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Abstract

A new generalization of the ux-corrected transport (FCT) me thodology to im-
plicit nite element discretizations is proposed. The underlying high-order scheme is
supposed to be unconditionally stable and produce time-acaate solutions to evolu-
tionary convection problems. Its nonoscillatory low-ordercounterpart is constructed
by means of mass lumping followed by elimination of negativeo -diagonal entries
from the discrete transport operator. The raw antidi usive uxes, which represent
the di erence between the high- and low-order schemes, are wated and limited
within an outer defect correction loop. The upper bound for the magnitude of each
antidi usive ux is evaluated using a single sweep of the mutidimensional FCT lim-
iter at the rst outer iteration. This semi-implicit limitin g strategy makes it possible
to enforce the positivity constraint in a very robust and e ¢ ient manner. Moreover,
the computation of an intermediate low-order solution can beavoided. Numerical
examples are presented for two-dimensional benchmark probins discretized by the
standard Galerkin FEM combined with the Crank-Nicolson time-stepping.

Key Words: high-resolution schemes; ux-corrected transport algorithm;
nite element method; implicit time discretization

1 Introduction

The advent of nonlinear high-resolution schemes for convemti-dominated ows traces its
origins to the ux-corrected transport (FCT) methodology introduced in the early 1970s
by Boris and Book [1]. The fully multidimensional generalizZizon proposed by Zalesak [23]
has formed a very general framework for the design of FCT algibims by representing
them as a blend of linear high- and low-order approximations.Unlike other limiting
techniques, which are typically based on geometric design enita, ux correction of FCT
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type is readily applicable to nite element discretizationson unstructured meshes [16],[18].
A comprehensive summary of the state of the art can be found in [[A]2],[18],[25].

The design philosophy behind modern front-capturing methodsvolves a set of phys-
ical or mathematical constraints to be imposed on the discrete Istion so as to prevent
the formation of spurious undershoots and overshoots in the ity of steep gradients.
To this end, the following algorithmic components are to be gzi ed [12],[25]

a high-order approximation which may fail to possess the desirgaoperties;
a low-order approximation which does enjoy these propertidait is less accurate;

a way to decompose the di erence between the above into a sum oésksymmetric
internodal uxes which can be manipulated without violating mass conservation;

a cost-e ective mechanism for adjusting these antidi usive uxe in an adaptive
fashion so that the imposed constraints are satis ed for a given saion.

Classical FCT algorithms are based on an explicit correction dhe low-order solution
whose local extrema serve as the upper/lower bounds for the surnlimited antidi usive
uxes. In the case of an implicit time discretization, which gies rise to a nonlinear
algebraic system, the same strategy can be used to secure the poytiof the right-hand
side, whereas the left-hand side is required to satisfy thd-matrix property [7],[8].

The rationale for the development of implicit FCT algorithms stems from the fact that
the underlying linear discretizations must be stable. In partular, the use of an unstable
high-order method may give rise to nonlinear instabilities wich manifest themselves in
signi cant distortions of the solution pro les as an aftermath of aggressive ux limiting.
In the nite element context, a proper amount of streamline dusion can be used to
stabilize an explicit high-order scheme based on the standard IB&kin approximation.
However, the evaluation of extra terms increases the cost of miat assembly and the
time step must satisfy a restrictive "CFL' condition. On the otherhand, unconditionally
stable implicit methods can be operated at large time steps (less iterative solvers fail
to converge or the positivity criterion is violated) and thee is no need for any extra
stabilization. Moreover, the overhead cost is insigni cant, sice the use of a consistent
mass matrix leads to a sequence of linear systems even in the fdiplicit case.

The generalized FEM-FCT methodology introduced in [7],[8nd re ned in [9],[10] is
applicable to implicit time discretizations but the cost of ierative ux correction is rather
high if the sum of limited antidi usive uxes and the nodal correction factors need to be
updated in each outer iteration. In addition, the nonlinearconvergence rates leave a lot to
be desired in many cases. The use of ‘frozen' correction factavsputed at the beginning
of the time step by the standard Zalesak limiter alleviates theanvergence problems but
the linearized scheme can no longer be guaranteed to remairspiwity-preserving. The
semi-implicit limiting strategy proposed in the present paper rakes it possible to overcome
this problem and enforce the positivity constraint at a cost comparable to that of explicit
ux correction. The resulting FEM-FCT algorithm is to be recommended for strongly
time-dependent problems discretized in time by the secondemr accurate Crank-Nicolson
scheme. The design of general-purpose ux limiters which are moexpensive but do not
su er from a loss of accuracy at large time steps is addressed inJ[14
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2 Algebraic ux correction

In this paper, we adopt an algebraic approach to the design ofgh-resolution schemes
which consists of imposing certain mathematical constraints odiscrete operators, so as
to achieve some favorable matrix properties. A very handy algeaic criterion, which
represents a multidimensional generalization of Harten's TVDheorem, was introduced
by Jameson [4],[5] who proved that a semi-discrete scheme of tbent

dUi

X
at = G (U ui); G O 8 6i 1)
i6i

is local extremum diminishing(LED). After the discretization in time, such schemes re-
main positivity-preserving (PP) provided that each solution pdate u” ! u"*! or the
converged steady-state solutiom"** = u" satisfy an algebraic system of the form

