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Abstract

The usefulness of Gabor frames depends on the easy conjpytafoa suitable dual window. This question is addressedenn
several aspects: several versions of Schulz’s iteratiyerihm for the approximation of the canonical dual windowe analyzed
for their numerical stability. For Gabor frames with toyajpositive windows or with exponential B-splines a direcgaithm
yields a family of exact dual windows with compact supparisishown that these dual windows converge exponentially tta
the canonical dual window.

INTRODUCTION

The discrete Gabor transform is a useful tool for the analgsid synthesis of nonstationary signals. It is based on the
representation of the energy distribution of a signal intthree-frequency plane. Its applications range over the ogxasition
of musical and acoustical signals [1], [2], wireless comination [3], [4] and to the analysis of EEG signals [5], [6pbrFa
given window functiong € L?(R) and lattice parameters, 3 > 0, the system of all corresponding time-frequency shifts

g(gv avﬂ) = {Mlﬁ Tkag = 627”1,6' g( - kO{) | kvl € Z}
is called a Gabor system fdr?(R). It is called a Gabor frame foE?(R), if there exist constantd, B > 0, such that

AFIP < D U MigTrag)” < BIIfI?, Vf € L*(R). 1)
k,JEZ

The constantsi, B are called lower and upper frame boundsid§, «, 3). If G(g, a, ) fulfills only the right hand inequality,
it is called a Bessel sequence aBda Bessel bound. It is known that the frame inequality (1) iegpthe existence of a dual
Gabor frameg (v, a, 3) with dual window~ € L?(R), such that every’ € L?(R) can be represented as

f=" (f; MigTrag) MigTray. 2
=

For a given Gabor system, the Gabor transform of a signial defined as the analysis operator
Cy: L*(R) — (3(2?),
Cof = ({f, MigThag))r,icz-

The coefficient(f, M;sT%.g) represents the energy distribution pfnear the pointk«,(3) in the time-frequency plane. It
may also be interpreted as the amplitude of the frequéfigat time ka, insofar as such an interpretation is compatible with
the uncertainty principle. The associated synthesis ¢pefar the reconstructions (2) is the adjoint operatpr and the frame
operatorS, : L*(R) — L?(R) is defined by

Sgf =C,Cof = Z (fs M1 Trag) MigThag.
k,l€Z

In general, there exist many dual windows suitable for treometruction (2). The standard choice is the canonical dual
window ~° = Sg_lg. For a characterization of all dual windows see [7], [8].®irthe applicability and usefulness of Gabor
frames depends heavily on the knowledge and computabfliy dual window, the numerical construction of dual windows
has motivated numerous studies. As representative catigis we mention [9], [10] and the large time-frequencylysia
toolbox (LTFAT) [11].

Our contribution to the analysis of dual Gabor windows isfbleh. On a general level, we study numerically stable meshod
for the computation of the canonical dual windeWw = Sg_lg. On a specific level, we study the efficient construction and
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the behavior of a sequence of dual windows for Gabor framéis tetally positive window functions and with exponential
B-splines.

We first present two stable implementations of a conventidgaetive algorithm to approximate®. The algorithm was
originally proposed by Schulz [12] for matrix inversion.i# based on the Neumann series for the inverse frame operator
and converges quadratically, see Algorithm 2. We providestaitkd analysis of the numerical error and show that our two
implementations (the operator version and the first vecession) are stable. By contrast, the implementation pregds/
Janssen (see [13] and [14]) is often unstable because therimaierror roughly doubles in each step. Therefore thé firs
two implementations are much preferable. As two illusteagxamples, we use the window functions MONSTER defined in
[9] and a Gaussian window, in order to compare all three implementations. The nurakresults agree precisely with the
predicted behavior of the numerical error.

We then describe recent results on special Gabor systemsewhiodow function is a totally positive (TP) function of fiai
type or an exponential B-spline (EB-spline). TP functions eemarkable because so far they are the only window fumgtio
for which a complete characterization of all lattice pargere such thati(g, «, 8) is a frame is known. More precisely, the
Gabor systenG(g, «, 8), with a TP functiong of finite type N > 2 is a frame if and only ifa < 1 [15]. Subsequently,
similar arguments in [16] showed that the Gabor systgi®,, «, §) of an EB-spline constitutes a frame for=1, 5 < 1,
and some other lattice parameters, too. The proofs alsdd&@ constructive method for the computation of infinitelgny
dual windows~y;, with compact support, which we summarize in Algorithm 5 fd® functions of finite type and Algorithm 7
for EB-splines.

This construction offers several new and useful aspectsattgaspecial for TP windows and not shared by general window
functions.

(i) Algorithms 5 and 7 provide a family of dual windowsg, both in finite and infinite dimensional models, namely for
continuous signals i (R), for discrete signals if?(Z), and for periodic discrete signals@" . Currently available toolboxes,
such as LTFAT [11], work only for finite-dimensional signals

(i) The dual windowsy;, possess compact support of si2éL), whereas the canonical dug! is known to have infinite
support.

(i) The dual windowsy, are exact and satisfy (2). This is in contrast to the staniiarative methods for the approximation
of the canonical dual (see e.g. Algorithm 2), which genecaily approximations of a dual window.

As our main mathematical result we prove that the dual wirstgyare good approximations of the canonical dual window
v° = S, g and we show that they converge exponentially fast to the miaabdual window, i.e. ||y, —~°[l2 = O(e~*%).
Therefore, by specifying the parameter Algorithms 5 and 7 provide a dual window, with compact support and which
approximates the canonical dual at a desired rate.

The proof uses some ideas of the non-symmetric finite sectiethod, but also requires a new technique related to the
formulation of the Moore-Penrose pseudo-inverse of irdimitatrices in terms of orthogonal projections.

As our main numerical contribution, we study and impleméiet tase of discrete Gabor frames. We present some fast and
stable algorithms to evaluate and discretize TP functiowsEeB-splines and their dual windows computed by the Algoni 5
and 7. These algorithms are proposed as extensions to tige Tane Frequency Analysis Toolbox described in [11].

