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Implementation of discretized Gabor frames and
their duals

Tobias Kloos, Joachim Stöckler, and Karlheinz Gröchenig

Abstract

The usefulness of Gabor frames depends on the easy computability of a suitable dual window. This question is addressed under
several aspects: several versions of Schulz’s iterative algorithm for the approximation of the canonical dual window are analyzed
for their numerical stability. For Gabor frames with totally positive windows or with exponential B-splines a direct algorithm
yields a family of exact dual windows with compact support. It is shown that these dual windows converge exponentially fast to
the canonical dual window.

INTRODUCTION

The discrete Gabor transform is a useful tool for the analysis and synthesis of nonstationary signals. It is based on the
representation of the energy distribution of a signal in thetime-frequency plane. Its applications range over the decomposition
of musical and acoustical signals [1], [2], wireless communication [3], [4] and to the analysis of EEG signals [5], [6]. For a
given window functiong ∈ L2(R) and lattice parametersα, β > 0, the system of all corresponding time-frequency shifts

G(g, α, β) = {Mlβ Tkα g = e2πilβ· g(· − kα) | k, l ∈ Z}
is called a Gabor system forL2(R). It is called a Gabor frame forL2(R), if there exist constantsA,B > 0, such that

A‖f‖2 ≤
∑

k,l∈Z

|〈f,MlβTkαg〉|2 ≤ B‖f‖2, ∀f ∈ L2(R). (1)

The constantsA,B are called lower and upper frame bounds ofG(g, α, β). If G(g, α, β) fulfills only the right hand inequality,
it is called a Bessel sequence andB a Bessel bound. It is known that the frame inequality (1) implies the existence of a dual
Gabor frameG(γ, α, β) with dual windowγ ∈ L2(R), such that everyf ∈ L2(R) can be represented as

f =
∑

k,l∈Z

〈f,MlβTkαg〉MlβTkαγ. (2)

For a given Gabor system, the Gabor transform of a signalf is defined as the analysis operator

Cg : L2(R) → ℓ2(Z2),

Cgf = (〈f,MlβTkαg〉)k,l∈Z.

The coefficient〈f,MlβTkαg〉 represents the energy distribution off near the point(kα, lβ) in the time-frequency plane. It
may also be interpreted as the amplitude of the frequencylβ at timekα, insofar as such an interpretation is compatible with
the uncertainty principle. The associated synthesis operator for the reconstructions (2) is the adjoint operatorC∗

g , and the frame
operatorSg : L2(R) → L2(R) is defined by

Sgf = C∗
g Cgf =

∑

k,l∈Z

〈f,MlβTkαg〉MlβTkαg.

In general, there exist many dual windows suitable for the reconstruction (2). The standard choice is the canonical dual
window γ◦ = S−1

g g. For a characterization of all dual windows see [7], [8]. Since the applicability and usefulness of Gabor
frames depends heavily on the knowledge and computability of a dual window, the numerical construction of dual windows
has motivated numerous studies. As representative contributions we mention [9], [10] and the large time-frequency analysis
toolbox (LTFAT) [11].

Our contribution to the analysis of dual Gabor windows is twofold. On a general level, we study numerically stable methods
for the computation of the canonical dual windowγ◦ = S−1

g g. On a specific level, we study the efficient construction and
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the behavior of a sequence of dual windows for Gabor frames with totally positive window functions and with exponential
B-splines.

We first present two stable implementations of a conventional iterative algorithm to approximateγ◦. The algorithm was
originally proposed by Schulz [12] for matrix inversion. Itis based on the Neumann series for the inverse frame operator
and converges quadratically, see Algorithm 2. We provide a detailed analysis of the numerical error and show that our two
implementations (the operator version and the first vector version) are stable. By contrast, the implementation proposed by
Janssen (see [13] and [14]) is often unstable because the numerical error roughly doubles in each step. Therefore the first
two implementations are much preferable. As two illustrative examples, we use the window functions MONSTER defined in
[9] and a Gaussian windowg, in order to compare all three implementations. The numerical results agree precisely with the
predicted behavior of the numerical error.

We then describe recent results on special Gabor systems whose window function is a totally positive (TP) function of finite
type or an exponential B-spline (EB-spline). TP functions are remarkable because so far they are the only window functions
for which a complete characterization of all lattice parameters such thatG(g, α, β) is a frame is known. More precisely, the
Gabor systemG(g, α, β), with a TP functiong of finite typeN ≥ 2 is a frame if and only ifαβ < 1 [15]. Subsequently,
similar arguments in [16] showed that the Gabor systemG(BΛ, α, β) of an EB-spline constitutes a frame forα = 1, β < 1,
and some other lattice parameters, too. The proofs also provide a constructive method for the computation of infinitely many
dual windowsγL with compact support, which we summarize in Algorithm 5 for TP functions of finite type and Algorithm 7
for EB-splines.

This construction offers several new and useful aspects that are special for TP windows and not shared by general window
functions.

(i) Algorithms 5 and 7 provide a family of dual windowsγL both in finite and infinite dimensional models, namely for
continuous signals inL2(R), for discrete signals inℓ2(Z), and for periodic discrete signals inCN . Currently available toolboxes,
such as LTFAT [11], work only for finite-dimensional signals.

(ii) The dual windowsγL possess compact support of sizeO(L), whereas the canonical dualγ◦ is known to have infinite
support.

(iii) The dual windowsγL are exact and satisfy (2). This is in contrast to the standarditerative methods for the approximation
of the canonical dual (see e.g. Algorithm 2), which generateonly approximations of a dual window.

As our main mathematical result we prove that the dual windows γL are good approximations of the canonical dual window
γ◦ = S−1

g g and we show that they converge exponentially fast to the canonical dual window, i.e.,‖γL − γ◦‖2 = O(e−ρL).
Therefore, by specifying the parameterL, Algorithms 5 and 7 provide a dual windowγL with compact support and which
approximates the canonical dual at a desired rate.

The proof uses some ideas of the non-symmetric finite sectionmethod, but also requires a new technique related to the
formulation of the Moore-Penrose pseudo-inverse of infinite matrices in terms of orthogonal projections.

As our main numerical contribution, we study and implement the case of discrete Gabor frames. We present some fast and
stable algorithms to evaluate and discretize TP functions and EB-splines and their dual windows computed by the Algorithms 5
and 7. These algorithms are proposed as extensions to the Large Time Frequency Analysis Toolbox described in [11].

The paper is organized as follows: In section I we study the numerical stability of a fast iterative algorithm for the
approximation of the canonical dual window. In section II wesummarize the algorithms for the construction of dual windows of
TP functions and EB splines. In section III we formulate and discuss the main theorems about the convergence of the compactly
supported dual windowsγL to the canonical dual windowγ◦. Section IV explains some details about the implementationof
Gabor frames with TP functions and EB splines. The appendix contains the technical details of the proofs of the main results.

