 6 and 1 for Example 1.
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