The paper is organized as follows: In section | we study thmerical stability of a fast iterative algorithm for the
approximation of the canonical dual window. In section Il segnmarize the algorithms for the construction of dual winslof
TP functions and EB splines. In section Il we formulate arstdss the main theorems about the convergence of the ctlgnpac
supported dual windows;, to the canonical dual window®. Section IV explains some details about the implementation
Gabor frames with TP functions and EB splines. The appenaiitains the technical details of the proofs of the main tesul

|I. SOME ITERATIVE ALGORITHMS FOR APPROXIMATING THE CANONICAL DUAL

In this section we describe two iterative algorithms for r@pimating the canonical dual of an arbitrary frathe= {f;};er
for a Hilbert spaceH. The central part of such algorithms is the approximatiorihaf inverse of the corresponding frame
operator

SrpiH—H,  Srh=> (hf)f
Jjel
We discuss the convergence and the numerical stability méws implementations. Finally we present some numerestist
The following approximation schemes are proposed in tleeditire.

Algorithm 1 (Frame algorithm) Choosel < A < 2/B, with B the upper frame bound of. Theng := ||[I — A S#|| <1 and

SF =AY (I=ASH)™

n=0



The partial sums of this Neumann series can be computediitera by
Ko =M,
Kp1 =M+ (I —)\SF) Ky, keNg. 3)
The convergence rate is of ordgs ="' — K || = O(¢*). Thek'th approximation of the canonical dual frani&® = {S7' f;}jer
is given by{Ky, f;}jcr.
This algorithm is very robust, but slow if is close to one. This algorithm can be accelerated [17] wathjugate gradient

. . _ ANk . .
E)ercrf:(r;thues and with a convergence ré\%) after k iterations regardless of whether the frame bouAd® are known
An even faster method goes back to Schulz [12] and Hotellir&]. [

Algorithm 2 (Schulz iteration) Choosed < A < 2/B. The version of Schulz iteration with "initial scaling” [14Algorithm V]
is

Jo =M1,

Joy1 =2Jp — S Sr i, k€ No. 4)

This iteration implies the identity, = K,«_; and is therefore connected to the frame algorithm. The Zchlgorithm

converges quadratically, i.e.
2k+1

187" = Jell < ISFIISF = Jill* = O¢* ). (5)

This algorithm was first described by Schulz [12] who used thethod for matrix inversion.
Proof: The claims in Algorithm 2 are proved by induction. Since Selsualgorithm is not as known as other iterative
algorithms, we sketch the main steps. We first show that

I—Srdy=1-JuSr=(I-A\SF)?. (6)
Assuming that (6) is correct fot € Ny, we obtain
I —Srdipr =1 — Sr(2J, — JuSFJi)
= (1= SF)* = (1 - AS;)Q’“)2 :

as claimed. Using (6), we show again by induction that= Kor_ = AZ?igl(I — \SF)I:

ok+t1l_1

A DY (I—-ASFy

2k_1 2k _1

=AY (L= ASEY + (T - ASe)* A S (I - ASz)
=0 =0

=Ji+ (I — JkS]:)Jk = Jk41 -

The quadratic convergence rate now follows from the corengcg properties of the Neumann series. ]

We discuss the implementation of Algorithm 2 in the case ofah@ framej(g, «, 5). Recall that the canonical dual frame
is determined by the dual window = S;lg. We compare three different implementations of the Schelaiion and provide
some heuristics for their numerical stability.

(i) Operator form The numerical computation of the Schulz iteration as dtateAlgorithm 2 provides operatots, = J;, + Ej,
where E;, denotes the accumulated forward error. kgt ; denote the new roundoff error in the+ 1'st iteration, then the
operator afterk + 1 iterations of (4) is

jk+1 = ij — jk Sg jk + Yit1
= i1+ By (I = Sy Ji) + (I = Ik Sg) Bi + Yierr + O(|| Ex[|?).
sincel — 8, Jy =1—J; Sy = (I —AS,)?", we have
A k
1Bisill = k1 = Jerall < 26 I1B&] + Ve[| + O Ex[1?).-

This estimate shows that the error accumulated in the Kirgerations is damped and only a new round-off error is added.
Hence this iteration is numerically stable.



(i) Vector form We compute approximations of the dual windew directly by settingy, := Ji g with the following
algorithm:

Yo =Ag
Ye+1 =27 —CJ, Cyve, k €Np. @)

Proof: We use the fact that  and thus all.J, commute with the time-frequency shiffd;s7},. This commutation rule
implies the identity

C:k C = Z Cjl Jk MZB Tja g = Jk C; C
JIEL
for all ¢ € ¢?(Z?). Consequently
Vi1 = Jh+19 = 2Jix9 — J1SqJrg
= 27 — JkCyCyvk = 27k — C3, Cyvi; -

[ |
The numerical computation yields, = v + ex, Wheree;, denotes the accumulated forward error. gt denote the new
roundoff error, then in thé& + 1'th step of the iteration (7) we have

i1 =29k — C5, Cq A + Y1
= Y1 + (ex — C2, Cger) + (ex — CJ, Co i) + yrs1 + O(llex3) -
The aforementioned estimates give
% k
I(Z = €5, Co)enllz = (I — Ju Sg) enll2 < ¢ [lexll2.
Moreover the Janssen representation (see [8, p.131]) gives
N 1
Cek Cg Vg = @ Z <€k7 Mj/a Tl/ﬂ 9>Mj/0¢ Tl/ﬂ V-
JleZ

The last expression, whey, is replaced byy®, is the orthogonal projectiofly, e;, of e; onto V; := —span(g(g, 1/8, 1/a))
and therefore
llex = C2, Co°ll2 < llexll

and
* * k
llex — €2, Comllz < llew — CZ, Cg7°ll2 + [1CZ, Co (7° = )12 < llexll2 + O™ ).
since|7° — yxll2 = O(¢2") by (5), the new numerical error is

k k
lexsllz < (14 )llexll2 + lyrsalla + Ollexllz + ¢*) -

In contrast to the operator versiojfg||2 enters linearly with coefficierts 1. Thus the numerical stability is plausible and is
also confirmed by our numerical results in Example 3.

