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Introduction

Why the small scales attract Chemical Engineers?

Ø An important method of process intensification
Ø Chemical processing advantage is due to increased 

heat and mass transfer 

Ø Better mass transfer leads to reduced process volume 
and higher reaction rate 

Ø Precise control of high intensity and hazardous 
reactions 

Ø Scale up is possible by replication



Institute of Reaction Engineering
&

Institute for Applied Mathematics
First INDO-GERMAN Conference, Trier, 08-10 Sept. 04

University of Dortmund

Introduction

Slug Flow
Ø Uniform slug size

Ø Enhanced mass transfer 

Ø High throughputs creating smaller slug size 

Ø Easy post reaction separation by gravity

RecirculationsRecirculations Diffusion

Diffusion

Slug Flow

Parallel Flow
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Objective

“To obtain the fundamental understanding of  
hydrodynamics to design an appropriate reactor 
concept exhibiting best possible conversion and 
selectivity for a given liquid-liquid reaction by 
experimentation and computational techniques”
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Problems and Important Parameters
Problems
? Experimental slug flow stability
? Hydrodynamics 
? Selectivity problem
? Internal circulations
? Presence of film 

Important Parameters
ØPressure drop
ØFlow patterns
ØCirculation time
ØSlug dimensions (Length and Diameter)
ØMass transfer coefficient
ØFilm thickness
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Single Phase CFD
Problem Details and Solver
Ø Operating conditions of Dummann et al. (2003)* and our 

laboratory experiments
Ø Retrieved the geometries from experimental snapshots 
Ø Finite Element Package, FEATFLOW was used

Assumptions
Ø Front and back interface of the slug is same
Ø Incompressible flow

* Dummann et al., The capillary microreactor: the new concept of intensification of heat and mass
transfer in liquid-liquid reactions, Catalysis Today, 79-80, 433-439, 2003.
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Wall Film

Ø Film thickness (Bretherton law),

Ø The slug velocity and average flow velocity

Ø No stagnant film
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Boundary Conditions

Phase 1 Phase 2

Moving Wall, Vwall = Vav

Stationay 
Interface, 
Vint = 0

Moving Wall, Vwall = Vav

Stationay 
Interface, 
Vint = 0

Moving Wall, Vwall = Vs - Vav

Interface,
Vin = Vs=0

h Film Flow,
Vs - Vf

Without Film With Film

Phase 1

Phase 2
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Velocity (x-directional) Profile

Bidirectional velocity profile (phase 1, L = 2.379 mm, D = 0.75 mm)
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Internal Circulations

Upstream Downstream

Fig: Liquid-liquid slug flow through capillary millireactor

Back 
Interface Front 

Interface

r0
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Film Region

Fig: Phase 1 (Without Film) Fig: Phase 2 (With Film)
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Recirculations
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Internal Circulations

Fig: Phase 1 Fig: Phase 2
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Recirculation Time

Ø Important parameter for 
Mass Transfer 
Mixing

Ø Time Required for liquid particles to move from one 
end of the slug to the other end

Ø Recirculation Time = Volume/Volumetric throughputs
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Recirculation Time
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Particle Tracing

Ø Method of visualization
Ø Converts Eulerian description of a flow into 

Langragian description with selected particle
Ø In-house developed algorithm, GMVPT
Ø The new position of the particle from initial position is

Ø Inserted tracers with constant frequency to simulate 
the constant stream of particle

. PZ Z tυ= +∆%
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Particle Tracing

Phase 1 Phase 2
L = 2.379 mm L = 1.12 mm
D = 0.75 mm D = 0.75 mm
r = 0.2 mm r = 0.25 mm
Vav = 5.64 mm/s Vav = 5.64 mm/s

2 particles
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Phase 1 Phase 2
L = 2.379 mm L = 1.12 mm
D = 0.75 mm D = 0.75 mm
Vav = 5.64 mm/s Vav = 11.28 mm/s

10, 000 Particles

Particle Tracing
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Two Phase CFD (VOF)

Ø VOF is implicit volume tracking technique applied to 
fixed mesh

Ø Single set of momentum equation is shared by the 
fluids 

Ø The different fluids are marked either by massless 
particles or by an indicator function

Ø Generally applied where the topology of interface is 
of interest

Ø Stratified flows, free surface flows, motion of large 
bubbles in liquid, etc. 
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VOF Model

Each fluid is governed by incompressible Navier-Stokes equation 

The indicator function is given by 

Assumption: 
• No surface tension implemented 
• No mass transfer between two liquids
• Isothermal condition

In-house developed open source code, FEATFLOW
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Slug Flow
Ø Physical Experiments

Ø Numerical Experiments
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Two-phase Results

Ø Y-Junction Flow
Experimental

Ø Y-Junction Flow 
CFD Simulation
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Conclusion

Ø Bidirectional velocity profile was observed in each 
slug (L>D)

Ø Circulation time decreases with increase in flow 
velocity

Ø Film has no significant effect on circulation time
Ø Particle tracing shows well qualitative prediction of 

internal circulations

Ø VOF-CFD methodology can capture slug flow 
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Path Forward

Ø Experiments for internal circulations 
PIV measurements

Ø Use surface tension in VOF methodology
Ø Study of hydrodynamic parameters

Experimentation
CFD simulation

Ø Study mass transfer and mixing 