I. SOME ITERATIVE ALGORITHMS FOR APPROXIMATING THE CANONICAL DUAL

In this section we describe two iterative algorithms for approximating the canonical dual of an arbitrary frameF = {fj}j∈I

for a Hilbert spaceH. The central part of such algorithms is the approximation ofthe inverse of the corresponding frame
operator

SF : H → H, SFh =
∑

j∈I

〈h, fj〉fj .

We discuss the convergence and the numerical stability of various implementations. Finally we present some numerical tests.
The following approximation schemes are proposed in the literature.

Algorithm 1 (Frame algorithm). Choose0 < λ < 2/B, with B the upper frame bound ofF . Thenq := ‖I − λSF‖ < 1 and

S−1
F = λ

∞∑

n=0

(I − λSF )
n.
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The partial sums of this Neumann series can be computed iteratively by

K0 = λ I,

Kk+1 = λ I + (I − λSF)Kk, k ∈ N0. (3)

The convergence rate is of order‖S−1
F −Kk‖ = O(qk). Thek’th approximation of the canonical dual frameF◦ = {S−1

F fj}j∈I

is given by{Kk fj}j∈I .

This algorithm is very robust, but slow ifq is close to one. This algorithm can be accelerated [17] with conjugate gradient
techniques and with a convergence rate

(√
B−

√
A√

B+
√
A

)k
afterk iterations regardless of whether the frame boundsA,B are known

or not.
An even faster method goes back to Schulz [12] and Hotelling [18].

Algorithm 2 (Schulz iteration). Choose0 < λ < 2/B. The version of Schulz iteration with ”initial scaling” [14, Algorithm IV]
is

J0 = λ I,

Jk+1 = 2 Jk − Jk SF Jk, k ∈ N0. (4)

This iteration implies the identityJk = K2k−1 and is therefore connected to the frame algorithm. The Schulz algorithm
converges quadratically, i.e.

‖S−1
F − Jk+1‖ ≤ ‖SF‖ ‖S−1

F − Jk‖2 = O(q2
k+1

). (5)

This algorithm was first described by Schulz [12] who used this method for matrix inversion.
Proof: The claims in Algorithm 2 are proved by induction. Since Schulz’s algorithm is not as known as other iterative

algorithms, we sketch the main steps. We first show that

I − SFJk = I − JkSF = (I − λSF )
2k . (6)

Assuming that (6) is correct fork ∈ N0, we obtain

I − SFJk+1 = I − SF (2Jk − JkSFJk)

= (I − SFJk)
2 =

(
(I − λSF )

2k
)2

,

as claimed. Using (6), we show again by induction thatJk = K2k−1 = λ
∑2k−1

j=0 (I − λSF )j :

λ

2k+1−1∑

j=0

(I − λSF )
j

= λ

2k−1∑

j=0

(I − λSF )
j + (I − λSF )

2k λ

2k−1∑

j=0

(I − λSF )
j

= Jk + (I − JkSF)Jk = Jk+1 .

The quadratic convergence rate now follows from the convergence properties of the Neumann series.
We discuss the implementation of Algorithm 2 in the case of a Gabor frameG(g, α, β). Recall that the canonical dual frame

is determined by the dual windowγ◦ = S−1
g g. We compare three different implementations of the Schulz iteration and provide

some heuristics for their numerical stability.

(i) Operator form: The numerical computation of the Schulz iteration as stated in Algorithm 2 provides operatorŝJk = Jk+Ek,
whereEk denotes the accumulated forward error. LetYk+1 denote the new roundoff error in thek + 1’st iteration, then the
operator afterk + 1 iterations of (4) is

Ĵk+1 = 2 Ĵk − Ĵk Sg Ĵk + Yk+1

= Jk+1 + Ek (I − Sg Jk) + (I − Jk Sg)Ek + Yk+1 +O(‖Ek‖2).

SinceI − Sg Jk = I − Jk Sg = (I − λSg)
2k , we have

‖Ek+1‖ = ‖Ĵk+1 − Jk+1‖ ≤ 2 q2
k ‖Ek‖+ ‖Yk+1‖+O(‖Ek‖2).

This estimate shows that the error accumulated in the firstk iterations is damped and only a new round-off error is added.
Hence this iteration is numerically stable.
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(ii) Vector form: We compute approximations of the dual windowγ◦ directly by settingγk := Jk g with the following
algorithm:

γ0 = λ g

γk+1 = 2 γk − C∗
γk

Cg γk, k ∈ N0 . (7)

Proof: We use the fact thatSF and thus allJk commute with the time-frequency shiftsMlβTjα. This commutation rule
implies the identity

C∗
γk

c =
∑

j,l∈Z

cj,l Jk Mlβ Tjα g = Jk C∗
g c

for all c ∈ ℓ2(Z2). Consequently

γk+1 = Jk+1g = 2Jkg − JkSgJkg

= 2γk − JkC∗
gCgγk = 2γk − C∗

γk
Cgγk .

The numerical computation yieldŝγk = γk + ek, whereek denotes the accumulated forward error. Letyk+1 denote the new
roundoff error, then in thek + 1’th step of the iteration (7) we have

γ̂k+1 = 2 γ̂k − C∗
γ̂k

Cg γ̂k + yk+1

= γk+1 + (ek − C∗
γk

Cg ek) + (ek − C∗
ek Cg γk) + yk+1 +O(‖ek‖22) .

The aforementioned estimates give

‖(I − C∗
γk

Cg) ek‖2 = ‖(I − Jk Sg) ek‖2 ≤ q2
k ‖ek‖2.

Moreover the Janssen representation (see [8, p.131]) gives

C∗
ek

Cg γk =
1

αβ

∑

j,l∈Z

〈ek,Mj/α Tl/β g〉Mj/α Tl/β γk.

The last expression, whenγk is replaced byγ◦, is the orthogonal projectionΠVg
ek of ek onto Vg := span

(
G(g, 1/β, 1/α)

)

and therefore
‖ek − C∗

ek Cg γ
◦‖2 ≤ ‖ek‖2

and

‖ek − C∗
ek

Cg γk‖2 ≤ ‖ek − C∗
ek

Cg γ◦‖2 + ‖C∗
ek

Cg (γ◦ − γk)‖2 ≤ ‖ek‖2 +O(q2
k

) .

Since‖γ◦ − γk‖2 = O(q2
k

) by (5), the new numerical error is

‖ek+1‖2 ≤ (1 + q2
k

)‖ek‖2 + ‖yk+1‖2 +O(‖ek‖22 + q2
k

) .

In contrast to the operator version,‖ek‖2 enters linearly with coefficient≈ 1. Thus the numerical stability is plausible and is
also confirmed by our numerical results in Example 3.