(i) Janssen’s alternative vector versiabanssen [14, Algorithm V] proposes the approximations

Yo = >\gv

Ye+1 =279 —CJ, Cyp 9, k €No. 8
However, in their numerical tests of (8) Janssen and Sgndedd9] observed some numerical instability. With notasias
in (ii), the numerical error in step + 1 is

€kt1 = Vkt1 — Vh+1
=2ex = C3, Ce, g = €7, Co g + Y1 + O(lfex]|3)-
We show that the error may grow by at least a factoR ah each step. Note thdt, in (i) is a proper subset of.?(R), if
af < 1. Hencel|(I —Ily,) e1 |2 =~ €, wheres denotes the machine accuracy. The Janssen representatitiesi thaiC>, C., g
andC; C,, g are inV,. Therefore,
(I =Ty,) exr = 2(I =Ty, ) ex + (I = Tv,) i1 + O([lex][3)

This shows, that the error componentsLi’[;L can double in each step. In Example 3 we demonstrate thanthiserical
instability may indeed occur.
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Fig. 1: MONSTER function and its canonical dual fer= 20 and 8 = 1/50, computed by a routine of LTFAT [11].
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Fig. 2: Error||C,. —C5, || of the three implementations of Algorithm 2 f@ iteration steps to approximate the canonical dual
window of MONSTER fora = 20 and 8 = 1/50.

Example 3. As it was described in (i) the implementation (8) by Jamssan have some stability problems and should be
applied carefully. We use the function MONSTER (see Figyra19] and « = 20, 5 = 1/50 for our numerical tests of all
three implementations of the Schulz iteration. As we canisdégure 2, the operator version is stable, the vector versif

(ii) is also useful, while the error of the implementation(ii) explodes. The same conclusions hold for the windowction
g(x) = e=™**/600 with o = 20, 8 = 1/50, as is shown in Figure 3.

o Operator o Vector stable o Vector unstable
10 10 10
10° 10° 10°
107 107 107
10715 10715 10715
0 10 20 0 10 20 0 10 20

Fig. 3: ||Cyo — C5, || of the three implementations of Algorithm 2 f@0 iteration steps to approximate the canonical dual
window of the Gaussiap(z) = e=™*"/6% for o = 20 and 8 = 1/50.



Il. GABOR FRAMES OF TOTALLY POSITIVE FUNCTIONS AND EXPONENTIALB-SPLINES

We now consider totally positive functions of finite type agxponential B-splines as window functions. The TP funcion
attracted much interest recently, as they provide new elesmgd window functions for which the necessary density cioml
af < 1 of the lattice parameters is also sufficient [15]. For dethinformation on total positivity of functions and matsce
see [19], for a detailed introduction to exponential B4sg$i see [20] and [21].

Definition 4. [22], [23] An integrable functiory : R — R is called totally positive (TP), if its Fourier transformctars as

g(w) _ /_oo g(t)e—QTritw dt

210, w

— Ce_ﬁwze—%riéw H - (9)
v=1

e
+ 2mid,w’

whereC,n, ), 6, are real parameters with

C>0, n>0,0<n+>» 5 <o0.
v=1
Note that in Schoenberg’s terminology there also exist Tittions that are not integrable. Therefore the given défimit
does not include the most general case of TP functions. Heremy consider TP functionga of finite type N € N, with

n:O,A:((Sl,...,éN) and
N

ga(w) = [J (1 +2mid,w)". (10)

v=1
For N =1 and A = (6) we have the one-sided exponential
1 -1,
gs(x) = 7 e e X(0,00)(0x) for xR\ {0},

with support[0, co) for positive § and (—oo, 0] for negatived, and forN > 1 and A = (61,...,dn), ga is the N-fold
convolution

A =G5y ¥ * Goy -
Especially, if§, =5 £ 0 forall 1 <v < N, then
z|N-1 _5— 1z
ga(z) = We ® " X (0,000 (0).

The functionsga are nonnegative, have infinite support, and exponentiahydegrecisely, ifr = (max{2x|0,| | v =
1,...,N})~tande > 0, then there is a constant= c(e) such that

0 < ga(z) < ce” TN (11)
Moreover, if§; # oy and we specifyys(0) = 1/]24], the recurrence relation
6;1962,...,5N - 6]?]1.951,...,6]\],1
ot =0y

holds. For later use, we denote by (resp.n) the number of positive (resp. negative) parameters

The main result in [15] shows that the Gabor systen, «, 3) of a TP function of finite typen+n > 2 constitutes a Gabor
frame if and only ifa5 < 1. The proof provides an algorithm for the computation of alduiadow ~ with compact support.
This method was adapted in [24], [25] in order to supply indéilyi many dual windowsy;,. The computation ofy; (x + ja),
with j € Z, is performed by computing a single row of a left-inverselw# biinfinite pre-Gramian matrix

P,(z) :== (§ (J} +aj — %))j,kezl (12)

The structure of the left-inverse @, (x) heavily depends on the property thats totally positive. We include the algorithm
for the reader’s convenience.

961,....68 =

Algorithm 5. [24] Input parameters are the parameter vecthir= (d1,d2,...,dy) of the windowg, the lattice parameters
a, 8 > 0 with a8 < 1, a parameterL € Ny controlling the support size of the dual windew, and a pointz € [0, «).

Output parameters are integefs(L), i2(L) and the vector of values;, (z + «j), i1(L) < j < ia(L), in the support ofy.,
such thaty;, : R — R defines a dual window af.

1) Setr := {ﬁJ, ki =—(r+1)mandky = (r + 1)n.



