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1 Introduction

Delay differential equations (DDEs) have a wide range of
applications in science and engineering. They arise in
models where the rate of change of process is not only
determined by its present state, but also by a certain past
state. As for instance, the natural delay in the population
responding to overcrowding. Many examples of DDEs
from practice can be found in Driver [7]. We consider the
following initial-value problem for DDEs,

y′(x) = f (x,y(x),y(α(x))), a≤ x≤ b, (1)

y(x) = g(x), ν ≤ x≤ a. (2)

Here f , α andg denote given functions withα(x)≤ x for
x ≥ a, the functionα is usually called the delay or lag
function andy is unknown solution forx > a. Also, the
function f and the initial functiong satisfy the following
conditions:

H1: The Lipschitz condition holds:

| f (x,y1,z1)− f (x,y2,z2)| ≤ L1 |y1−y2|+L2 |z1−z2| ,
(3)

whereL1 andL2 are Lipschitz constants.
H2: For any y ∈ C1 [ν ,b], the mapping

x−→ f (x,y(x),y(α(x))) is continuous.

Under the conditionsH1 andH2, the problem (1, 2) has a
unique solution Driver (see [7]).

Many methods have been proposed for the numerical
approximation of problem (1, 2). Oberle and Pesch [18]

introduced a class of numerical methods for the treatment
of DDEs based on the well-known Runge-Kutta-Fehlberg
methods. The retarded argument is approximated by an
appropriate Hermite interpolation. The same methods are
used by Arndt [2] with a different step size control
mechanism. Bellen and Zennaro [4] developed a class of
numerical methods to approximate the solution of DDEs.
These methods are based on implicit Runge-Kutta
methods. Paul and Baker [19] used explicit Runge-Kutta
method for the numerical solution of singular DDEs.
Torelli and Vermiglio [20] considered continuous
numerical methods for differential equations with several
constant delays. These methods are based on continuous
quadrature rules. Hayashi [10] used continuous
Runge-Kutta methods for the numerical solutions of
retarded and neutral DDEs. Engelborghs et al. [6]
presented collocation methods for the computation of
periodic solution of DDEs. Hu and Cahlon [12]
considered the numerical solution of initial-value
discrete-delay systems.

The most obvious of the above methods for solving
problem (1) numerically areθ -methods given in the
following form

yn+1 = yn+h[(1−θ) fn+θ fn+1] , n= 0,1, . . . ,N−1.
(4)

where θ is a parameter set to be 0≤ θ ≤ 1, N is the
number of nodes,h is the uniform step length andyn is an
approximation to the exact solutiony(xn) at the mesh
point xn = a+nh. Furthermore,

fn = f (xn,yn,y(α(xn))) (5)
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where yh(x) = g(x) for x ≤ a and yh(x) with x > a is
defined by piecewise linear interpolation, i.e.

yh(x) =
xk+1−x

h
yk

+
x−xk

h
yk+1, for xk ≤ x≤ xk+1; k= 0,1, . . .

(6)
In general theθ -methods described by (4), (6) and (5) are
of first order and they are at most of second order forθ
set to equal 0.5. The stability ofθ -methods has been
considered with respect to the following linear DDEs

y′(x) = λy(x)+µy(x− τ), x≥ 0

y(x) = g(x), −τ ≤ x≤ 0
(7)

where λ and µ are complex numbers andτ > 0. It is
known, see Al-Mutib [1], that under the following two
conditions

1. g(x) is continuous
2. P-stability |µ |<−Re(λ ),

the solutiony(x) of linear DDEs (7) tends to zero asx tends
to infinity. The adaptation ofθ -methods has already been
considered in the literature, Calvo and Grande [5], Liu and
Spijker [16], In’t Hout and Spijker [13], Guglielmi [8] and
Van Den Heuvel [21] and [22].

Our work aims to extend the currentθ -methods to be
of third order. Moreover, as these methods depend on a
free parameter, we determine the range of the free
parameter which guarantees the stability of these
methods. The paper is organized as follows: In the next
Section, we derive our third order methods for solving
DDEs. Section 3 is devoted to the investigation the
stability of the methods and the determination of the
stability regions. In Section 4, we determine the
convergence factor of the present methods. The proof of
convergence of the present methods is given in Section 5.
Finally, in Section 6, we test numerically our extended
methods and make numerical comparison with the
θ -methods.