Au™?! = Bu™; (2)

where A = fa; g is an M-matrix and B = fh; g has no negative entries. Under these
conditions, the positivity of the old solution carries over to he new one [10],[12]

u" 0 ) ut = A BU" O (3)

If the underlying spatial discretization is LED, then the o -diagonal coe cients of both
matrices have the right sign, while the positivity conditiont; O for the diagonal entries
of B yields a readily computable upper bound for admissible time gis [12]

1+ t(1 )miinq’i‘ 0 for O <1 (4)

Of course, the above algebraic constraints are not the necessdmyt merely su cient
conditions for a numerical scheme to be local extremum dimsting and/or positivity
preserving. In the linear case, they turn out to be far too restective. According to the
well-known Godunov theorem, linear schemes satisfying thesetera are doomed to be
(at most) rst-order accurate. On the other hand, a high-orderdiscretization which fails
to satisfy the imposed constraints unconditionally can be adjustl so that it admits an
equivalent representation of the form (1) and/or (2), wherehe matrix entries may depend
on the unknown solution. This idea makes it possible to construe variety of nonlinear
high-resolution schemes based on tlagebraic ux correction paradigm [12],[14].

To keep the presentation self-contained, we will follow the emimap displayed in Fig. 1
and explain the meaning of all discrete operators in the nexthtee sections. Roughly
speaking, a high-order Galerkin discretization is to be repsented in the form

Au™! = Bu" + f; (5)

where the matricesA and B satisfy the positivity constraint (2). In order to guarantee
that the extra term f poses no hazard to positivity, it is replaced by its limited conterpart
f such that the right-hand side remains nonnegative fou" 0. This modi cation is
mass-conserving provided that botHf and f can be decomposed into skew-symmetric
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1. Semi-discrete high-order scheme (Galerkin FEM)

d o
Mcd—ltj= Ku suchthat 9j6i: kj <O

2. Semi-discrete low-order scheme L =K + D

ML% = Lu suchthat I; 0; 8 6 i

3. Nonlinear FEM-FCT algorithm  Au"™?! = Bu"+ f ;

where A= M_ tL; B =M_+(1 ) tL

Figure 1: Roadmap of matrix manipulations.

internodal uxes as de ned below. A family of implicit FEM-FCT schemes based on this
algebraic approach was proposed in [7],[8] and combined wih iterative limiting strategy
in [10]. In Section 5.2, we present an alternative generaltzan of Zalesak's limiter which
proves much more robust and e cient. The new approach to ux carection of FCT type
is also based on the positivity constraint (2) but enforces it in @other way so that the
costly computation of nodal correction factors is performeplist once per time step. The
positivity of the resulting semi-implicit FCT algorithm will b e proven in Section 5.3.

3 Semi-discrete high-order scheme

As a standard model problem, consider the time-dependent camtity equation for a
scalar quantity u transported by the velocity eld v which is assumed to be known

%ltﬂ r (vu)=0: (6)
Let the discretization in space be performed by a (Galerkin) ite element method which
yields a DAE system for the vector of time-dependent nodal valge

du .
Mc— = Ku; (7)

where Mc = fm; g denotes the consistent mass matrix an& = fk; g is the discrete
transport operator. The latter may contain some streamline diusion used for stabilization
purposes and/or to achieve better phase accuracy in the framesk of Taylor-Galerkin
methods [3]. Its skew-symmetric par§(K K T) is consistent with the properties of the
continuous convective derivativev r and implies the conservation of kinetic energy in
turbulent ow computations, see [21],[22]. At the same time, th symmetric part given
by %(K + KT) diagf K g represents a discrete (anti-)di usion operator, which resultsn
a nonphysical but sometimes desirable production or dissipatiaf kinetic energy.
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4 Semi-discrete low-order scheme

In the linear case, the algebraic constraints (1) and (2) can kreadily enforced by means
of “discrete upwinding' as proposed in [7],[8]. For a semi-diste nite element scheme of
the form (7), the required matrix manipulations are as follars

replace the consistent mass matriM ¢ by its lumped counterpart M = diagf m;g,

render the operatorK local extremum diminishing by adding an arti cial di usion
operator D = fdj g so as to eliminate all negative o -diagonal coe cients.