(iii) Janssen’s alternative vector version: Janssen [14, Algorithm IV] proposes the approximations

γ0 = λ g,

γk+1 = 2 γk − C∗
γk

Cγk
g, k ∈ N0. (8)

However, in their numerical tests of (8) Janssen and Søndergaard [9] observed some numerical instability. With notations as
in (ii), the numerical error in stepk + 1 is

ek+1 = γ̂k+1 − γk+1

= 2 ek − C∗
γk

Cek g − C∗
ek Cγk

g + yk+1 +O(‖ek‖22).
We show that the error may grow by at least a factor of2 in each step. Note thatVg in (ii) is a proper subset ofL2(R), if
αβ < 1. Hence‖(I−ΠVg

) e1‖2 ≈ ε, whereε denotes the machine accuracy. The Janssen representation implies, thatC∗
γk

Cek g
andC∗

ek
Cγk

g are inVg. Therefore,

(I −ΠVg
) ek+1 = 2 (I −ΠVg

) ek + (I −ΠVg
) yk+1 +O(‖ek‖22)

This shows, that the error components inV ⊥
g can double in each step. In Example 3 we demonstrate that thisnumerical

instability may indeed occur.



5

0 200 400 600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MONSTER

0 200 400 600
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
canonical dual of MONSTER

Fig. 1: MONSTER function and its canonical dual forα = 20 andβ = 1/50, computed by a routine of LTFAT [11].
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Fig. 2: Error‖Cγ◦ −Cγ̂k
‖ of the three implementations of Algorithm 2 for20 iteration steps to approximate the canonical dual

window of MONSTER forα = 20 andβ = 1/50.

Example 3. As it was described in (iii) the implementation (8) by Janssen can have some stability problems and should be
applied carefully. We use the function MONSTER (see Figure 1) in [9] andα = 20, β = 1/50 for our numerical tests of all
three implementations of the Schulz iteration. As we can seein Figure 2, the operator version is stable, the vector version of
(ii) is also useful, while the error of the implementation in(iii) explodes. The same conclusions hold for the window function
g(x) = e−πx2/600 with α = 20, β = 1/50, as is shown in Figure 3.
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Fig. 3: ‖Cγ◦ − Cγ̂k
‖ of the three implementations of Algorithm 2 for20 iteration steps to approximate the canonical dual

window of the Gaussiang(x) = e−πx2/600 for α = 20 andβ = 1/50.
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II. GABOR FRAMES OF TOTALLY POSITIVE FUNCTIONS AND EXPONENTIALB-SPLINES

We now consider totally positive functions of finite type andexponential B-splines as window functions. The TP functions
attracted much interest recently, as they provide new examples of window functions for which the necessary density condition
αβ < 1 of the lattice parameters is also sufficient [15]. For detailed information on total positivity of functions and matrices
see [19], for a detailed introduction to exponential B-splines see [20] and [21].

Definition 4. [22], [23] An integrable functiong : R → R is called totally positive (TP), if its Fourier transform factors as

ĝ(ω) =

∫ ∞

−∞
g(t)e−2πitω dt

= Ce−ηω2

e−2πiδω
∞∏

ν=1

e2πiδνω

1 + 2πiδνω
, (9)

whereC, η, δ, δν are real parameters with

C > 0, η ≥ 0, 0 < η +

∞∑

ν=1

δ2ν < ∞ .

Note that in Schoenberg’s terminology there also exist TP functions that are not integrable. Therefore the given definition
does not include the most general case of TP functions. Here we only consider TP functionsg∆ of finite typeN ∈ N, with
η = 0, ∆ = (δ1, . . . , δN ) and

ĝ∆(ω) =
N∏

ν=1

(1 + 2πiδνω)
−1. (10)

For N = 1 and∆ = (δ) we have the one-sided exponential

gδ(x) =
1

|δ| e
−δ−1x χ(0,∞)(δx) for x ∈ R \ {0},

with support [0,∞) for positive δ and (−∞, 0] for negativeδ, and forN > 1 and ∆ = (δ1, . . . , δN), g∆ is the N -fold
convolution

g∆ = gδ1 ∗ · · · ∗ gδN .
Especially, ifδν = δ 6= 0 for all 1 ≤ ν ≤ N , then

g∆(x) =
|x|N−1

|δ|N (N − 1)!
e−δ−1x χ(0,∞)(δx).

The functionsg∆ are nonnegative, have infinite support, and exponential decay, precisely, ifτ = (max{ 2π |δν | | ν =
1, . . . , N})−1 andǫ > 0, then there is a constantc = c(ǫ) such that

0 ≤ g∆(x) ≤ c e−(τ−ε)|x|. (11)

Moreover, if δ1 6= δN and we specifygδ(0) = 1/|2δ|, the recurrence relation

gδ1,...,δN =
δ−1
1 gδ2,...,δN − δ−1

N gδ1,...,δN−1

δ−1
1 − δ−1

N

holds. For later use, we denote bym (resp.n) the number of positive (resp. negative) parametersδν .
The main result in [15] shows that the Gabor systemG(g, α, β) of a TP function of finite typem+n ≥ 2 constitutes a Gabor

frame if and only ifαβ < 1. The proof provides an algorithm for the computation of a dual window γ with compact support.
This method was adapted in [24], [25] in order to supply infinitely many dual windowsγL. The computation ofγL(x+ jα),
with j ∈ Z, is performed by computing a single row of a left-inverse of the biinfinite pre-Gramian matrix

Pg(x) :=
(
g
(
x+ αj − k

β

))
j,k∈Z

. (12)

The structure of the left-inverse ofPg(x) heavily depends on the property thatg is totally positive. We include the algorithm
for the reader’s convenience.

Algorithm 5. [24] Input parameters are the parameter vector∆ = (δ1, δ2, . . . , δN ) of the windowg, the lattice parameters
α, β > 0 with αβ < 1, a parameterL ∈ N0 controlling the support size of the dual windowγL, and a pointx ∈ [0, α).

Output parameters are integersi1(L), i2(L) and the vector of valuesγL(x+αj), i1(L) ≤ j ≤ i2(L), in the support ofγL,
such thatγL : R → R defines a dual window ofg.

1) Setr :=
⌊

1
1−αβ

⌋
, k1 = −(r + 1)m and k2 = (r + 1)n.
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2) Setk1(L) := k1 − L and k2(L) := k2 + L,

i1(L) :=

⌊
k1 − L+m− 1

αβ
− x

α

⌋
+ 1,

i2(L) :=

⌈
k2 + L− n+ 1

αβ
− x

α

⌉
− 1.

3) SetPL(x) := (pj,k)i1(L)≤j≤i2(L), k1(L)≤k≤k2(L), where

pj,k = g

(
x+ αj − k

β

)
.

4) Compute the pseudoinverse
PL(x)

† = (qk,j)k1(L)≤k≤k2(L), i1(L)≤j≤i2(L)

of PL(x).
5) Take the row with indexk = 0 of PL(x)

†. Its coefficients define the values of the dual windowγL at the points
{x+ αj | i1(L) ≤ j ≤ i2(L)}, i.e.

γL(x+ αj) :=

{
β q0,j , if i1(L) ≤ j ≤ i2(L),

0 , if j < i1(L) or j > i2(L).
(13)

In particular, the support of the dual windowγL is contained in the interval[αi1(L), α(i2(L) + 1)] of length of the order
β−1(k2 − k1 + 2L). Thus the parameterL labels the size of the support.

A related class of window functions is the class of exponential B-splines. These functions are positive and have compact
support, a property which is desirable in some applications.