2 Extended one-step third-order methods

In this section, we extend the work of Usmani and
Agarwal [23], Jacques [14] and Kondrat and Jacques [15]
to derive the present methods. We start with the following
discretization for the numerical solution of (1)

yn+1 = yn

+h
[

α0 fn+α1 fn+1+α2 f̂n+2
]

, n= 0,1, . . . ,N−1
(8)

where

f̂n+2 = f (xn+2, ŷn+2,yh(α(xn+2))) (9)

In order to determine the coefficientsα0,α1 and α2, we
rewrite (8) in the exact form

y(xn+1) = y(xn)+h[α0 f (xn,y(xn),y(α(xn)))

+α1 f (xn+1,y(xn+1),y(α(xn+1)))

+ α2 f (xn+2,y(xn+2),y(α(xn+2)))]

+ t(xn+1).

(10)

We expand the left and right sides of (10) in the Taylor
series at the pointxn+1, equate the coefficients up to the
third order termsO(h3) and solving the resulting system
of equations, we obtain

α0 =
5
12

, α1 =
2
3
, α2 =−

1
12

(11)

and

t(xn+1) =
h4

24
y(4)(ξ ) (12)

wherexn < ξ < xn+2. Substituting the alpha coefficients
from (11) into (8), we obtain

yn+1 = yn+
h
12

[

5 fn+8 fn+1− f̂n+2
]

(13)

Here, and in the following

yh(x) = g(x) for x≤ a

andyh(x) with x> a is defined by

yh(x) = β0yk+β1yk+1

+h[β2 fk+β3 fk+1] , for xk < x≤ xk+1; k= 0,1, . . .
(15)

In order to determine the coefficientsβ0, β1, β2 andβ3, we
rewrite (15) in the exact form

y(x) = β0y(xk)+β1y(xk+1)

+h[β2 f (xk,y(xk),y(α(xk)))

+ β3 f (xk+1,y(xk+1),y(α(xk+1)))]+ t(xk+1)

(16)

Similarly, we expand the left and right sides of (16) with
Taylor series at pointxk+1 and equate the coefficients up to
the terms of second orderO(h2). We obtain the resulting
system of equations











β0+β1 = 1

β0−β2−β3 =−δ (x)
β0−2β2 = δ 2(x)

(17)

where

δ (x) =
1
h
(x−xk+1) (18)

The solution of the above system (17) is






















β0 = 1−β1

β2 =
1
2
(1−β1−δ 2(x))

β3 =
1
2
(δ 2(x)+2δ (x)−β1+1)

(19)
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and

t(xk+1) =
h3

12
(2δ 3(x)+3δ 2(x)+β1−1)y(3)(η) (20)

where β1 is a free parameter andxk < η < xk+1.
Substituting from (19) into (15), we obtain

yh(x) = (1−β1)yk+β1yk+1

+
h
2

[

(1−β1−δ 2(x)) fk

+(δ 2(x)+2δ (x)−β1+1) fk+1
]

,

for xk < x≤ xk+1; k= 0,1, . . .

(21)

Finally, from ( 21), the approximation ˆyn+2 is determined
in the form

ŷn+2 = (1−β1)yn+β1yn+1−
h
2
[β1 fn+(β1−4) fn+1]

(22)
Equations (13), (21) and (22) are the basis of the present
methods.

3 Stability definitions and results

The stability investigations are based on the linear
equation (7) and the concept ofP-stability introduced by
Barwell [3]
Definition 1.1. (P-stability region) Given a numerical

method for solving (7), theP-stability region of the
method is the set SP of the pairs
(X,Y), X = λh and Y = µh, such that the numerical
solution of (7) asymptotically vanishes for step-lengthsh
satisfying

h=
τ
m

(23)

with m is positive integer.

Definition 1.2. (P-stability) A numerical method for (7) is
said to beP-stable if

SP ⊇ R,

where
R= {(X,Y) : Y <−X} .

In order to solve the Problem (7), the present methods are
written as follows

[

24−2λh(8−β1)+(λh)2(4−β1)
]

yn+1 =

[24+2λh(4+β1)

+ (λh)2β1
]

yn+µh[(10+λhβ1)y(xn− τ)
+ (16−λh(4−β1))y(xn+1− τ)−2µhy(xn+2− τ)]

(24)

with a constant step sizeh satisfying the constraint (23).
The characteristic polynomial associated with (24) takes
the form

Wm(z) =
[

24−2X(8−β1)+X2(4−β1)
]

zm+1

−
[

24+2X(4+β1)+X2β1
]

zm

−Y
[

10+Xβ1+(16−X(4−β1))z−2z2]

= 0, m= 1,2, . . .