This straightforward “postprocessing' transforms (7) into itsihear LED counterpart

du _
dt
where D is supposed to be a symmetric matrix with zero row and column sums.of~

each pair of nonzero o -diagonal coe cientsk; andk; of the high-order operatorK , the
optimal choice of the arti cial di usion coe cient d; reads [8],[12]

M. Lu; L = K + D; (8)

dij = maxf kij :0; kji g= dji . (9)

Alternatively, one can apply discrete upwinding to the skew-symetric part %(K KT)
of the original transport operatorK , which corresponds to [14]

iki  kij  kj + ki
2 2

In either case, the o -diagonal coe cients of the low-order perator |; = k; + d; are
nonnegative, as required by the LED criterion (1). Due to theero row sum property of
the arti cial di usion operator D, the diagonal coe cients of L are given by
X
lii = kii dij: (11)
j6i

dij =

= dj' : (20)

The semi-discretized equation for the nodal value;(t) can be represented as

dUi X X ]
mia = lij (Uj Ui) + U; kij ; (12)
j8i j
P . . . .
wherem; = ;my > 0 and [; 0; 8i 6 j. The last term in the above expression

represents a discrete counterpart of ur v which is responsible for a physical growth of
local extrema [12]. In the semi-discrete case, it is harmless gn(cf. [6])

dui
dt
which proves that the low-order scheme (8) is positivity-preseing. For the fully discrete

system to inherit this property, the time step should be chosen incaordance with the
CFL-like condition (4) unless the backward Euler time-steppig ( = 1) is employed.

u(t)y=0; u(t) O, 8j6i ) 0; (13)
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5 Nonlinear FEM-FCT algorithm

The high-order system (7) discretized in time by a standard twoelvel -scheme
[Mc tK U™ =[Mc+(1 ) tKJu" (14)
admits an equivalent representation in the form (5) amenabl® ux correction
M, tLju™ =M+ ) tLJu"+ f @t un): (15)

The last term in the right-hand side is assembled from skew-symmgetiinternodal uxes
fij which can be associated with the edges of the sparsity graph [12]
X
fi = fij ; where fji = fij . (16)
i6i
Speci cally, theseraw antidi usive uxes, which o set the discretization error induced by
mass lumping and discrete upwinding, are given by the formuld(],[12]

fy =0my + W™l @™ o) my @ ) Wil u):  @17)

Interestingly enough, the contribution of the consistent mass atrix consists of a truly
antidi usive implicit part and a di usive explicit part which has a strong damping e ect.
In fact, explicit mass di usion of the form (Mc M_)u" has been used to construct the
‘monotone’ low-order method in the framework of explicit FEI-FCT algorithms [16].

In the case of an implicit time discretization (0< 1), the nonlinearities inherent
to the governing equation and/or to the employed high-resotion scheme call for the use
of an iterative solution strategy. Let successive approximatianto the solution u"*! be
computed step-by-step in the framework of a xed-point defectorrection scheme [12].
Each solution update amounts to solving a linear system of the for(15) which reads

Au(m*D) = m). m=0;1;2:::: (18)
This xed point iteration is preconditioned by the ‘'monotore’ low-order operator
A= ML tL (29)

which enjoys the M-matrix property, since the o -diagonal efries of L are nonnegative by
construction. The right-hand sided™, which needs to be updated in each outer iteration,
consists of a low-order part augmented by limited antidi usion[12]

E™ = Bu"+ f (u™;u"); B=M_+(@1 ) tL (20)
In order to prevent the formation of nonphysical undershootsral overshoots, the raw
antidi usive uxes f; should be multiplied by suitable correction factors so that
fi = i fij ; where 0 i 1 (21)
jsi
This adjustment transforms (15) into a nonlinear combinationof the low-order scheme
(i 0) and the original high-order one (j 1). The task of the ux limiter is to

determine an optimal value of each correction factor; individually so as to remove as
much arti cial di usion as possible without violating the positivity constraint.
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5.1 Semi-explicit FCT limiter

The rstimplicit FCT algorithm for nite element discretizat ions on unstructured meshes
[7],[8] was based on the following limiting strategy which wasventually superseded by
further extensions proposed in a series of subsequent publicasd9],[10]

1. Compute the high-order solution to (15) in an iterative wayby solving (18) using
the total amount of raw antidi usion ( j 1) to assemble the ternf .

2. Evaluate the contribution of the consistent mass matrix to tle raw antidi usive
uxes (17) using the converged high-order solution as a substiti for u"* .

3. Solve the explicit subproblenM & = Bu" for the positivity-preserving intermediate
solution & which represents an explicit low-order approximation ta(t"** ).

4. Invoke Zalesak's multidimensional FCT limiter to determim the correction factors
j SO as to secure the positivity of the right-hand side as explaindxklow.

5. Compute the nal solution by solving the linear systemAu"*! = b, where
X
b= m;th + fij; fij = ijfij: (22)
i6i

In the fully explicit case, we haveA = M_ so that u"™?* = M, *b can be computed
explicitly, and the classical FEM-FCT algorithm of Lehner et al. [16],[18] is recovered.
The crux of the above generalization lies in the special cheiof the preconditionerA
which guarantees that the positivity of the right-hand side igreserved, whence

g 0 ) b 0 ) u"r=Al o0 (23)

The ux correction process starts with an optional “prelimitng' of the raw antidi usive
uxes fj . It consists of cancelling the "wrong' ones which tend to atte the intermediate
solution and create numerical artifacts. The required adjustemt is given by [14]

fij == maxfO;p; gt &), Py = fj (e ) (24)

The remaining uxes are truly antidi usive and need to be limited. The upper and lower

bounds to be imposed on the net antidi usive ux depend on the loal extrema

H' =max ;e =min t; (25)
i2Si i2S

where §; = fj jm; 6 0g denotes the set of nodes which share an element/edge with

nodei so that the basis functions ; and ' ; have overlapping supports.