2) Setkl(L) :=k; — L and kQ(L) = ko + L,

ki —L+m—1
(L) = {ﬁ—ﬂ +1,

af «
in(L) = {%&"H - ﬂ 1

3) SetPL(x) := (pjk)ir (L)<j<ia(L), ki (L)<k<ks(L)» Where
(s+ei-5)
pik=glr+aj—=).
5,k 6

4) Compute the pseudoinverse
Pr(a)' = (@r,g)i (m)<kha (D), (1) <5< ()

of Py, (,CC)
5) Take the row with index = 0 of PL(:p)T. Its coefficients define the values of the dual windgwat the points

{z+ajlii(L) <j<izL)}, ie.

o JBao; L ifi(L) <j <ia(L),
e +aj) = {o ’  if j <i1(L) or j > ia(L). (13)

In particular, the support of the dual windoyy, is contained in the intervdhi, (L), a(i2(L) + 1)] of length of the order
B~ (kg — k1 + 2L). Thus the parametel labels the size of the support.

A related class of window functions is the class of exporamisplines. These functions are positive and have compact
support, a property which is desirable in some applications

Definition 6. For A = (\1,..., \n) € RY the exponential B-spline (EB-splind}, with knots0,1,..., N is given by its
Fourier transform

By(w)= ] ———. (14)

In [16], it was shown that the Gabor syst&iB,, «, 3) of every EB-spline constitutes a frame fer= 1, 8 < 1 (and also
some other lattice parameters). Similar to the case of TEtifums, the following algorithm provides dual windowsg of the
Gabor frameG(Ba, «, ).

Algorithm 7. [16] Input parameters are the parameter vectbre RY of the windowBy,, the lattice parameters, 3 > 0,
a parameterL € Ny controlling the support size of the dual windew, and a pointz € [¥5%, ta),

Output parameters are integefs(L), i2(L) and the vector of values;, (z + «j), i1(L) < j < i2(L), in the support ofy.,

such thaty;, : R — R defines a dual window aB,.

1) Setks(L) = [gfj;gJ +1+Landky (L) = —ks(L).

2) Seti1(L) < ki(L) andiy(L) > ko(L), such that

,_.

By (w4 (1(L) = 1)a — &) )7&0,
B (x—i—zl(L)a L 1) =

By (x+ (ia(L) + 1)a — ’“2(” 1) £0,
Ba (:c+22(L)a kz(L)-i-l) _

3) SetPp(x) := (pjk)ir(L)<j<ia(L), ki (L)<k<ks(L)» Where

.k
Djk = Ba (CE—I—CYJ—B)-

4) Compute the pseudoinverse
PL(ZC)T = (Qk,j)kl(L)gkgkg(L), i1 (L)<j<iz(L)
of Pr(x).
5) Take the row with index: = 0 of P.(x)". Its coefficients define the values of the dual windgwat the points
{x+aj|ir(L) <j<i(L)}, ie.

) Bay S iti(L) <j<io(L),
oz + aj) == {0 i< (L) of j > ia(L). (15)



We would like to emphasize the following point: (i) These @ithms determine the precise values of a dual windpw
with compact support ir.2(R) and not just a discrete approximation in a finite-dimendioeator space, as is done in most
existing algorithms in [10], [11].

(i) Although the problem of finding a dual window is by nattirdinite-dimensional inL?(RR), the computation ofy;, on
a grid ;7 requires only the pseudo-inversion f finite-dimensional matrices.

IIl. APPROXIMATION OF THE CANONICAL DUAL OF TP FUNCTIONS AND EB-SPLINES

We fix the parameters, 8 > 0 of the Gabor frame and let be either a TP function of finite type with parameter fet
or an EB-spline with parameter sat The pre-Gramian matrix (12) plays a central role in the abt@rization of the frame
boundsA, B of the Gabor systeng(g, «, 8), and in finding dual windows.

In this section we address the question how the sequence affvdndows~; of Algorithms 5 and 7 are related to
the canonical dual window®. Our main goal is to prove that the compactly supported duatlews ~v; computed by the
Algorithms 5 and 7 from [24] and [16] approximate the canahitual window~° at a rate

lye = °lly < ce™?*,

where L determines the support af, andp > 0.
As a first step we show that the norm f remains bounded a5 tends tooc.

Theorem 8. Let ¢ be a TP function of finite type as defined by (10). Then thes ernstantsA, B > 0 independent of
L € Ny such that

Allellz < [[Pr(z)ell2 < Blel2 (16)

for all ¢ € Cr2(F)=k(L)+1 and g € [0, «), wherePy, () is the finite section of the corresponding biinfinite pre-@ian matrix
P,(x) as described in Algorithm 5. Consequently, ||, < /a8 A~} for all L € N.

The precise proof will be given in the appendix. The proofaidmpes as follows: The upper bourtlis easily obtained
from Schur’s test based on the exponential decay of (11). For the lower boundl, we choos€L + 1 submatrices?, of
Pr(x), with k2 — k1 + 1 columns each, and build a left-inver€g, (x) of Pr(x) by the selection of specific rows GRZ. The
result in [15, Theorem 9] shows that all matricB% are bounded uniformly ir:. Their upper bound” will provide the upper
boundA~! = C "”’27‘7’“61“ for all matrices@r (x) uniformly in = and L. HenceA is a suitable constant for the lower bound
of Py, (:Z?)