(25)

It is clear that(X,Y) ∈ SP if and only if all roots of the
polynomialsWm are inside the unit disc form= 1,2, . . ..
Let

P(z) :=
[

24−2X(8−β1)+X2(4−β1)
]

zm+1

−
[

24+2X(4+β1)+X2β1)
]

zm,

Q(z) :=−Y
[

10+Xβ1+(16−X(4−β1))z−2z2]
(26)

and z∗ denotes the only nonzero root ofP(z). It follows
from Rouche’s theorem, see Marden [17], that
(X,Y) ∈ SP if [z∗] < 1 and |P(z)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have

|P(z)| ≥
∣

∣

(∣

∣24−2X(8−β1)+X2(4−β1)
∣

∣

)

−
(∣

∣24+2X(4+β1)+X2β1
∣

∣

)∣

∣ ,

|Q(z)| ≤|Y|(|10+Xβ1|

+ |16−X(4−β1)|+2).

(27)

Therefore,(X,Y) ∈ SP if the following set of inequalities
are satisfied

∣

∣

(∣

∣24−2X(8−β1)+X2(4−β1)
∣

∣

)

−
(∣

∣24+2X(4+β1)+X2β1
∣

∣

)∣

∣≥

|Y|(|10+Xβ1|+ |16−X(4−β1)|+2) ,

(28)

and
∣

∣

∣

∣

24+2X(4+β1)+X2β1

24−2X(8−β1)+X2(4−β1)

∣

∣

∣

∣

< 1. (29)

It can be seen thatX ∈ SA where SA is the A-stability
region of the present methods for solving ordinary
differential equation if and only if (29) is satisfied, we
refer to Hairer et al. [9] for more details concerning the
A-stability concept. It is easy to see that (29) is satisfied if
β1 ∈ (−∞,2]. Moreover, theP-stability region for various
values of β1 ∈ (−∞,2] is determined by solving the
system of inequalities (28) and (29). Thus we establish
the following.

Theorem 1. For the present methods, the region of P-
stability satisfies the relation

SP∩R= {(X,Y) : |Y|<−X and |Y|< φ(X)}

where

φ(X) =















X2−6X
7−X

for X ≥−3

X2−2X+12
7−X

for X <−3
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for β1 = 0.
Proof. The proof follows immediately from inequality
(28).

Theorem 2. For the present methods the region of
P-stability satisfy the relation

SP∩R= {(X,Y) : Y <−Xand |Y|< φ(X)} ,

where

φ(X) =



















(2−β1)X2−12X
14− (2−β1)X

, if X ≥
−10
β1

,

(2−β1)X2−12X
2(2−X)

, if X <
−10
β1

,

for β1 ∈ (0,2].
Proof. The proof follows immediately from inequality
(28).

Theorem 3. For the present methods the region of
P-stability satisfy the relation

SP∩ R= {(x,y) : |Y|<−X andY< φ(X)},

where

φ(X)=































































(β1−2)X2−12X
(1−β1)X−14

, if X >−

(

β1+4
β1

)

−

√

(

β1+4
β1

)2

−
24
β1

,

2X2− (1−2β1)X+24
14−X(1−β1)

, if X <−

(

β1+4
β1

)

−

√

(

β1+4
β1

)2

−
24
β1

,

for β1 ∈ (−∞,0).
Proof. The proof follows immediately from inequality
(28).
The Fig. 1 shows the different regions of theP-stability
with respect to different values ofβ1.

4 Convergence factor for the present methods

In this section, we present the main result concerning the
convergence factor of the methods ( 13), (21) and (22) with
β1 = 0. This case may be expressed in the form

y( j+1)
n+1 = yn+

h
12

[

5 fn+8 f (xn+1,y
( j)
n+1,y

h( j)(α(xn+1)))

− f (xn+2, ŷ
( j)
n+2,y

h( j)(α(xn+2)))

]

j = 1, . . .

yh( j)(x) = yk+
h
2

[

(1−δ 2(x)) fk+(1+δ (x))2 fk+1
]

,

for xk < x≤ xk+1; k= 0,1, . . .
(30)

Fig. 1 TheP-stability region forβ1 parameter set equal to−10,2
and 0 (Top-Bottom).

wherey(0)n+1 is an initial approximation to the solutiony at

xn+1 andy( j)
n+1, j ≥ 1 are Picard iterations.