In the worst case, all antidi usive uxes into nodei have the same sign. Hence, it is
worthwhile to treat the positive and negative ones separatelpas proposed by Zalesak [23]

1. Evaluate the sums of all positive and negative antidi usive uxes into nodei
X X
P’ = maxf O; fj g; P, = minf O; fj; g: (26)
j6i i6i



2. Compute the distance to a local maximum/minimum of the lowerder solution

Q =4 w; Q =4 (27)

3. Calculate the nodal correction factors which prevent ovehoots/undershoots

R =minf1,mQ =P"g; R, =minf1,mQ, =P, ¢: (28)

|
4. Check the sign of j and apply R; or R; , whichever is smaller, so that

| = m!nf R fRLgf if £ >.O, (29)
minfR; ;R/g;  otherwise

This symmetric limiting strategy guarantees that the correctéd right-hand side (22) sat-

is es the constraint u{“‘” bh=m; ™. Due to the fact that the preconditioner A was

designed to be an M-matrix, the resulting scheme proves positipreserving [8],[12].

It is worth mentioning that the constituents of the sumsP; vary with t, while the
corresponding upper/lower bound®); are xed. Consequently, the correction factors j;
produced by Zalesak's limiter depend on the time step. This depdence, which is typical
of FCT methods, turns out to be a blessing and a curse at the same tim®n the one
hand, a larger portion of the raw antidi usive ux f; may be retained as the time step is
re ned. On the other hand, the accuracy of FCT algorithms detriorates as t increases,
since the positivity constraint (2) becomes too restrictive. Th iterative limiting strategy
proposed in [10] alleviates this problem to some extent by adjting the correction factors

j in each outer iteration so as to recycle the rejected antidi sion step-by-step. However,
the cost of iterative ux correction is rather high and severe @anvergence problems may
occur. Therefore, other limiting techniques such as the gaaépurpose (GP) ux limiter
introduced in [14] are to be preferred for marching the soluwn to a steady state.

5.2 Semi-implicit FCT limiter

For truly time-dependent problems, the use of moderately smailme steps is dictated by
accuracy considerations so that ux limiting of FCT type is appopriate. In this case,
the underlying time-stepping method should provide (uncondonal) stability and be at
least second-order accurate in order to capture the evolutiary details. For this reason,
we favor an implicit time discretization of Crank-Nicolson tye ( = 1=2) and mention
the strongly A-stable fractional-step scheme [19] as a promising alternative.

The semi-explicit limiting strategy presented in the previousection can be classi ed
as an algorithm of predictor-corrector type since the implitpart of the raw antidi usive
ux (17) is evaluated using the converged high-order solutioim place ofu"**. This handy
linearization, which can be traced back to the classical FEM&T procedure [16], makes
it possible to perform ux correction in a very e cient way, since Zalesak's limiter is
invoked just once per time step. However, a lot of CPU time needs be invested in the
iterative solution of the ill-conditioned high-order system ad the convergence may even
fail if the time step is too large. Moreover, the nal solution &ils to satisfy the nonlinear
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algebraic system (18) upon substitution. On the other hand, thepdate of P, , Q, , and
R, in each outer iteration would trigger the cost of ux limiting and compromise the
bene ts of implicit time-stepping. In order to circumvent this problem, let us introduce
an e cient semi-implicit FCT algorithm which can be implemented as follows:

At the rst outer iteration ( m = 1), compute a set of antidi usive uxes fj which
provide an explicit estimate for the admissible magnitude df; = j fj

1. Initialize all auxiliary arrays by zeros: P, 00Q OR O

2. Compute the positivity-preserving intermediate solution blow order
g=u"+(1 ) tM_Lu™ (30)

3. For each pair of neighboring nodesand j, evaluate the raw antidi usive ux

(1= td] () u) (31)

and add its contribution to the sums of positive/negative edgeontributions

max max
=R 0 fig; P=P fo; fio (32)

4. Update the maximum/minimum admissible increments for both ades

max

— max
Q = min

Qity & 5 Q= o Qith b o (33)

5. Relax the constraintR; 1 for the nodal correction factors and compute
Ri = miQ =h : (34)
6. Multiply the raw antidi usive uxes f;' by the minimum of R; and R,

minf Ri";Rj of if £ > 0;
minfR; ;R gf";  otherwise

f; = (35)

At each outer iteration (m =1;2;:::), assemblef and plug it into (20)
1. Update the target ux (17) using the solution from the previos iteration
fyo= [my+  wd™iu™ o™
[mj (1 ) tdi](u u): (36)
2. Constrain each uxfj so that its magnitude is bounded by that off7;

minff; ;maxf0;f5gg  if fj > O;

i = maud f i minf O; f“li gg; otherwise (37)



3. Insert the limited antidi usive uxes f; into the right-hand side (20)

R e T A (38)
Due to the fact that f; is not the real target ux but merely an explicit predictor used
to estimate the maximum amount of admissible antidi usion, the maltipliers R; are
rede ned so that the ratio fj =fi' may exceed unity. However, the e ective correction
factors j := f; =f; are bounded by 0 and 1, as required for consistency.