To prove the rate of approximation of the dual windows we recall that the canonical dual windey = S;lg can be
expressed by the Moore-Penrose pseudoinverde, @f), namely

V(2 + o) = B (Py(z)1)o,, (17)

for all j € Z and allz € [0,«). This is a direct consequence of the Wexler-Raz criterianttie dual windows ofy [8,
Theorem 7.3.1], and the minimdl?-norm of the canonical dual among all duals 9f26]. We will therefore show that
the zeroth row ofP; (x)" approximates the zeroth row df,(x)" at an exponential rate. For this we need a new result on
non-symmetric finite sections of biinfinite matrices. Thddwing theorem is not covered by the results in [27] and may b
of independent interest. To fix the notation, for= (n1,ns) € N? andb € (*(Z), we let P, with

Prb=1(..,0,b_pn, b1, s bny1,bny,0,...)7

be the orthogonal projection onto thg + n, + 1-dimensional subspac®,, ¢*(Z) = Cmi+n2+l For a biinfinite matrix
U = (ujk)jrez andr,n € N2, P, U P, is a non-symmetric finite section &f. We will write (P,, U P,,)~! for the inverse
of the symmetric finite sectiof®,, U P,, on the finite-dimensional subspa®®, /(Z) (with the understanding that it cannot
be invertible on¢?(Z)).

Theorem 9. Let (X(k:))kGZ be a strictly increasing sequence of integers dne= (u, 1), xez be a biinfinite matrix such that
(8) U*U is invertible, and (b) there exist constants: > 0 such that

luj k| < ce @=x®L forall j,keZ. (18)
Let I ¢ N% and assume that for every c I a finite sectionl/,, := r(n) U Pn IS given such that
Alelly, < ||Uncll, forall ce *(z) (19)

for some constanl > 0 independent of:. Then there are constan&a > 0, such that for alln € T

U (U*U) " eg — Up (UL Up) egll < e M0, (20)



whereng := min{ny, na,r1(n),r2(n)}.

The proof is deferred to the appendix

Note that therow vector (U(U*U) Yeo)” = el (U*U)'U* = U is precisely the zeroth row of the Moore-Penrose
pseudoinverse df as it arises in the computation (17) of the dual windewsand~°. We also note that the decay condition (18)
models the decay of the entries off a “ridgg{k) rather than off-diagonal decay (in which cagék) = k). The above
definition reflects exactly the behavior of the pre-Gramiairir P, (x) of a window with exponential decay, Sing, (x) x| =
lg(z 4+ aj — k/B)| < Ce~axli=k/(@B)l "in which casey(k) = |k/(af)]. Decay conditions of this type occur in wavelet
theory [28] and in the theory of Fourier integral operatd38]|

We can now prove the main result of our paper, namely that thmenically computable dual windows; converge
exponentially fast to the canonical dual windew.

Theorem 10. The dual windows/,, L € N, in Algorithm 5 approximate the canonical dual windg® of ¢ at an exponential
rate
Iy = °lly < ce™?*. (21)

Proof: We setn(L) = (|k1|+L, ke+L) andr(L) = (|i1(L)|, i2(L)) as in Algorithm 5. The matriceBy, () in Algorithm 5
are exactly the non-symmetric finite sectioRg(x) = Py() Py (2)Pn(r) Of the pre-GramiarP,(x). Then Theorem 8 implies
that the finite sectiong’,(x) of the pre-GramiarP,(z) are left-invertible (on the appropriate finite-dimensibsabspaces)
with constants independent éf Therefore the decay conditions and the uniform boundseragsumptions of Theorem 9 are
fulfilled. Thus for fixedz we obtain that

lleg Py(2)" — ef Pr(a)T[|2 < de=moth).

Finally the approximation of the dual windowsg, and~° follows from
== [ @) = (@) da
[ S hietan -yt apP s

JEZ
= [ 1§ Puo) - P! I da
< a(éB) )2 e 2ano(L)
Sinceny(L) := min{ni(L),na(L), 1 (L), r2(L)} = min{|k:| + L, ko + L, |i1(L)|,i2(L) } = L + C for some integer constant
depending on the window only, the rate of approximation ih) {@llows. ]

Remarkl1. (i) Theorem 9 is not contained in the results on the non-symmanite section method in [27]. The selection of
rows byr(n) in our assumption (19) meets only the condition in [27, LenBri], which reads as

supl|(Uy, Un) ™ [le2—se2 < 00
nel

in our notation. However, the condition in [27, Lemma 5.1h& matched and can only be satisfied by considerably inicigas
the number of rows of/,,. The approximations of the canonical duél based on the non-symmetric finite section method in
[27] do not provide dual windows, in contrast to our approxiions~yy,.

(i) With an analogous proof, we obtain that the dual windowsin Algorithm 7 approximate the canonical dual of the
EB-spline B, at an exponential rate.

IV. DISCRETIZATION AND IMPLEMENTATION

For the numerical use of TP functions and EB-splines in dignalysis it is often necessary to discretize these windows
We define the sampling operatSs for a given sampling raté > 0 by

Ssg = \/5(9((%))1@62
and the periodization operatéty, with period K > 0 by
Prg(z Zgw—i—Kk x €0, K).
kEZ
For discrete signals € ¢*(Z) we let

Pg c = <Z Cj+Kk> S Cck.

kezZ §=0,...,K—1
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Furthermore we consider the dilation operator
Dyg(z) :== Vhg(hz), h>0,
which preserves th&2-norm. The exponential decay (11) of TP functions or the cachpupport of EB-splines imply tha} ¢
is in ¢*(Z) C ¢*(Z) and Pxg € L*([0,K)). The combination of both operators yields finite discregmals Px Ssg € CX.
Fora,b, M, N,K € Nand Mb= Na = K, the discrete Gabor system is defined as
i k=0,. —1and

g(PK5'5g, ,]\/1)_{62 MPK569(_]§) l—O M—l }
The following result is well known and holds for an extremghneral class of window functions. All TP functions of finite
type and all EB splines together with the duals of AlgorithBnand 7 satisfy this mild condition.

Proposition 12. Leta, 8 > 0 andaff = {7 = % and Mb = Na = K with a,b, M, N, K € N. Letg,vy € L?(R) such that
(9(z + ja))jez and (y(z + ja)) ez are absolutely summable for atl € [0, «), and

> @+ ja)g(a + jo — k/B) = Boox

JEL
for all z € [0,a) and k € Z. ThenG(Pk Su /4 9, a, %) is a Gabor frame forCX and G(Px Saja,a, ﬁ) is a dual Gabor
frame.