Definition 6. For Λ = (λ1, . . . , λN ) ∈ RN the exponential B-spline (EB-spline)BΛ with knots 0, 1, . . . , N is given by its
Fourier transform

B̂Λ(ω) =

N∏

ν=1

eλν−2πiω − 1

λν − 2πiω
. (14)

In [16], it was shown that the Gabor systemG(BΛ, α, β) of every EB-spline constitutes a frame forα = 1, β < 1 (and also
some other lattice parameters). Similar to the case of TP functions, the following algorithm provides dual windowsγL of the
Gabor frameG(BΛ, α, β).

Algorithm 7. [16] Input parameters are the parameter vectorΛ ∈ RN of the windowBΛ, the lattice parametersα, β > 0,
a parameterL ∈ N0 controlling the support size of the dual windowγL, and a pointx ∈

[
N−α

2 , N+α
2

)
.

Output parameters are integersi1(L), i2(L) and the vector of valuesγL(x+αj), i1(L) ≤ j ≤ i2(L), in the support ofγL,
such thatγL : R → R defines a dual window ofBΛ.

1) Setk2(L) =
⌊

Nβ+αβ
2(1−αβ)

⌋
+ 1 + L and k1(L) = −k2(L).

2) Seti1(L) ≤ k1(L) and i2(L) ≥ k2(L), such that

BΛ

(
x+ (i1(L)− 1)α− k1(L)−1

β

)
6= 0,

BΛ

(
x+ i1(L)α− k1(L)−1

β

)
= 0,

BΛ

(
x+ (i2(L) + 1)α− k2(L)+1

β

)
6= 0,

BΛ

(
x+ i2(L)α− k2(L)+1

β

)
= 0.

3) SetPL(x) := (pj,k)i1(L)≤j≤i2(L), k1(L)≤k≤k2(L), where

pj,k = BΛ

(
x+ αj − k

β

)
.

4) Compute the pseudoinverse
PL(x)

† = (qk,j)k1(L)≤k≤k2(L), i1(L)≤j≤i2(L)

of PL(x).
5) Take the row with indexk = 0 of PL(x)

†. Its coefficients define the values of the dual windowγL at the points
{x+ αj | i1(L) ≤ j ≤ i2(L)}, i.e.

γL(x+ αj) :=

{
β q0,j , if i1(L) ≤ j ≤ i2(L),

0 , if j < i1(L) or j > i2(L).
(15)



8

We would like to emphasize the following point: (i) These algorithms determine the precise values of a dual windowγ
with compact support inL2(R) and not just a discrete approximation in a finite-dimensional vector space, as is done in most
existing algorithms in [10], [11].

(ii) Although the problem of finding a dual window is by natureinfinite-dimensional inL2(R), the computation ofγL on
a grid α

MZ requires only the pseudo-inversion ofM finite-dimensional matrices.

III. A PPROXIMATION OF THE CANONICAL DUAL OFTP FUNCTIONS AND EB-SPLINES

We fix the parametersα, β > 0 of the Gabor frame and letg be either a TP function of finite type with parameter set∆
or an EB-spline with parameter setΛ. The pre-Gramian matrix (12) plays a central role in the characterization of the frame
boundsA,B of the Gabor systemG(g, α, β), and in finding dual windowsγ.

In this section we address the question how the sequence of dual windows γL of Algorithms 5 and 7 are related to
the canonical dual windowγ◦. Our main goal is to prove that the compactly supported dual windows γL computed by the
Algorithms 5 and 7 from [24] and [16] approximate the canonical dual windowγ◦ at a rate

‖γL − γ◦‖2 ≤ c̃ e−ρL,

whereL determines the support ofγL andρ > 0.
As a first step we show that the norm ofγL remains bounded asL tends to∞.

Theorem 8. Let g be a TP function of finite type as defined by (10). Then there exist constantsA,B > 0 independent of
L ∈ N0 such that

A‖c‖2 ≤ ‖PL(x)c‖2 ≤ B‖c‖2 (16)

for all c ∈ Ck2(L)−k1(L)+1 andx ∈ [0, α), wherePL(x) is the finite section of the corresponding biinfinite pre-Gramian matrix
Pg(x) as described in Algorithm 5. Consequently,‖γL‖2 ≤ √

αβ A−1, for all L ∈ N.

The precise proof will be given in the appendix. The proof idea goes as follows: The upper boundB is easily obtained
from Schur’s test based on the exponential decay ofg in (11). For the lower boundA, we choose2L+ 1 submatricesRℓ of
PL(x), with k2 − k1 + 1 columns each, and build a left-inverseQL(x) of PL(x) by the selection of specific rows ofR†

ℓ . The
result in [15, Theorem 9] shows that all matricesR†

ℓ are bounded uniformly inx. Their upper boundC will provide the upper
boundA−1 = C k2−k1+1

αβ for all matricesQL(x) uniformly in x andL. HenceA is a suitable constant for the lower bound
of PL(x).

To prove the rate of approximation of the dual windowsγL, we recall that the canonical dual windowγ◦ = S−1
g g can be

expressed by the Moore-Penrose pseudoinverse ofPg(x), namely

γ◦(x+ αj) = β (Pg(x)
†)0,j (17)

for all j ∈ Z and all x ∈ [0, α). This is a direct consequence of the Wexler-Raz criterion for the dual windows ofg [8,
Theorem 7.3.1], and the minimalL2-norm of the canonical dual among all duals ofg [26]. We will therefore show that
the zeroth row ofPL(x)

† approximates the zeroth row ofPg(x)
† at an exponential rate. For this we need a new result on

non-symmetric finite sections of biinfinite matrices. The following theorem is not covered by the results in [27] and may be
of independent interest. To fix the notation, forn = (n1, n2) ∈ N

2 andb ∈ ℓ2(Z), we letPn with

Pn b = (. . . , 0, b−n1
, b−n1+1, . . . , bn2−1, bn2

, 0, . . .)T

be the orthogonal projection onto then1 + n2 + 1-dimensional subspacePn ℓ2(Z) ∼= Cn1+n2+1. For a biinfinite matrix
U = (uj,k)j,k∈Z andr,n ∈ N2, Pr U Pn is a non-symmetric finite section ofU . We will write (Pn U Pn)

−1 for the inverse
of the symmetric finite sectionPn U Pn on the finite-dimensional subspacePn ℓ2(Z) (with the understanding that it cannot
be invertible onℓ2(Z)).

Theorem 9. Let
(
χ(k)

)
k∈Z

be a strictly increasing sequence of integers andU = (uj,k)j,k∈Z be a biinfinite matrix such that
(a) U∗U is invertible, and (b) there exist constantsc, a > 0 such that

|uj,k| ≤ c e−a|j−χ(k)| for all j, k ∈ Z . (18)

Let I ⊂ N2 and assume that for everyn ∈ I a finite sectionUn := P
r(n) U Pn is given such that

A ‖c‖2 ≤ ‖Un c‖2 for all c ∈ ℓ2(Z) (19)

for some constantA > 0 independent ofn. Then there are constants̃c, ã > 0, such that for alln ∈ I

‖U (U∗ U)−1 e0 − Un (U∗
n
Un)

−1 e0‖2 ≤ c̃ e−ã n0 , (20)
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wheren0 := min{n1, n2, r1(n), r2(n)}.