Instead of computing the optimal upper/lower bounds (27) fora given time step, it
is also possible to use some reasonable xed bounds and adjust thedistep if this is
necessary to satisfy a CFL-like condition (as in the case of TVD matls). For instance,
the auxiliary quantities Q; can be computed using" instead of u-

+ . —_ H .
O mm W0 =my o @)

The corresponding nodal correction factor®; should be rede ned as [14]
Ry =(mi m;)Q =R ; (40)

wherem; m; = P i6i Mij is the di erence between the diagonal entries of the consisten
and lumped mass matrices. This modi cation eliminates the nelefor evaluation of the
intermediate solutionu-in (30) and leads to a single-step FCT algorithm.

For a given time step, the multipliers (40) will typically be snaller than those de ned
by (34). However, in either case the denominatd®P, is proportional to t. Therefore,
the di erence between the e ective correction factors ;; will shrink and eventually vanish
as the time step is re ned. As long as t is su ciently small, the accuracy of both FCT
techniques depends solely on the choice of the underlying vigrder scheme.

5.3 Positivity proof

The positivity proof for the semi-implicit FCT algorithm (30) {(38) follows that for the
classical Zalesak limiter, see [8],[12]. In the nontrivial cade 6 O, the i th component
of the right-hand side (20) admits the following representatin

B =mth+f =(m e+ ek (41)
where the coe cient ;| = f, =(tx t4) is de ned in terms of the local extremum
bhe = , .
g™ if f, <O
This de nition implies that f;, = Q, , where ; > 0. By virtue of (41), the sign of the
intermediate solution u-is preserved if the inequalitym; i 0 holds.
In the casef; < 0, the antidi usive correction to nodei is bounded from below by
X
mQ, R;P, minf0;f59 f;, = iQ;: (43)

j6i
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Likewise, a strictly positive antidi usive correction f; > 0 is bounded from above by

X
iQf = f; maxt0;f59 R/P" mQ: (44)
|6

It follows that O i~ m;, which proves thath O provided thaty; O andux O.

In light of the above, the semi-implicit FCT limiter is positivity-preserving as long
as the diagonal coe cients of the matrix B as de ned in (20) are nonnegative. The
corresponding CFL-like condition (4) for the maximum admissile time step reads

@a )t miinjmi:Iiij: (45)

The positivity of the single-step algorithm based on the slack bals (39){(40) can
be proven in a similar way using the following representation @he right-hand side
X
h =(mi i)Uin+ iUE"‘(l ) t lij an: (46)
j
In this case, the limited antidi usive correction to nodei can be estimated as follows
(m m)Q fi (m m)QY (47)

so that m; i m;. Thus, the right-hand side given by (46) preserves the sign af if
the time step satis es the positivity constraint for all diagonalcoe cients

P )t minjm;=kj: (48)

Under the above conditions, the M-matrix property of the precoditioner A is su cient
to guarantee that each solution update is positivity-preserig.

5.4 Convergence behavior

A remark is in order regarding the convergence behavior ofeahterative defect correction
scheme (18) preconditioned by the low-order operator (19).hE converged solutioru"*!
is supposed to satisfy a nonlinear algebraic system of the form

A u™ = Bu"; Au™t o= AU (49)

whereA is the nonlinear FCT operator which includes some built-in ardi usion. Clearly,
the rate of convergence will depend on the approximation pperty of the preconditioner,
i.e., on the normjjA  Ajj. On the one hand, the operatoA as de ned in (19) is linear
and easy to ‘invert' because it is an M-matrix. On the other handt represents a rather
poor approximation to the original Galerkin operatorMc tK which is recovered in
the limit ; ! 1. As a result, the convergence of a highly accurate FCT algdrit is
likely to slow down as the high-order solution is approached.

In particular, the lumped-mass version, which is obtained by #&g m; = 0 in the
de nition of the raw antidi usive ux, converges much faster than the one based on the
consistent target ux (17). However, mass lumping may have a destating e ect on the
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accuracy of a time-dependent solution, as demonstrated by timemerical examples in the

next section. At the same time, the high phase accuracy providday the consistent mass

matrix comes at the cost of slower convergence, due to the fattat the preconditioner

A is based onM_ rather than Mc. The high-order system (14) which corresponds to
i  1is particularly dicult to solve, even though it is linear (see below).