This statement is proved under slightly different assuam#iin [30]. The assumptions in Proposition 12 lead diretuly
the verification of the Wexler-Raz criterion in [30, Theorén8] for dual Gabor frames of X. The details of the proof are
omitted here.

Remarkl13. SinceSsD;, = Ssh, it is helpful to dilate the functiory by the sampling rate. Subsequently we can work with a
sampling rateéj = 1 and conside’x S1g =: PxSg of some scaled TP function or EB-splige= D, /,g. In many practical
situationsa/a is proportional toy/K. Thereby the time-frequency localization of the windowridépendent ofs .

In the remaining part of this section we describe implenténa of discretized TP functions and EB-splines as well as
the duals from Algorithms 5 and 7 in Section Il. For this pusgowe use some knowledge about the Zak transform of these
functions. For a parameter > 0 and a functionf € L?(R) with absolutely summabléf(z + aj));ez for = € R, the Zak
transform is defined by

afmw Zfﬂﬂ—f—a] —271'1_](10.;
JEZ
The Zak transform igv-quasiperiodic inc and1/«a-periodic inw [31]. For a given periodization paramet&r € N we obtain
the discrete version of a scaled TP function or EB-splingy

PxSq(k) = Zgg(k,0), k=0,...,K—1. (22)

A. EB-splines

Since EB-splines have compact support, their Zak transfemnfinite sum and only requires finitely many point evaluagio
of these functions.

Case 1 The EB-splineB, ., with a single weight\ € R of multiplicity m € N can be factorized into an exponential and
the cardinal polynomial B-spliné/,,, of orderm

oa=¢e X[o 1) *. ek(‘)X[o,l)
= )‘( ) (X[O,l) L X[O,l)) = 6/\(.) Nm

Hence it can be evaluated by the well-known algorithm by Cod deBoor (see [32]), which is part of the standard signal
processing toolboxes.

Case 2 For EB-splines with pairwise distinct weights < --- < A,,, andm > 2 Christensen and Massopust [33] give the
closed form

Buoanli k1) =3l s o) 1<k <
with coefficients
m
H()‘m_)V)_la k=1,
>
(k) = T
aj = 1551 < <jg—1<m,
RN ot St _ , k=2,....,m.
(=1)*=1 T] Am—Ar)
=
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Case 3 For EB-splines with several distinct weights with muligities, we use the following four-term recurrence relatio
which was stated in [34] and [35].

Theorem 14. [34], [35]Let A1,..., Any € R, A1 # Ay and

— N0 ®

A
BAl;---M\N X[o,1) * € 2

the associated EB-spline. Then the following recursiord$ol

_ B)\l »»»-,AN—I("E) - B/\2=---7)\N(x) + e/\lB/\2=---7)\N (‘T - 1) - e)\NB)\l-,---y)\N—l(:r - 1)

A1 — AN A1 — AN '

By iteration of this recurrence it is possible to reduce aiery EB-spline into either several lower order EB-splines

with pairwise distinct weights of multiplicity one or onlyne weight of higher multiplicity. These can be treated ashia t
aforementioned cases.

X[O,l) X ...k €

B. TP functions

In the case of TP functions, we present two different impletatons of the computation aPx.Sg in (22). For both we
use that TP functions are invariant under dilation.

Lemma 15. Let g be a TP function of finite typ& € N with weights(,)’_, and h > 0 a scaling parameter. Then
gn = VhDyg
is the TP function of finite type ifl0) with Weights(%)ﬁ’:l.
The first implementation uses the identity in [24, Remark 2]
Zth(x,w):[%,...,i | 720 Vz € [0, K),
where the right-hand side is the divided differencepf, with

efhxy

N
_ N-1 -1
T:c,w(y) - (71) h <H 51/ ) 1 — e~ K(hy+27iw)
v=1

in the knotss; ',..., 05"
The second implementation uses the connection of TP furetio EB-splines. In [16, Theorem 3.4] it is shown that the
Zak transform of a TP function can be expressed in terms oZ#ietransform of an associated EB-spline.

Theorem 16. [16]Let g be a TP function of finite type with weighis, ..., dy € R. With A\, := —fg—h v=1,...,N, we
have
Y
KZggn(x,0) =[] P w— Z1By,,.an(%:0), z€][0,1).

v=1

ConsequentlyPx Sg can be computed by the Zak transform of the correspondingiliBe as described in IV-A.

C. Dual windows

For TP functionsy and lattice parameters, 5 > 0 with a8 < 1, Algorithm 5 in Section Il allows us to compute samples
Sa/n7vL, N € N, of a dual windowy.. Likewise, Algorithm 7 provides the sampled dual window&a#-splinesB, . Therefore,
for a given periodization parametéf € N and the time-shift parameterc N, we compute

PcSasav(k) =Y (Sajare)(k+jK), k=0,...,K—1.
JEZ
This sum is finite because of the compact support of

Example 17. We use Algorithm 5 for the computation of the dual Gabor windg, of the asymmetric TP functiop with
parameters = [—1,1,1/3,1/5] and lattice parameters = 2/3, 8 = 1. The discretization parametef§ = 900, a = 20,

b = 1/30, are chosen according to the standard dilatign = +/K in Remark 13. Figure 4 shows the discrete TP function
P Sa/q9 and its dual windowPx S, /,vr. for L = 20. The difference| Pk S, /o (v —7°)||2 to the discrete canonical dual is
71078 measured in thé;-norm of C°%°,

Sometimes the frame bounds in the discrete case may be bedierin the continuous case. Therefore the discrete TP
functions or EB-splines may even provide Riesz bases atritieat density, as is explained in the following recentuies
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TP function g dual window v,

Fig. 4: Discrete TP function and its dug, for a = 20 and M = 30.

Proposition 18. [24],[36]Let g be a continuous TP function as i®), including the infinite type withhy = 0. Assume
a=M eNand let3 =1/M and K € N such thatK/M € N. If K/M is odd, thenG(Px Sg, «, 3) is a basis ofCX.