The proof is deferred to the appendix.
Note that therow vector

(
U(U∗U)−1)e0

)∗
= eT0 (U

∗U)−1U∗ = eT0 U
† is precisely the zeroth row of the Moore-Penrose

pseudoinverse ofU as it arises in the computation (17) of the dual windowsγL andγ◦. We also note that the decay condition (18)
models the decay of the entries off a “ridge”χ(k) rather than off-diagonal decay (in which caseχ(k) = k). The above
definition reflects exactly the behavior of the pre-Gramian matrix Pg(x) of a window with exponential decay, since|Pg(x)jk | =
|g(x + αj − k/β)| ≤ Ce−aα|j−k/(αβ)|, in which caseχ(k) = ⌊k/(αβ)⌋. Decay conditions of this type occur in wavelet
theory [28] and in the theory of Fourier integral operators [29].

We can now prove the main result of our paper, namely that the numerically computable dual windowsγL converge
exponentially fast to the canonical dual windowγ◦.

Theorem 10. The dual windowsγL, L ∈ N, in Algorithm 5 approximate the canonical dual windowγ◦ of g at an exponential
rate

‖γL − γ◦‖2 ≤ c̃ e−ρL. (21)

Proof: We setn(L) = (|k1|+L, k2+L) andr(L) = (|i1(L)|, i2(L)) as in Algorithm 5. The matricesPL(x) in Algorithm 5
are exactly the non-symmetric finite sectionsPL(x) = P

r(L)Pg(x)Pn(L) of the pre-GramianPg(x). Then Theorem 8 implies
that the finite sectionsPL(x) of the pre-GramianPg(x) are left-invertible (on the appropriate finite-dimensional subspaces)
with constants independent ofL. Therefore the decay conditions and the uniform bounds in the assumptions of Theorem 9 are
fulfilled. Thus for fixedx we obtain that

‖eT0 Pg(x)
† − eT0 PL(x)

†‖2 ≤ c̃e−ãn0(L) .

Finally the approximation of the dual windowsγL andγ◦ follows from

‖γL − γ◦‖22 =
∫ ∞

−∞
|γL(x)− γ◦(x)|2 dx

=

∫ α

0

∑

j∈Z

|γL(x+ αj)− γ◦(x+ αj)|2 dx

= β2

∫ α

0

‖eT0 PL(x)
† − eT0 Pg(x)

†‖22 dx

≤ α(c̃β)2e−2ãn0(L) .

Sincen0(L) := min{n1(L), n2(L), r1(L), r2(L)} = min{|k1|+L, k2 +L, |i1(L)|, i2(L)} = L+C for some integer constant
depending on the window only, the rate of approximation in (21) follows.

Remark11. (i) Theorem 9 is not contained in the results on the non-symmetric finite section method in [27]. The selection of
rows byr(n) in our assumption (19) meets only the condition in [27, Lemma5.2], which reads as

sup
n∈I

‖(U∗
n
Un)

−1‖ℓ2→ℓ2 < ∞

in our notation. However, the condition in [27, Lemma 5.1] isnot matched and can only be satisfied by considerably increasing
the number of rows ofUn. The approximations of the canonical dualγ◦ based on the non-symmetric finite section method in
[27] do not provide dual windows, in contrast to our approximationsγL.

(ii) With an analogous proof, we obtain that the dual windowsγL in Algorithm 7 approximate the canonical dual of the
EB-splineBΛ at an exponential rate.

IV. D ISCRETIZATION AND IMPLEMENTATION

For the numerical use of TP functions and EB-splines in signal analysis it is often necessary to discretize these windows.
We define the sampling operatorSδ for a given sampling rateδ > 0 by

Sδg :=
√
δ (g(δk))k∈Z

and the periodization operatorPK with periodK > 0 by

PKg(x) :=
∑

k∈Z

g(x+Kk), x ∈ [0,K).

For discrete signalsc ∈ ℓ1(Z) we let

PK c :=

(∑

k∈Z

cj+Kk

)

j=0,...,K−1

∈ C
K .
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Furthermore we consider the dilation operator

Dhg(x) :=
√
h g(hx), h > 0,

which preserves theL2-norm. The exponential decay (11) of TP functions or the compact support of EB-splines imply thatSδ g
is in ℓ1(Z) ⊂ ℓ2(Z) andPKg ∈ L2([0,K)). The combination of both operators yields finite discrete signalsPKSδg ∈ CK .
For a, b,M,N,K ∈ N andMb = Na = K, the discrete Gabor system is defined as

G(PK Sδ g, a,
1
M ) =

{
e2πi

l
M · PK Sδ g(· − ka)

∣∣∣∣
k = 0, . . . , N − 1 and
l = 0, . . . ,M − 1

}
.

The following result is well known and holds for an extremelygeneral class of window functions. All TP functions of finite
type and all EB splines together with the duals of Algorithms5 and 7 satisfy this mild condition.

Proposition 12. Let α, β > 0 and αβ = a
M = b

N andMb = Na = K with a, b,M,N,K ∈ N. Let g, γ ∈ L2(R) such that
(g(x+ jα))j∈Z and (γ(x+ jα))j∈Z are absolutely summable for allx ∈ [0, α), and

∑

j∈Z

γ(x+ jα)g(x+ jα− k/β) = βδ0,k

for all x ∈ [0, α) and k ∈ Z. ThenG(PK Sα/a g, a,
1
M ) is a Gabor frame forCK and G(PK Sα/a γ, a,

1
M ) is a dual Gabor

frame.

This statement is proved under slightly different assumptions in [30]. The assumptions in Proposition 12 lead directlyto
the verification of the Wexler-Raz criterion in [30, TheoremA.3] for dual Gabor frames ofCK . The details of the proof are
omitted here.

Remark13. SinceSδDh = Sδh, it is helpful to dilate the functiong by the sampling rate. Subsequently we can work with a
sampling rateδ = 1 and considerPKS1g̃ =: PKSg̃ of some scaled TP function or EB-splinẽg := Dα/ag. In many practical
situationsa/α is proportional to

√
K. Thereby the time-frequency localization of the window is independent ofK.

In the remaining part of this section we describe implementations of discretized TP functions and EB-splines as well as
the duals from Algorithms 5 and 7 in Section II. For this purpose, we use some knowledge about the Zak transform of these
functions. For a parameterα > 0 and a functionf ∈ L2(R) with absolutely summable(f(x + αj))j∈Z for x ∈ R, the Zak
transform is defined by

Zαf(x, ω) :=
∑

j∈Z

f(x+ αj)e−2πijαω .