In general, there is a tradeo between the accuracy of the nuenical solution and
convergence of the xed-point iteration (18). Any modi cation of the ux limiter which
makes it possible to accept more antidi usion has an adverse eteon the convergence
rates. Conversely, more di usive schemes converge better butetin accuracy leaves a lot
to be desired. The only way to accelerate convergence withagdcri cing some accuracy
IS to use a sophisticated preconditioner which should includemited antidi usion but
remain an M-matrix. In the context of TVD-like methods such notinear operators can be
assembled from the solution-dependent coe cients involved ithe positivity proof [6],[14].
In fact, driving the residual of time-dependent problems to rachine zero is hardly worth
the e ort. Indeed, a half-converged time-accurate solutioms probably better than a fully
converged one obtained at a much higher cost or using a less aaterdiscretization.

6 Numerical examples

In order to illustrate the performance of the semi-implicit FO algorithm, we apply it
to a number of time-dependent benchmark problems discretizen space by the stan-
dard Galerkin method on a quadrilateral or triangular mesh. Te time discretization is
performed by the second-order accurate Crank-Nicolson scherddl numerical solutions
were computed by the algorithm (30){(38) since the single-stegersion based on (39){(40)
yields virtually identical results in the range of time steps ensidered below. The goal of
this numerical study is to investigate the accuracy of the propsed discretization tools as
well as the convergence behavior of the iterative ux/deféaorrection scheme (18).

6.1 Solid body rotation

Let us start with the two-dimensional benchmark problem propsed by LeVeque [15]
which makes it possible to assess the ability of a high-resolutiorhsene to preserve both
smooth and discontinuous proles. To this end, a slotted cylinde a sharp cone and
a smooth hump are exposed to the nonuniform velocity el¢d = (0:5 y;x 0:5) and
undergo a counterclockwise rotation about the center of thenit square = (0 ;1) (0;1).
Each solid body lies within a circle of radiugo = 0:15 centered at a point with Cartesian
coordinates Ko;Yo). In the rest of the domain, the solution is initialized by zero The
shapes of the three bodies as depicted in Fig. 2 can be expressddrims of the normalized
distance function for the respective reference poinkg; yo) thus:

p
r(x;y)=% X X2+ (y Yo

The center of the slotted cylinder is located atXp; yo) = (0:5;0:75) and its geometry in

12
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Figure 2: Solid body rotation: initial data / exact solution.

the circular regionr(x;y) 1 is given by

1 ifjx Xo 0:025_y 085

'y, 0) = .
uxy;0) 0 otherwise

The corresponding analytical expression for the conical bodgads

u;y;0)=1 r(xy);  (xoiYo) = (0:50:25)

whereas the shape and location of the hump at= 0 are as follows
u(x;y; 0) =0:25[1 + cos( minfr(x;y);19)]; (Xo;Yo) = (0:25;0:5):

After one full revolution (t = 2 ) the exact solution of the continuity equation (6)
coincides with the initial data. The numerical solutions preented in Fig. 3 were produced
by the semi-implicit FCT algorithm on a uniform mesh of 128 128 bilinear nite elements
using the time step t =10 3. The upper diagram demonstrates the detrimental e ect of
mass lumping which manifests itself in signi cant amplitude anghase errors. The lower
diagram was computed using the consistent target ux (17) inclding the contribution
of mass antidi usion. In this case, the shape of the rotating bods is reproduced very
well and even the narrow bridge of the slotted cylinder is lagdy preserved. This example
con rms that time-dependent problems call for the use of a tim-accurate high-order
scheme based on the consistent mass matrix. A further improvemeoit phase accuracy
Is possible in the framework of (semi-implicit) Taylor-Galerkn methods.
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FEM-FCT, lumped mass matrix
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Figure 3: Solid body rotation: numerical solutions at =2 .
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6.2 Swirling ow

The second benchmark problem, which was also introduced in [18eals with a swirling
deformation of the initial data by the incompressible velocit eld given by

v, =sin?(x)sin(y); v = sin’(y)sin(2x):

The initial condition to be prescribed is a discontinuous furtmn of the spatial coordinates
which equals unity within a circular sector of = 2 radians and zero elsewhere:

1 if(x 1?+(y 1)?< 0:64

1 y:0) = .
u(x;y;0) 0 otherwise

In the course of deformation, the mass distribution assumes a colayp spiral shape
which is nicely resolved by the semi-implicit FCT algorithm. Te numerical solution at
time t = 2:5 calculated using the same mesh and time step as in the previouseple
is displayed in Fig. 4. The use of a piecewise-linear nite elemeapproximation on a
triangular mesh with the same number of nodes yields virtuallhe same results, see Fig. 5.
For the di erence between the underlying triangulations tdoe visible, both solutions were
output on coarser meshes consisting of 4,225 vertices. In eithase, the evolution details
are captured with high precision and the resolution of discomtuities is remarkably crisp.
These results compare well to those computed in [12] using ux litars of TVD type.