Now, we state and prove the following theorem.

Theorem 4. If the sequence{y( j)
n+1} given by (30) is

bounded by a constant C and the condition

hL<
−2R1+2

√

R2
1+6R2

R2

R1 = 4+3r2
1

R2 = r2
2+2r2+5

(31)

is satisfied, where r1, r2 ∈ (0,1] and L= max{L1,L2}.
Then, the method (30) is convergent.
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Proof. From (21) with β1 = 0, when
α(xn+1) ∈ (xk,xk+1], k= 0,1, . . . ,n−1, we have

yh(α(xn+1)) = yk+
h
2
[1−δ 2(α(xn+1)) fk

+(1+δ
(

α(xn+1)))
2 fk+1 ]

(32)

Moreover, ifα(xn+1) ∈ (xn,xn+1], we put

yh(α(xn+1)) = yn+
h
2
[ (1−δ 2(α(xn+1))) fn

+(1+δ (α(xn+1)))
2 fn+1 ]

(33)

and

yh( j)(α(xn+1)) = yn+
h
2

[

(1−δ 2(α(xn+1))) fn

+(1+δ (α(xn+1)))
2 f (xn+1,y

( j)
n+1,y

h( j)(α(xn+1)))
]

.

(34)
Sinceα(xn+1)− xn ≤ h, we let α(xn+1)− xn = r1h with
r1 ∈ (0,1]. Then, from (33) and (34) we obtain
∣

∣

∣
yh( j)(α(xn+1))−yh(α(xn+1))

∣

∣

∣
=

h
2
(1+δ (α(xn+1)))

2
∣

∣

∣
f (xn+1,y

( j)
n+1,y

h( j)(α(xn+1)))

− f (xn+1,yn+1,y
h(α(xn+1)))

∣

∣

∣
.

(35)
Using the Lipschitz condition, it follows that

∣

∣

∣
yh( j)(α(xn+1))−yh(α(xn+1))

∣

∣

∣
≤

hLr2
1

2−hLr2
1

∣

∣

∣
y( j)

n+1−yn+1

∣

∣

∣
.

(36)
Similarly, letα(xn+2)−xn+1 = r2h with r2 ∈ (0,1], we get

∣

∣

∣
yh( j)(α(xn+2))−yh(α(xn+2))

∣

∣

∣
≤

hL(1+ r2)
2

2−hLr2
1

∣

∣

∣
y( j)

n+1−yn+1

∣

∣

∣
.

(37)
From (37), it follows

∣

∣

∣
ŷ( j)

n+2−yn+2

∣

∣

∣
≤

4hL

2−hLr2
1

∣

∣

∣
y( j)

n+1−yn+1

∣

∣

∣
. (38)

Using (36), (37) and (38), we obtain
∣

∣

∣
y( j+1)

n+1 −yn+1

∣

∣

∣
≤C

∣

∣

∣
y( j)

n+1−yn+1

∣

∣

∣
, j = 0,1, . . . (39)

where

C=
hL

(

16+4hL+hL(1+ r2)
2
)

12(2−hLr2
1)

The constantC is referred as the convergence factor.
Thus, the iterative process (30) is convergent ifC < 1, or
if hL satisfies the condition (31). This completes proof of
the theorem.

Remark.In the same manner, one can determine the
convergence factor for different values ofβ1.

5 Error estimate

We state and prove the error estimate for the methods (13),
(21) and (22). Our error estimate is given by the following
theorem:

Theorem 5. Let yn be obtained by the methods (13),
(21) and (22). Then, at each mesh point xn, we have the
following error estimate:

en = |y(xn)−yn| ≤C1 h3, n= 1,2, . . . ,N (40)

where C1 is independent of n and h.
Proof. Without loose of generality, we takeβ1 = 0.
Subtracting (13) from (10) with the coefficients in (11),
we obtain

y(xn+1)−yn+1 = y(xn)−yn

+
h
12

[(5( f (xn,y(xn)),y(α(xn)))

− f (xn,yn,y
h(α(xn))))