The Zak transform isα-quasiperiodic inx and1/α-periodic inω [31]. For a given periodization parameterK ∈ N we obtain
the discrete version of a scaled TP function or EB-splineg̃ by

PKSg̃(k) = ZK g̃(k, 0), k = 0, . . . ,K − 1. (22)

A. EB-splines

Since EB-splines have compact support, their Zak transformis a finite sum and only requires finitely many point evaluations
of these functions.

Case 1: The EB-splineBλ,...,λ with a single weightλ ∈ R of multiplicity m ∈ N can be factorized into an exponential and
the cardinal polynomial B-splineNm of orderm

Bλ,...,λ = eλ(·)χ[0,1) ∗ . . . ∗ eλ(·)χ[0,1)

= eλ(·)
(
χ[0,1) ∗ . . . ∗ χ[0,1)

)
= eλ(·) Nm.

Hence it can be evaluated by the well-known algorithm by Cox and deBoor (see [32]), which is part of the standard signal
processing toolboxes.

Case 2: For EB-splines with pairwise distinct weightsλ1 < · · · < λm andm ≥ 2 Christensen and Massopust [33] give the
closed form

Bλ1,...,λm
(x+ k − 1) =

m∑

j=1

α
(k)
j eλjx, x ∈ [0, 1), 1 ≤ k ≤ m,

with coefficients

α
(k)
j =





m∏
r=1,
r 6=j

(λm − λr)
−1, k = 1,

∑

1≤j1<···<jk−1≤m,

j1,··· ,jk−1 6=j

e
λj1

+...+λjk−1

(−1)k−1
m∏

r=1,
r 6=j

(λm−λr)
, k = 2, . . . ,m.
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Case 3: For EB-splines with several distinct weights with multiplicities, we use the following four-term recurrence relation,
which was stated in [34] and [35].

Theorem 14. [34], [35]Let λ1, . . . , λN ∈ R, λ1 6= λN and

Bλ1,...,λN
= eλ1(·)χ[0,1) ∗ eλ2(·)χ[0,1) ∗ . . . ∗ eλm(·)χ[0,1)

the associated EB-spline. Then the following recursion holds

Bλ1,...,λN
(x) =

Bλ1,...,λN−1
(x)−Bλ2,...,λN

(x)

λ1 − λN
+

eλ1Bλ2,...,λN
(x− 1)− eλNBλ1,...,λN−1

(x− 1)

λ1 − λN
.

By iteration of this recurrence it is possible to reduce any given EB-spline into either several lower order EB-splines
with pairwise distinct weights of multiplicity one or only one weight of higher multiplicity. These can be treated as in the
aforementioned cases.

B. TP functions

In the case of TP functions, we present two different implementations of the computation ofPKSg̃ in (22). For both we
use that TP functions are invariant under dilation.

Lemma 15. Let g be a TP function of finite typeN ∈ N with weights(δν)Nν=1 and h > 0 a scaling parameter. Then

gh =
√
hDhg

is the TP function of finite type in(10) with weights( δνh )Nν=1.

The first implementation uses the identity in [24, Remark 2]

ZKgh(x, ω) = [ 1
δ1
, . . . , 1

δN
| rx,ω] ∀x ∈ [0,K),

where the right-hand side is the divided difference ofrx,ω with

rx,ω(y) = (−1)N−1h

(
N∏

ν=1

δ−1
ν

)
e−hxy

1− e−K(hy+2πiω)

in the knotsδ−1
1 , . . . , δ−1

N .
The second implementation uses the connection of TP functions to EB-splines. In [16, Theorem 3.4] it is shown that the

Zak transform of a TP function can be expressed in terms of theZak transform of an associated EB-spline.

Theorem 16. [16]Let g be a TP function of finite type with weightsδ1, . . . , δN ∈ R. With λν := −Kh
δν

, ν = 1, . . . , N , we
have

KZKgh(x, 0) =
N∏

ν=1

λν

eλν − 1
Z1Bλ1,...,λN

( x
K , 0), x ∈ [0, 1).

ConsequentlyPKSg̃ can be computed by the Zak transform of the corresponding EB-spline as described in IV-A.

C. Dual windows

For TP functionsg and lattice parametersα, β > 0 with αβ < 1, Algorithm 5 in Section II allows us to compute samples
Sα/NγL, N ∈ N, of a dual windowγL. Likewise, Algorithm 7 provides the sampled dual windows ofEB-splinesBΛ. Therefore,
for a given periodization parameterK ∈ N and the time-shift parametera ∈ N, we compute

PKSα/aγL(k) =
∑

j∈Z

(Sα/aγL)(k + jK), k = 0, . . . ,K − 1 .

This sum is finite because of the compact support ofγL.

Example 17. We use Algorithm 5 for the computation of the dual Gabor window γL of the asymmetric TP functiong with
parametersδ = [−1, 1, 1/3, 1/5] and lattice parametersα = 2/3, β = 1. The discretization parametersK = 900, a = 20,
b = 1/30, are chosen according to the standard dilationa/α =

√
K in Remark 13. Figure 4 shows the discrete TP function

PKSα/ag and its dual windowPKSα/aγL for L = 20. The difference‖PKSα/a(γL − γ◦)‖2 to the discrete canonical dual is
7 · 10−8 measured in theℓ2-norm ofC900.

Sometimes the frame bounds in the discrete case may be betterthan in the continuous case. Therefore the discrete TP
functions or EB-splines may even provide Riesz bases at the critical density, as is explained in the following recent result.
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Fig. 4: Discrete TP function and its dualγ20 for a = 20 andM = 30.

Proposition 18. [24],[36] Let g be a continuous TP function as in(9), including the infinite type withη = 0. Assume
α = M ∈ N and letβ = 1/M andK ∈ N such thatK/M ∈ N. If K/M is odd, thenG(PKSg, α, β) is a basis ofCK .

In addition, assume thatg is even, which means that{δν | δν > 0} = {−δν | δν < 0}. If M is odd, thenG(PKSg, α, β) is
a basis ofCK .

Remark19. In the critical caseαβ = 1 the computation of the dual windowγ cannot be performed by the aforementioned
discretization procedure, as the Gabor systemG(g, α, β) is not a frame inL2(R). In this case, the usual method using the
discrete Fourier transform and the discrete Zak transform of PKSg̃ should be applied for the computation of the discrete dual
window [37].

ACKNOWLEDGEMENT

First discussions on the topic of this article were performed while J. Stöckler visited the Erwin Schrödinger Institute. The
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APPENDIX

In the appendix we provide the technical details of the proofs of the main theorems. The proof of Theorem 8 depends
heavily on [15, Theorem 9].

Proof of Theorem 8:The pre-Gramian is bounded onℓ2(Z) as a consequence of the exponential decay ofg and Schur’s
test. Therefore the finite sectionsPL(x) = P

r(n) Pg(x)Pn are uniformly bounded.
To prove the existence of a lower boundA, we construct a left inverse ofPL(x) by adapting the proof of [15, Theorem 9].

By step 2 of Algorithm 5PL(x) has columns indexed byk, k1 −L ≤ k ≤ k2 +L and rows indexed byj, i1(L) ≤ j ≤ i2(L),
thus every left-inverseQL(x) has columns indexed byi1(L) ≤ j ≤ i2(L) and rows indexed byk1 − L ≤ k ≤ k2 + L. We
will construct these rows one by one in three steps.

