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Abstract

A new generalization of the ux-corrected transport (FCT) me thodology to im-
plicit �nite element discretizations is proposed. The underlying high-order scheme is
supposed to be unconditionally stable and produce time-accurate solutions to evolu-
tionary convection problems. Its nonoscillatory low-ordercounterpart is constructed
by means of mass lumping followed by elimination of negativeo�-diagonal entries
from the discrete transport operator. The raw antidi�usive uxes, which represent
the di�erence between the high- and low-order schemes, are updated and limited
within an outer defect correction loop. The upper bound for the magnitude of each
antidi�usive ux is evaluated using a single sweep of the multidimensional FCT lim-
iter at the �rst outer iteration. This semi-implicit limitin g strategy makes it possible
to enforce the positivity constraint in a very robust and e�c ient manner. Moreover,
the computation of an intermediate low-order solution can beavoided. Numerical
examples are presented for two-dimensional benchmark problems discretized by the
standard Galerkin FEM combined with the Crank-Nicolson time-stepping.

Key Words: high-resolution schemes; ux-corrected transport algorithm;
�nite element method; implicit time discretization

1 Introduction

The advent of nonlinear high-resolution schemes for convection-dominated ows traces its
origins to the ux-corrected transport (FCT) methodology introduced in the early 1970s
by Boris and Book [1]. The fully multidimensional generalization proposed by Zalesak [23]
has formed a very general framework for the design of FCT algorithms by representing
them as a blend of linear high- and low-order approximations.Unlike other limiting
techniques, which are typically based on geometric design criteria, ux correction of FCT
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type is readily applicable to �nite element discretizationson unstructured meshes [16],[18].
A comprehensive summary of the state of the art can be found in [2],[12],[18],[25].

The design philosophy behind modern front-capturing methodsinvolves a set of phys-
ical or mathematical constraints to be imposed on the discrete solution so as to prevent
the formation of spurious undershoots and overshoots in the vicinity of steep gradients.
To this end, the following algorithmic components are to be speci�ed [12],[25]

� a high-order approximation which may fail to possess the desiredproperties;

� a low-order approximation which does enjoy these propertiesbut is less accurate;

� a way to decompose the di�erence between the above into a sum of skew-symmetric
internodal uxes which can be manipulated without violating mass conservation;

� a cost-e�ective mechanism for adjusting these antidi�usive uxes in an adaptive
fashion so that the imposed constraints are satis�ed for a given solution.

Classical FCT algorithms are based on an explicit correction ofthe low-order solution
whose local extrema serve as the upper/lower bounds for the sum of limited antidi�usive
uxes. In the case of an implicit time discretization, which gives rise to a nonlinear
algebraic system, the same strategy can be used to secure the positivity of the right-hand
side, whereas the left-hand side is required to satisfy theM-matrix property [7],[8].

The rationale for the development of implicit FCT algorithms stems from the fact that
the underlying linear discretizations must be stable. In particular, the use of an unstable
high-order method may give rise to nonlinear instabilities which manifest themselves in
signi�cant distortions of the solution pro�les as an aftermath of aggressive ux limiting.
In the �nite element context, a proper amount of streamline di�usion can be used to
stabilize an explicit high-order scheme based on the standard Galerkin approximation.
However, the evaluation of extra terms increases the cost of matrix assembly and the
time step must satisfy a restrictive `CFL' condition. On the otherhand, unconditionally
stable implicit methods can be operated at large time steps (unless iterative solvers fail
to converge or the positivity criterion is violated) and there is no need for any extra
stabilization. Moreover, the overhead cost is insigni�cant, since the use of a consistent
mass matrix leads to a sequence of linear systems even in the fullyexplicit case.

The generalized FEM-FCT methodology introduced in [7],[8]and re�ned in [9],[10] is
applicable to implicit time discretizations but the cost of iterative ux correction is rather
high if the sum of limited antidi�usive uxes and the nodal correction factors need to be
updated in each outer iteration. In addition, the nonlinearconvergence rates leave a lot to
be desired in many cases. The use of `frozen' correction factors computed at the beginning
of the time step by the standard Zalesak limiter alleviates the convergence problems but
the linearized scheme can no longer be guaranteed to remain positivity-preserving. The
semi-implicit limiting strategy proposed in the present paper makes it possible to overcome
this problem and enforce the positivity constraint at a cost comparable to that of explicit
ux correction. The resulting FEM-FCT algorithm is to be recommended for strongly
time-dependent problems discretized in time by the second-order accurate Crank-Nicolson
scheme. The design of general-purpose ux limiters which are more expensive but do not
su�er from a loss of accuracy at large time steps is addressed in [14].
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2 Algebraic ux correction

In this paper, we adopt an algebraic approach to the design of high-resolution schemes
which consists of imposing certain mathematical constraints ondiscrete operators, so as
to achieve some favorable matrix properties. A very handy algebraic criterion, which
represents a multidimensional generalization of Harten's TVD theorem, was introduced
by Jameson [4],[5] who proved that a semi-discrete scheme of the form

dui

dt
=

X

j 6= i

cij (uj � ui ); cij � 0; 8j 6= i (1)

is local extremum diminishing(LED). After the discretization in time, such schemes re-
main positivity-preserving (PP) provided that each solution update un ! un+1 or the
converged steady-state solutionun+1 = un satisfy an algebraic system of the form