In addition, assume thaf is even, which means th@b, | 0, > 0} = {4, | 6, < 0}. If M is odd, thenG(Px Sy, o, 5) is
a basis ofCX.

Remark19. In the critical casex5 = 1 the computation of the dual window cannot be performed by the aforementioned
discretization procedure, as the Gabor systg, a, 3) is not a frame inL?(R). In this case, the usual method using the
discrete Fourier transform and the discrete Zak transfdri®eSg should be applied for the computation of the discrete dual
window [37].
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APPENDIX

In the appendix we provide the technical details of the paaff the main theorems. The proof of Theorem 8 depends

heavily on [15, Theorem 9].
Proof of Theorem 8:The pre-Gramian is bounded @A(Z) as a consequence of the exponential decay afid Schur’s

test. Therefore the finite sectiody, (x) = Pp(n) Py(x) Prn are uniformly bounded.

To prove the existence of a lower bourd we construct a left inverse d?;, (x) by adapting the proof of [15, Theorem 9].
By step 2 of Algorithm 5P, (z) has columns indexed by, k; — L < k < ko + L and rows indexed by, i1 (L) < j < io(L),
thus every left-inversé) () has columns indexed bii (L) < j < iy(L) and rows indexed by; — L < k < ko + L. We
will construct these rows one by one in three steps.

Step 1. For every index-L < ¢ < L, we choose the following submatriR, of P.(z). Givenx and ¢ € Z, we choose
ye € [0, ) andj, € Z, such that

) 14
Yo =T+ Jex — —.
B

Then we define the matriR, = Py(y,) by using the same definitions as in step 3 of Algorithm 5 with- 0; i.e., we let

. kit+m—1 1y
zf(()){ 1 oF _aJ+1,
. ko—n+1 e
’Lg(o)’V 2 Oéﬁ a—‘lv

and
Re = (rejk )it 0)<j<it (0), ka<hshs

with 7. =g (yg + jo— %) Note that

ye+Ja*E:w+(J+Je)a*—-
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Hence, the columns aRy, as indexed byk; < k < ko, correspond to sections of columns Bf (z) indexed byl + k; < k <
¢ + k. More precisely,R_;, contains sections of the firés — £, + 1 columns of P, (x); with increasing¢ the selection of
columns is shifted to the right; anfl;, contains sections of the last — k1 + 1 columns of P, (z). For the rows ofR,, we
observe that

andiy (L) > i5(0) + j,. To summarize, eacR, is a (i5(0) — i (0) + 1) x (kg — ky + 1)-submatrix of P, () with a dimension
independent of¢| < L.
Step 2. The arguments in [15, Theorem 8] relate left-inverseR, = Py (y,) to left-inverses of the biinfinite matri®, (y,).
It is shown that
e R, has full column rank,
« there exists a uniform boun@ > 0, which does not depend an € [0, «), and left-inverse§’, of R, such that
T <C forall —L<{¢(<L,

« the rows with indexk; < k < 0 of I';, are orthogonal to all columns with indéX > k; — n of the biinfinite matrix
P,(y,), and hence orthogonal to all columk’s> ¢ + k2 —n of Pp(x). Likewise, rows0 < k < k, of I'; are orthogonal
to all columns with index:’ < ¢+ k1 + m of Pr(x).

Step 3. With these properties, we obtain the left-invefsg(x) of Py (x) by defining the rows o). (x) as follows:
» We start with'_;, and take its rowsg; < k£ < 0 as the first rows of) . (z), extended by zeros such that

(Cp)rg, i1 7(0) <5 < iz ™(0),
0, otherwise

(QL(@)k—r,j+j_1 = {
e For—L+1<¢< L -1 we take the row with indeX of I'; and extend this row by zeroes,

(Te)og, 1(0) < j <i5(0),
0, otherwise

(QrL(x))e,j+50 = {

« We end withI';, and take its row$) < k < k, as the last rows of);,(z), extended by zeros such that

(CL)kg, i1(0) < j <ig(0),
0, otherwise

(QL(@))k+Ljtie = {
It is clear that all entries o)1 (x) are bounded by the constafitin step 2. Moreover, every row and column@f,(x) has
at most by — 41
L) — it <M T
e (5(0) — #(0) +1) < =7
nonzero entries. Therefore, by Schur's test, we obtain that
ko —ki+1
[Qr(z)| < C%-
Sincey, is a left inverse ofP,, we obtain
ko —ki+1
lell2 = Q) Py (x)ell> < € Z—2—

and we may choosél = (C ’“27«7’};*1)‘1 as a lower bound in (16). This completes the proof of (16). Wactude that
led Pr(z)t|, <C "”’27&7"”’5“ = AL, Therefore

1PL(x)c]2,

el = [ hite)? do
:52/ S (@ + )| da
0 jez

:52/ HeOTPL(:E)THz de < afB? A2
0

In the following we will need a well known result of JaffardgBand Baskakov [39].
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Proposition 20. Let A = (A;x); kez be a biinfinite matrix with exponential off-diagonal decag,, there exist constants
C,a > 0, such that _
|Aji| < Cemli=F v ke, (23)

If A is invertible, thend—! also possesses exponential off-diagonal decay and th&se@x> 0 and0 < a < a, such that
(A7) 5] < Cle™@i M ke,

Corollary 21. Let A be positive and invertible oi?(Z) with exponential off-diagonal decai23) and let P,, AP,, be a
sequence of finite sections. Then every maBixAP,, is invertible onP,,¢?(Z) and there exist’ > 0 and a,0 < a < a,
such that

(PrAPp) 5| < Clem @M for —ny <j,k <na. (24)

Proof: The proof follows [40] and [27]. Letd be the matrix obtained by stacking the finite sectiGhsAP,, along
the diagonal. Thend possesses exponential off-diagonal decay (23). Side invertible and positive, its spectrum(A)
is contained in an intervdl4, B] for some A, B > 0, consequently the spectrum of the restrictionf A P,, on P, ¢%(Z)
is also contained ifA, B] and every finite section is invertible oR,,¢*(Z). Therefore the stacked matrid is invertible
on &P, l*(Z) ~ (*(Z). By Proposition 204~! possesses exponential off-diagonal decay. Sifcé consists of the blocks
(PrAPp)"L, they satisfy|(PnAPn)j_k1| < e~ ikl for —ny < 4,k < no. n

We remark that clearly every finite matrix possesses expa@iaif-diagonal decay. The point is that the constants ey
chosen independently of the size of the finite section.