6.3 Convection skew to the mesh

In order to compare the convergence behavior of the semi-irgit FEM-FCT algorithm
to that of the underlying Galerkin scheme, let us solve equatio(6) with v = (1;1)
so that the initial pro le is translated along the diagonal of the computational domain

= (0 ;1) (0;1). The numerical study is to be performed for two dierent intial
con gurations centered at the reference pointXp; yo) = (0:3;0:3)

TP1 The rst test problem corresponds to the discontinuous initial ondition

1 if maxfjx  Xoj;jy Yojg 0

uxy:0 = 5 Gtherwise

(50)

TP2 The second test problem deals with translation of a smooth funcin de ned as

u(x;y;0) = %[1 +c0s(10 (x  xo))I[1+cos(10 (y o))l (51)

within the circle g (X Xo)2+(y VYo)? 0:1and equalto zero elsewhere.

Figure 6 displays the approximate solutions at = 0:5 computed using t = 10 3 on
a quadrilateral mesh consisting of 128 128 bilinear elements. The left diagrams were
produced by the consistent-mass FCT algorithm which yields nascillatory solutions
bounded by 0 and 1. The underlying high-order scheme remainsite but gives rise to
nonphysical undershoots and overshoots, as seen in the right degs.
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Figure 4: Swirling deformation on a quadrilateral mesh, = 2:5.

Figure 5. Swirling deformation on a triangular mesht = 2:5.
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FEM-FCT Galerkin scheme

Figure 6: Convection skew to the mesh: 128 128Q; elements,t =0:5.

In either case, the numerical solution was computed in an itetige way using the
defect correction scheme (18) preconditioned by the low-adoperator (19). The stopping
criterion was based on the Euclidean norm of the residual vecto

r=Au™  Bu" f; jirj= rTr (52)
which was required to satisfy the inequalitjjrjj 10 4. The di erence between the exact
solution u and its nite element ?pproximation up, was measured in the.;-norm

X
jjlu upjji=  ju upjdx miju(Xi;yi)  uij (53)
i
as well as in theL ;-norm de nezd by the following formula
X
jju unjiz= ju upj?dx miju(xi;yi)  uij% (54)
R I
wherem; = ' i dx are the diagonal coe cients of the lumped mass matrix. Furthe

more, the global minimumup,i, = Min; u; and maximum unax = Max; u; of the discrete
solution u, were compared to their analytical values 0 and 1.
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Tables 1 and 2 illustrate the convergence behavior of the ieive ux/defect correction
scheme as applied to the test problems TP1 and TP2 on three succesli re ned meshes.
The rst three columns in each table display the re nement leveNLEV, the number of
vertices/nodes NVT and the total number of outer iterations NDC equired to compute
the numerical solution att = 0:5. The di erent performance of the four algorithms under
consideration supports the arguments presented in Section 514 particular, it can readily
be seen that the use of the consistent mass matrix results in a muclttee accuracy but the
convergence slows down, whereas the lumped-mass version isdessrate but much more
e cient. In the di erence jju™?! u"jj is large, mass antidi usion a ects the convergence
rates even stronger than the convective part of the antidi usie ux. Since the latter is
proportional to t, the mass lumping error plays a dominant role at small time stepgich
that A M_. Note that the consistent-mass Galerkin scheme faces severe cogeBce
problems and the error may even increase as the mesh is re nedgSable 2).

On the other hand, the results computed by the semi-implicit FT algorithm exhibit
a monotone grid convergence as well as some improvement of tbevergence rates. Even
the consistent-mass version converges slowly but surely to a noribbastory time-accurate
solution. For large time steps, the single-step implementatiorased on (39){(40) would be
more di usive and converge faster. However, for time steps as sinas the one employed

FEM-FCT algorithm / consistent mass matrix

[NLEV | NVT [ NDC [jiu_ Unjix | iU Unjia | Umin | Umax |
6 4,225| 2,500| 1.1737e-2| 6.2176e-2| 0.0 | 1.0
7 16,641| 2,461| 7.3688e-3| 4.8577e-2| 0.0 | 1.0
8 66,049| 2,489| 4.7039e-3| 3.8715e-2| 0.0 | 1.0

FEM-FCT algorithm / lumped mass matrix

[NLEV [ NVT [NDC [jju_ unjjs [ iU Unjiz [ Umin | Umax |
6 4,225 751| 1.9356e-2| 8.4294e-2| 0.0 | 0.9988
7 16,641| 1,000| 1.2402e-2| 6.5356e-2| 0.0 | 1.0000
8 66,049| 1,014| 7.8511e-3| 5.1182e-2| 0.0 | 1.0000
Galerkin scheme/ consistent mass matrix
[NLEV | NVT [ NDC [jju  Unjis [jju_ Unji2 | Umn | Umax |
6 4,225| 4,666| 3.6283e-2| 7.4952e-2| -0.2557| 1.4505
7 16,641 7,379| 2.7340e-2| 5.8124e-2| -0.2743| 1.3797
8 66,049| 13,852| 2.3000e-2| 5.2536e-2| -0.4437| 1.4080
Galerkin scheme / lumped mass matrix
‘ NLEV ‘ NVT ‘ NDC ‘JJU Uhjjl ‘ jjU uhij ‘ Umin ‘ Umax ‘
6 4,225| 1,000, 6.5181e-2| 1.3073e-1| -0.4022| 1.5608
7 16,641| 1,423| 4.7055e-2| 9.8663e-2| -0.4340| 1.5732
8 66,049| 1,500| 3.5126e-2| 8.0298e-2| -0.3713| 1.5628