+8( f (xn+1,y(xn+1),y(α(xn+1)))

− f (xn+1,yn+1,y
h(α(xn+1))))

− ( f (xn+2,y(xn+2),y(α(xn+2)))

− f (xn+2, ŷn+2,y
h(α(xn+2))))

]

+ t(xn+1)

(41)

From the definition ofen in (40) and the Lipschitz
condition (3), we obtain

en+1 ≤ en+
h
12

[5(L1en+L2eαn)

+ 8(L1en+1+L2eαn+1)

+L1ên+2+L2êαn+2

]

+ |t(xn+1)|

(42)

where
eαn =

∣

∣

∣
y(α(xn))−yh(α(xn))

∣

∣

∣
(43)

and
ên+2 = |y(xn+2)− ŷn+2| . (44)

Form (15), the inequality (42) can be rewritten as follows

en+1 ≤ en+
h
12

[5(L1en+L2eαn)

+ 8(L1en+1+L2eαn+1)

+L1ên+2+L2eαn+2

]

+O(h4).

(45)

Now, we estimates the quantitieseαn, eαn+1, eαn+2 andên+2
in (42). From (16) and (21) with the coefficient in (19), we
obtain

eαn ≤ ek+g1(xn)(L1ek+L2eαk)

+g2(xn)(L1ek+1+L2eαk+1)

+ |t(xk+1)| ,

for xk < α(xn)≤ xk+1; k= 0,1, . . .

(46)
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where

g1(x) =
h
2
(1−δ 2(α(x))) (47)

and

g2(x) =
h
2
(1+δ (α(x)))2. (48)

Let us consider
En = max

0≤k≤n
ek

and
Eαn = max

0≤k≤n
eαk.

Then (46) with (20) leads to the following estimation

Eαn+ j ≤ En+g1(xn+ j)(L1En+L2Eαn)

+g2(xn+ j)(L1En+1+L2Eαn+1)

+O(h3); j = 0,1,2

(49)

and

Ên+2 ≤ En+2h(L1En+1+L2Eαn+1)+O(h3), (50)

where
Ên+2 = max

0≤k≤n+2
êk.

Assume thath is sufficiently small to satisfyg1(x)L2 < 1
andg2(x)L2 < 1. Using (49), we rewriteEαn+ j in terms of
En+ j , for j = 0,1, as follows

Eαn ≤
1

g3(xn)
(g4(xn)En+g2(xn)L1En+1)+O(h3) (51)

and

Eαn+1 ≤
1

g3(xn)
(g5(xn)En+g6(xn)En+1)+O(h3), (52)

where

g3(x) = 1−g1(x)L2−g2(x+h)L2

+g1(x)g2(x+h)L2
2−g1(x+h)g2(x)L

2
2,

g4(x) = 1+g1(x)L1−g2(x+h)L2

−g1(x)g2(x+h)L1L2+g2(x)L2

+g1(x+h)g2(x)L1L2,

g5(x) = 1−g1(x)L2+g1(x+h)(L1+L2),

g6(x) = g2(x+h)L1−g1(x)g2(x+h)L1L2

+g1(x+h)g2(x)L1L2.

(53)

Substituting (51) and (52) into (49) forj = 2, we get

Eαn+2 ≤ (1+g1(xn+2)L1)En+g2(xn+2)L1En+1

+
L2

g3(xn)
[g4(xn)g1(xn+2)En

+g5(xn)g2(xn+2)En

+g2(xn)g1(xn+2)L1En+1

+ g6(xn)g2(xn+2)En+1]+O(h3),

(54)

and

Ên+2 ≤ En+2hL1En+1

+
2hL2

g3(xn)
[g5(xn)En + g6(xn)En+1]+O(h3).

(55)

Using (49-52) and (42), we obtain

En+1 ≤ (1+hĝ1(xn))En+hĝ2(xn)En+1+Bh4, (56)

whereB is a nonnegative constant and the ˆg1 and ĝ2 are
defined as follows

ĝ1(x) =
1
12

[6L1+L2+L1L2g1(x+2h)]

+
1

12g3(x)
[(5+g1(x+2h)L2)g4(x)L2

+(8+2hL1+g2(x+2h)L2)g5(x)L2] ,

ĝ2(x) =
1
12

[

8L1+2hL2
1+g2(x+2h)L1L2

]

+
1

12g3(x)

[

(5+g1(x+2h)L2
2)g2(x)L1

+(8+2hL1)g6(x)L2] .
(57)

Thus, (56) can be rewritten as

En+1 ≤
1+hĝ1(xn)

1−hĝ2(xn)
En+

B
1−hĝ2(xn)

h4. (58)

Assume thath is sufficiently small to ensurehĝ2(x) < 1.
Then, there exists two positive constantsw1 andw2 such
that

1+hĝ1(xn)

1−hĝ2(xn)
≤ 1+hw1,

h4

1−hĝ2(xn)
≤ h4w2.