Step 1. For every index−L ≤ ℓ ≤ L, we choose the following submatrixRℓ of PL(x). Given x and ℓ ∈ Z, we choose
yℓ ∈ [0, α) andjℓ ∈ Z, such that

yℓ = x+ jℓα− ℓ

β
.

Then we define the matrixRℓ = P0(yℓ) by using the same definitions as in step 3 of Algorithm 5 withL = 0; i.e., we let

iℓ1(0) =

⌊
k1 +m− 1

αβ
− yℓ

α

⌋
+ 1,

iℓ2(0) =

⌈
k2 − n+ 1

αβ
− yℓ

α

⌉
− 1,

and
Rℓ = (rℓ;j,k)iℓ

1
(0)≤j≤iℓ

2
(0), k1≤k≤k2

,

with rℓ;j,k = g
(
yℓ + jα− k

β

)
. Note that

yℓ + jα− k

β
= x+ (j + jℓ)α− ℓ+ k

β
.
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Hence, the columns ofRℓ, as indexed byk1 ≤ k ≤ k2, correspond to sections of columns ofPL(x) indexed byℓ+ k1 ≤ k ≤
ℓ + k2. More precisely,R−L contains sections of the firstk2 − k1 + 1 columns ofPL(x); with increasingℓ the selection of
columns is shifted to the right; andRL contains sections of the lastk2 − k1 + 1 columns ofPL(x). For the rows ofRℓ, we
observe that

i1(L) ≤
⌊
k1 +m− 1

αβ
− x

α
+

ℓ

αβ

⌋
+ 1 = iℓ1(0) + jℓ

andi2(L) ≥ iℓ2(0)+ jℓ. To summarize, eachRℓ is a (iℓ2(0)− iℓ1(0)+ 1)× (k2 − k1 +1)-submatrix ofPL(x) with a dimension
independent of|ℓ| ≤ L.

Step 2. The arguments in [15, Theorem 8] relate left-inversesof Rℓ = P0(yℓ) to left-inverses of the biinfinite matrixPg(yℓ).
It is shown that

• Rℓ has full column rank,
• there exists a uniform boundC > 0, which does not depend onyℓ ∈ [0, α), and left-inversesΓℓ of Rℓ such that

‖Γℓ‖ ≤ C for all − L ≤ ℓ ≤ L,

• the rows with indexk1 ≤ k ≤ 0 of Γℓ are orthogonal to all columns with indexk′ > k2 − n of the biinfinite matrix
Pg(yℓ), and hence orthogonal to all columnsk′ > ℓ+ k2 − n of PL(x). Likewise, rows0 ≤ k ≤ k2 of Γℓ are orthogonal
to all columns with indexk′ < ℓ+ k1 +m of PL(x).

Step 3. With these properties, we obtain the left-inverseQL(x) of PL(x) by defining the rows ofQL(x) as follows:

• We start withΓ−L and take its rowsk1 ≤ k ≤ 0 as the first rows ofQL(x), extended by zeros such that

(QL(x))k−L,j+j−L
=

{
(Γ−L)k,j , i−L

1 (0) ≤ j ≤ i−L
2 (0),

0, otherwise.

• For −L+ 1 ≤ ℓ ≤ L− 1 we take the row with index0 of Γℓ and extend this row by zeroes,

(QL(x))ℓ,j+jℓ =

{
(Γℓ)0,j , iℓ1(0) ≤ j ≤ iℓ2(0),

0, otherwise.

• We end withΓL and take its rows0 ≤ k ≤ k2 as the last rows ofQL(x), extended by zeros such that

(QL(x))k+L,j+jL =

{
(ΓL)k,j , iL1 (0) ≤ j ≤ iL2 (0),

0, otherwise.

It is clear that all entries ofQL(x) are bounded by the constantC in step 2. Moreover, every row and column ofQL(x) has
at most

max
−L≤ℓ≤L

(iℓ2(0)− iℓ1(0) + 1) ≤ k2 − k1 + 1

αβ

nonzero entries. Therefore, by Schur’s test, we obtain that

‖QL(x)‖ ≤ C
k2 − k1 + 1

αβ
.

SinceQL is a left inverse ofPL, we obtain

‖c‖2 = ‖QL(x)PL(x)c‖2 ≤ C
k2 − k1 + 1

αβ
‖PL(x)c‖2,

and we may chooseA = (C k2−k1+1
αβ )−1 as a lower bound in (16). This completes the proof of (16). We conclude that∥∥eT0 PL(x)

†∥∥
2
≤ C k2−k1+1

αβ = A−1. Therefore

‖γL‖22 =

∫ ∞

−∞
|γL(x)|2 dx

= β2

∫ α

0

∑

j∈Z

|γL(x+ jα)|2 dx

= β2

∫ α

0

∥∥eT0 PL(x)
†∥∥2

2
dx ≤ αβ2 A−2.

In the following we will need a well known result of Jaffard [38] and Baskakov [39].
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Proposition 20. Let A = (Ajk)j,k∈Z be a biinfinite matrix with exponential off-diagonal decay,i.e., there exist constants
C, a > 0, such that

|Ajk| ≤ Ce−a|j−k| ∀j, k ∈ Z . (23)

If A is invertible, thenA−1 also possesses exponential off-diagonal decay and there exist C′ > 0 and 0 < ã < a, such that

|(A−1)jk| ≤ C′e−ã|j−k| ∀j, k ∈ Z .

Corollary 21. Let A be positive and invertible onℓ2(Z) with exponential off-diagonal decay(23) and let PnAPn be a
sequence of finite sections. Then every matrixPnAPn is invertible onPnℓ

2(Z) and there existC′ > 0 and ã, 0 < ã < a,
such that

|(PnAPn)
−1
jk | ≤ C′e−ã|j−k| for − n1 ≤ j, k ≤ n2 . (24)

Proof: The proof follows [40] and [27]. LetA be the matrix obtained by stacking the finite sectionsPnAPn along
the diagonal. ThenA possesses exponential off-diagonal decay (23). SinceA is invertible and positive, its spectrumσ(A)
is contained in an interval[A,B] for someA,B > 0, consequently the spectrum of the restriction ofPnAPn on Pnℓ

2(Z)
is also contained in[A,B] and every finite section is invertible onPnℓ

2(Z). Therefore the stacked matrixA is invertible
on ⊕Pnℓ

2(Z) ≃ ℓ2(Z). By Proposition 20A−1 possesses exponential off-diagonal decay. SinceA−1 consists of the blocks
(PnAPn)

−1, they satisfy|(PnAPn)
−1
jk | ≤ C′e−ã|j−k| for −n1 ≤ j, k ≤ n2.

We remark that clearly every finite matrix possesses exponential off-diagonal decay. The point is that the constants maybe
chosen independently of the size of the finite section.