Table 1: Convection skew to the mesh: discontinuous initial dat
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FEM-FCT algorithm / consistent mass matrix
[NLEV [ NVT [NDC [jjiu_ Unjis [ iU Unjjo [ Umin | Umax |
6 4,225| 2,486| 1.4799e-3| 9.2813e-3| 0.0 | 0.8562

7 16,641| 1,833| 4.3436e-4| 2.7820e-3| 0.0 | 0.9418
8 66,049| 2,867 | 1.7887e-4| 1.2032e-3| 0.0 | 0.9740

FEM-FCT algorithm / lumped mass matrix
[NLEV [ NVT [NDC [ ju_ Unjiz [ U Unjjz [ Umin | Umax |
6 4,225| 1,000| 4.2704e-3| 2.7827e-2| 0.0 | 0.7308

7 16,641| 1,000| 1.7834e-3| 1.1294e-2| 0.0 | 0.9218
8 66,049| 736 | 7.6982e-4| 4.6142e-3| 0.0 | 0.9612

Galerkin scheme / consistent mass matrix
[NLEV [ NVT [ NDC [jju_ Upjjz [jjU_ Unji2 | Umn | Umax |
6 4 225| 2,500| 1.3961e-3| 2.6234e-3| -0.0158| 0.9890

7 16,641 6,437 1.8892e-3| 3.9001e-3| -0.0480| 0.9925
8 66,049| 13,700| 2.3237e-3| 8.1553e-3| -0.1363| 1.0012

Galerkin scheme / lumped mass matrix
| NLEV | NVT [ NDC | jju unji1 | jju Unjiz | Umin | Umax |
6 4,225| 1,000| 1.0904e-2| 4.2409e-2| -0.1911| 0.8809

7 16,641| 1,000| 3.4837e-3| 1.4234e-2| -0.0811| 1.0098
8 66,049| 1,000| 1.3092e-3| 4.3179e-3| -0.0322| 1.0046

Table 2: Convection skew to the mesh: smooth initial data.

in this section, it would be just as accurate and converge at treame rate as the algorithm
(30){(38). The values ofuna in Table 2 reveal that ux correction may lead to undesirable
‘peak clipping’, which is a well-known phenomenon discussedg.e in [12],[23]. On the
other hand, the associated high-order solution is corrupted hyndershoots and overshoots
which are patrticularly large for discontinuous initial data(Table 1) and less pronounced for
the smooth cosine hill (Table 2). These nonphysical oscillatiomssult in a dramatic loss of
accuracy and slow/no convergence, so that the results are infarto those produced by the
FEM-FCT algorithm using the same parameter settings. Since thatter converges faster
than the Galerkin scheme, it is more e cient than semi-explidi ux correction (24){(29)
which represents a positivity-preserving postprocessing of thégh-order predictor.

Of course, the linear system (14) could be solved in one step withi@asorting to defect
correction. However, this straightforward approach would kd to a severe deterioration
of linear convergence rates. Indeed, the high-order operatd ¢ tK is much harder
to “invert' than the preconditioner A which enjoys the M-matrix property. In many cases,
the high-order solution may prove prohibitively expensive oeven impossible to compute
in such a brute-force way, unless a direct solver is employed. Heneven linear high-order
systems of the form (15) call for the use of iterative defect catction [8].
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7 Conclusions

The semi-implicit approach to ux correction of FCT type leads to a robust and e cient
special-purpose algorithm for time-dependent problems digtized in space by the nite
element method. The accuracy of the resulting scheme improwesthe time step is re ned
and the consistent mass matrix can be included in a positivity-gserving fashion. The
new limiting strategy makes it possible to avoid a repeated comjfation of the nodal
correction factors at each outer iteration. Therefore, these of an implicit time-stepping
method pays o inspite of the CFL-like condition to be satis ed ly the time step in the
case < 1. For su ciently small time steps, the new algorithm is more acctate and/or
e cient than the algebraic ux correction schemes proposed in8],[10]. On the other
hand, it is not to be recommended for steady-state computatienwhich call for the use
of large time steps. In this case, it is worthwhile to rede ne theinderlying constraints as
explained in [14] and switch to an upwind-biased limiting straggy. A promising direction
for further research is the design of characteristic FCT limites for the Euler equations
[25] on the basis of (39){(40). Indeed, the use of upper/lowerobinds depending on the
local extrema ofu” rather than o makes it possible to decouple the discrete Jacobian
operators and limit them separately as in the case of characistic TVD methods [13].
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