(59)

Then,
En+1 ≤ (1+hw1)En+Bw2h4. (60)

Applying Henrici Lemma [11] to the inequality (60) yields

En ≤ E0+
h3

w1
w2B(enhw1 −1). (61)

SinceE0 = 0, then

En ≤
h3

w1
w2B(enhw1 −1). (62)

This complete the proof of the Theorem 5.

6 Numerical tests

In this section, we validate our methods (13), (21) and
(22) numerically for different values ofβ1. The
comparison withθ -methods for different values ofθ is
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considered as well. We restrict our study to equidistant
steps size time.
Example 1

y′(x) =
1
2

e
x
2 y(

x
2
)+

x
2

y(x), 0≤ x≤ 1

y(0) = 1
(63)

The exact solution isy(x) = ex.

θ -methods
θ = 0 θ = 0.5 θ = 1

N EN RN EN RN EN RN

10 5.83E-02 6.93E-04 6.28E-02
20 2.97E-02 0.97 1.73E-04 2.00 3.08E-02 1.03
40 1.50E-02 0.98 4.33E-05 2.00 1.52E-02 1.01
80 7.52E-03 0.99 1.08E-05 2.00 7.59E-03 1.01

160 3.77E-03 0.99 2.70E-06 2.00 3.78E-03 1.00
Extended one-step methods

β = 0 β = 1
N EN RN EN RN

10 5.37E-06 1.07E-05
20 6.63E-07 3.02 1.32E-06 3.01
40 8.24E-08 3.01 1.65E-07 3.01
80 1.03E-08 3.00 2.05E-08 3.00

160 1.28E-09 3.00 2.56E-09 3.00
Table 1 Comparison of Extended one-step method with
parameterβ set to equal 0 and 1 with theθ -methods withθ set
to equal 0, 0.5 and 1 for Example 1.

Example 2

y1′(x) = y1(x−1)+y2(x), x≥ 0

y2′(x) = y1(x)−y1(x−1)

y1(x) = ex, x≤ 0

y2(0) = 1−e−1

(64)

The exact solution is

y1(x) = ex, x≥ 0

y2(x) = 1−ex−1, x≥ 0
(65)

The tablesTable 1 andTable 2 show the error reduction,
EN, with respect to time step size refinement,h = 1/N,
and the rate other of convergence,RN, for theθ -methods
as well as our extended step-one methods. All examples
confirm the theoretical studies introduced in this paper,
mainly the third order of convergence of our extended
one-step methods.

7 Conclusion and perspective

We have introduced a new numerical methods of third
order for solving delay differential equations. The

θ -methods
y1(x) y2(x)

N EN RN EN RN

10 1.12E-02 8.93E-03
20 2.80E-03 2.00 2.23E-03 2.00
40 7.00E-04 2.00 5.57E-04 2.00
80 1.75E-04 2.00 1.39E-04 2.00

160 4.37E-05 2.00 3.48E-05 2.00
Extended one-step methods

y1(x) y2(x)
N EN RN EN RN

10 4.00E-06 3.49E-07
20 5.00E-07 3.00 4.33E-08 3.01
40 6.26E-08 3.00 5.39E-09 3.01
80 7.80E-09 3.00 6.73E-10 3.00

160 9.74E-10 3.00 8.40E-11 3.00
Table 2 Comparison of Extended one-step method with
parameterβ set to equal 1 with theθ -methods withθ set to equal
0.5 for Example 2.

P-stability region has been investigated for different
values of parameterβ1 ∈ (−∞,2]. We showed that the
largerP-stability region occurs forβ = 0. Moreover, the
methods areL-stable for solving ODEs for the case
corresponding toβ = 0. The effectiveness of our methods
is clearly indicated with the numerical results. Our
research perspective is to extend the current study for
integral-deferential equations.
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