Proof of Theorem 9: Recall that, forn = (n1,n2) € N2, Ppb = (-..,0,b_pn,,b_pn 415+ bny—1,bn,,0,...)7 is the
orthogonal projection ont®,, ¢*(Z) = C+n2+1, We write U,, = P,. U P,, for a non-symmetric finite section d@f. In the
assumption of Theorem ® depends om, but we will omit this dependence in the notation. All operatorms are in/?(Z).

Letb:=U (U*U) tey anddy, := U, (U}, Un) ™! eo. We decompose the norm into three parts

b = dnlly < [[(U =T Pn) (U U)o,
+|uPn (W 0) = PaUrUP) o (25)
+|UPr (P U*UPn) ™" = Un (U, Un) e, -

1. Note thatU* U is invertible and positive. SincE fulfills the decay property (18), it is easy to see that the reatnic matrix
U* U decays exponentially off the diagonal, i.e., for some camistC, a > 0

(U*U)i| < Cem =kl ke,

By Proposition 20 the inverse matrix inherits the exporemecay, and thus there exist constafits> 0 anda,0 < a < a,
such thaf(U* U);k1| < C'e~i=*l for all j, k € Z. Hence the entries of the vector= (U* U)~! ¢, also decay exponentially
as

lvj| <cre Vil jez. (26)
Since
—n1—1 fe’e]
1T =Pa)oly= > loP+ D |ylP<C > el =0,
Jj=—o00 Jj=n2+1 [i1>no

the decay property (26) implies that
(U = UPn) (U U) eoll, < IUIIT = Pr)vlly < cze™@m.

2. SinceU* U is invertible and positive with spectrus(U*U) C [A, B] for A, B > 0, the spectrum of the finite sections
P, U*U P, onP,l*(Z) is also contained inA, B]. As in the finite section method in [40] and with= (U* U)~ ! eg, we
obtain

(U= U)™ = (PuU U Pn) eoll, = [(PaUUPn) ™ Pu U U (P — D, < (U U) T U (P = D) vl
and consequently

U P (U U) ™ = (Pu U U Pp) ") o], < cze@m0
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3. To treat the third term in (25), we need a geometric integti@n of the rows of the Moore-Penrose pseudoinverse. Let
b i = (UPp) (P U*UPp) e

andd,, as above. Then,, is the transpose of the zeroth row of the Moore-Penrose psawetse ofU P,,. By Corollary 21
(P, U*U Pp)~! satisfies (24) independently af Therefore the same argument as in the first part implies ¢caydproperty

|(bn)j| < cae™ V. (27)

It is essential that the constants are independemt. d&ince the Moore-Penrose pseudoinvers& @f,, is also a left-inverse,
we have
b LV i=spanf{ui | —n1 < k <mng, k # 0},

whereuy, k € Z, are the columns of the matriX. Likewise forU,, = P, UP,, we have
A, L PrVi, .

Using this orthogonality, we rewrite the vectdrs andd,, as follows. Letlly, denote the orthogonal projection onto some
subspacélV. Now set

bn = -1y, ) )ug and dp := (I —Tp,v, ) Ppug.
Sinceb,, € Im(UP,,) andd,, € Im(U,,), we obtain

bn = and d,=——. (28)

The normalization in (28) is obtained from
<bn,u0> =1 and <l~)n,u0> = <l;n,l;n —I—an UO> = ||BnH§7
<dn,’Pru0) =1 and (dn,Pru0> = <dn,dn + H'prvn PTUQ> = Hdnllg

As the third term in (25) equalgh,, — dn||2, we first considet|b,, — dy, 2. For this purpose we write

bp — dn = (I = Py) (o — Iy, uo) + p,v,, Prug — Pp Iy, o
= (I —Pr) En +1p,.v, Pr (UO — Iy, UQ)
= (I —Pr)bn + IIp,v,, Prbn. (29)
By the assumption (19), the truncated colunfsuy, with —n; < k < ne andk # 0, form a Riesz basis foP,.V,, with
lower Riesz boundd. Furthermore it holds that
-2 -
HHP,.Vn Pr an < A2 Z |(ILp, v, Pr b, Prug)|?
2 —n1<k<ng, k#0

A2 (Prbnu)l?

—n1<k<na, k#0
=A"? Z [((Pr = 1) Env“k>|2

—n1<k<ng, k#0

<A2B ||, - ) Bn]

2
’
2

where B = |U||?> denotes the Bessel bound of all columns k € Z. Taking the/?-norm in (29) and substituting the above
estimate, we obtain 5 3 ~
[br — dnll2 < ¢5 (1 = Pr) bul|2.

We now return to||b,, — dn,||2. It is an easy exercise that for nonzero vectpre we have
y w 3 lly —wlly
2 2 — . 2 2v°
lylly  lwllz [, — mingfyly, flwll}
Using once more that, € Im(UP,,) andd, € Im(U,,), the assumption (19) implies that
0 <A< [ball2, lldnll2 < lluoll, -

By the decay property (27) we obtain
an - dnH2 S % ||Z;n - Jn”Q S %4025 ||(I - Pr) E’nH2 S Ce e—flno'

To finish the proof of Theorem 9, we add the three contribuiion(25) and obtain the convergence rate (20) with a constant
5 = C2 + C3 + Cg. ||
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