Proof of Theorem 9: Recall that, forn = (n1, n2) ∈ N2, Pn b = (. . . , 0, b−n1
, b−n1+1, . . . , bn2−1, bn2

, 0, . . .)T is the
orthogonal projection ontoPn ℓ2(Z) ∼= Cn1+n2+1. We writeUn = Pr U Pn for a non-symmetric finite section ofU . In the
assumption of Theorem 9r depends onn, but we will omit this dependence in the notation. All operator norms are inℓ2(Z).

Let b := U (U∗ U)−1 e0 anddn := Un (U∗
n
Un)

−1 e0. We decompose the norm into three parts

‖b− dn‖2 ≤
∥∥(U − U Pn) (U

∗ U)−1 e0
∥∥
2

+
∥∥∥U Pn

(
(U∗ U)−1 − (Pn U∗ U Pn)

−1
)
e0

∥∥∥
2

(25)

+
∥∥U Pn ((Pn U∗ U Pn)

−1 − Un (U∗
n
Un)

−1) e0
∥∥
2
.

1. Note thatU∗ U is invertible and positive. SinceU fulfills the decay property (18), it is easy to see that the symmetric matrix
U∗ U decays exponentially off the diagonal, i.e., for some constantsC, a > 0

|(U∗U)jk| ≤ Ce−a|j−k| j, k ∈ Z .

By Proposition 20 the inverse matrix inherits the exponential decay, and thus there exist constantsC′ > 0 and ã, 0 < ã < a,
such that|(U∗ U)−1

jk | ≤ C′e−ã|j−k| for all j, k ∈ Z. Hence the entries of the vectorv := (U∗ U)−1 e0 also decay exponentially
as

|vj | ≤ c1 e
−ã |j| j ∈ Z . (26)

Since

‖(I − Pn)v‖22 =

−n1−1∑

j=−∞
|vj |2 +

∞∑

j=n2+1

|vj |2 ≤ C′
∑

|j|>n0

e−2ã|j| = O(e−2ã|j|) ,

the decay property (26) implies that
∥∥(U − U Pn) (U

∗ U)−1 e0
∥∥
2
≤ ‖U‖ ‖(I − Pn) v‖2 ≤ c2 e

−ã n0 .

2. SinceU∗ U is invertible and positive with spectrumσ(U∗U) ⊆ [A,B] for A,B > 0, the spectrum of the finite sections
Pn U∗ U Pn on Pnℓ

2(Z) is also contained in[A,B]. As in the finite section method in [40] and withv = (U∗ U)−1 e0, we
obtain
∥∥((U∗ U)−1 − (Pn U∗ U Pn)

−1) e0
∥∥
2
=
∥∥(Pn U∗ U Pn)

−1 Pn U∗ U (Pn − I) v
∥∥
2
≤ ‖(U∗ U)−1‖ ‖U∗ U‖ ‖(Pn − I) v‖2

and consequently
∥∥U Pn

(
(U∗ U)−1 − (Pn U∗ U Pn)

−1
)
e0
∥∥
2
≤ c3 e

−ã n0 .
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3. To treat the third term in (25), we need a geometric interpretation of the rows of the Moore-Penrose pseudoinverse. Let

bn := (U Pn) (Pn U∗ U Pn)
−1 e0

anddn as above. Thenbn is the transpose of the zeroth row of the Moore-Penrose pseudoinverse ofU Pn. By Corollary 21
(Pn U∗ U Pn)

−1 satisfies (24) independently ofn. Therefore the same argument as in the first part implies the decay property

|(bn)j | ≤ c4 e
−ã |j|. (27)

It is essential that the constants are independent ofn. Since the Moore-Penrose pseudoinverse ofU Pn is also a left-inverse,
we have

bn ⊥Vn := span{uk | −n1 ≤ k ≤ n2, k 6= 0},
whereuk, k ∈ Z, are the columns of the matrixU . Likewise forUn = PrUPn we have

dn ⊥PrVn .

Using this orthogonality, we rewrite the vectorsbn anddn as follows. LetΠW denote the orthogonal projection onto some
subspaceW . Now set

b̃n := (I −ΠVn
)u0 and d̃n := (I −ΠPrVn

)Pr u0 .

Sincebn ∈ Im(UPn) anddn ∈ Im(Un), we obtain

bn =
b̃n

‖b̃n‖22
and dn =

d̃n

‖d̃n‖22
. (28)

The normalization in (28) is obtained from

〈bn, u0〉 = 1 and 〈b̃n, u0〉 = 〈b̃n, b̃n +ΠVn
u0〉 = ‖b̃n‖22,

〈dn,Pru0〉 = 1 and 〈d̃n,Pru0〉 = 〈d̃n, d̃n +ΠPrVn
Pru0〉 = ‖d̃n‖22.

As the third term in (25) equals‖bn − dn‖2, we first consider‖b̃n − d̃n‖2. For this purpose we write

b̃n − d̃n = (I − Pr) (u0 −ΠVn
u0) + ΠPrVn

Pr u0 − Pr ΠVn
u0

= (I − Pr) b̃n + ΠPrVn
Pr (u0 −ΠVn

u0)

= (I − Pr) b̃n + ΠPrVn
Pr b̃n. (29)

By the assumption (19), the truncated columnsPr uk, with −n1 ≤ k ≤ n2 and k 6= 0, form a Riesz basis forPrVn with
lower Riesz boundA. Furthermore it holds that

∥∥∥ΠPrVn
Pr b̃n

∥∥∥
2

2
≤ A−2

∑

−n1≤k≤n2, k 6=0

|〈ΠPrVn
Pr b̃n,Pr uk〉|2

= A−2
∑

−n1≤k≤n2, k 6=0

|〈Pr b̃n, uk〉|2

= A−2
∑

−n1≤k≤n2, k 6=0

|〈(Pr − I) b̃n, uk〉|2

≤ A−2B
∥∥∥(Pr − I) b̃n

∥∥∥
2

2
,

whereB = ‖U‖2 denotes the Bessel bound of all columnsuk, k ∈ Z. Taking theℓ2-norm in (29) and substituting the above
estimate, we obtain

‖b̃n − d̃n‖2 ≤ c5 ‖(I − Pr) b̃n‖2.
We now return to‖bn − dn‖2. It is an easy exercise that for nonzero vectorsy, w we have

∥∥∥∥∥
y

‖y‖22
− w

‖w‖22

∥∥∥∥∥
2

≤ 3 ‖y − w‖2
min{‖y‖22 , ‖w‖

2
2}

.

Using once more thatbn ∈ Im(UPn) anddn ∈ Im(Un), the assumption (19) implies that

0 < A ≤ ‖b̃n‖2, ‖d̃n‖2 ≤ ‖u0‖2 .

By the decay property (27) we obtain

‖bn − dn‖2 ≤ 3
A2 ‖b̃n − d̃n‖2 ≤ 3 c5

A2 ‖(I − Pr) b̃n‖2 ≤ c6 e
−ã n0 .

To finish the proof of Theorem 9, we add the three contributions in (25) and obtain the convergence rate (20) with a constant
c̃ = c2 + c3 + c6.
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