Aun+1 = Bun ; (2)

where A = f aij g is an M-matrix and B = f bij g has no negative entries. Under these
conditions, the positivity of the old solution carries over to the new one [10],[12]

un � 0 ) un+1 = A � 1Bun � 0: (3)

If the underlying spatial discretization is LED, then the o�-diagonal coe�cients of both
matrices have the right sign, while the positivity conditionbii � 0 for the diagonal entries
of B yields a readily computable upper bound for admissible time steps [12]

1 + � t(1 � � ) min
i

cn
ii � 0 for 0 � � < 1: (4)

Of course, the above algebraic constraints are not the necessarybut merely su�cient
conditions for a numerical scheme to be local extremum diminishing and/or positivity
preserving. In the linear case, they turn out to be far too restrictive. According to the
well-known Godunov theorem, linear schemes satisfying these criteria are doomed to be
(at most) �rst-order accurate. On the other hand, a high-orderdiscretization which fails
to satisfy the imposed constraints unconditionally can be adjusted so that it admits an
equivalent representation of the form (1) and/or (2), where the matrix entries may depend
on the unknown solution. This idea makes it possible to constructa variety of nonlinear
high-resolution schemes based on thealgebraic ux correction paradigm [12],[14].

To keep the presentation self-contained, we will follow the roadmap displayed in Fig. 1
and explain the meaning of all discrete operators in the next three sections. Roughly
speaking, a high-order Galerkin discretization is to be represented in the form

Aun+1 = Bun + f; (5)

where the matricesA and B satisfy the positivity constraint (2). In order to guarantee
that the extra term f poses no hazard to positivity, it is replaced by its limited counterpart
f � such that the right-hand side remains nonnegative forun � 0. This modi�cation is
mass-conserving provided that bothf and f � can be decomposed into skew-symmetric
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1. Semi-discrete high-order scheme (Galerkin FEM)

MC
du
dt

= Ku such that 9 j 6= i : kij < 0

2. Semi-discrete low-order scheme L = K + D

M L
du
dt

= Lu such that l ij � 0; 8j 6= i

3. Nonlinear FEM-FCT algorithm Aun+1 = Bun + f � ;

where A = M L � � � tL; B = M L + (1 � � )� tL

Figure 1: Roadmap of matrix manipulations.

internodal uxes as de�ned below. A family of implicit FEM-FCT schemes based on this
algebraic approach was proposed in [7],[8] and combined withan iterative limiting strategy
in [10]. In Section 5.2, we present an alternative generalization of Zalesak's limiter which
proves much more robust and e�cient. The new approach to ux correction of FCT type
is also based on the positivity constraint (2) but enforces it in another way so that the
costly computation of nodal correction factors is performedjust once per time step. The
positivity of the resulting semi-implicit FCT algorithm will b e proven in Section 5.3.

3 Semi-discrete high-order scheme

As a standard model problem, consider the time-dependent continuity equation for a
scalar quantity u transported by the velocity �eld v which is assumed to be known

@u
@t

+ r � (vu) = 0 : (6)

Let the discretization in space be performed by a (Galerkin) �nite element method which
yields a DAE system for the vector of time-dependent nodal values

MC
du
dt

= Ku; (7)

where MC = f mij g denotes the consistent mass matrix andK = f kij g is the discrete
transport operator. The latter may contain some streamline di�usion used for stabilization
purposes and/or to achieve better phase accuracy in the framework of Taylor-Galerkin
methods [3]. Its skew-symmetric part12(K � K T ) is consistent with the properties of the
continuous convective derivativev � r and implies the conservation of kinetic energy in
turbulent ow computations, see [21],[22]. At the same time, the symmetric part given
by 1

2(K + K T ) � diagf K g represents a discrete (anti-)di�usion operator, which resultsin
a nonphysical but sometimes desirable production or dissipationof kinetic energy.

4



4 Semi-discrete low-order scheme

In the linear case, the algebraic constraints (1) and (2) can bereadily enforced by means
of `discrete upwinding' as proposed in [7],[8]. For a semi-discrete �nite element scheme of
the form (7), the required matrix manipulations are as follows

� replace the consistent mass matrixMC by its lumped counterpart M L = diagf mi g,

� render the operatorK local extremum diminishing by adding an arti�cial di�usion
operator D = f dij g so as to eliminate all negative o�-diagonal coe�cients.

This straightforward `postprocessing' transforms (7) into its linear LED counterpart

M L
du
dt

= Lu; L = K + D; (8)

where D is supposed to be a symmetric matrix with zero row and column sums. For
each pair of nonzero o�-diagonal coe�cientskij and kji of the high-order operatorK , the
optimal choice of the arti�cial di�usion coe�cient dij reads [8],[12]

dij = maxf� kij ; 0; � kji g = dji : (9)

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1
2(K � K T )

of the original transport operatorK , which corresponds to [14]

dij =
jkij � kji j

2
�

kij + kji

2
= dji : (10)

In either case, the o�-diagonal coe�cients of the low-order operator l ij := kij + dij are
nonnegative, as required by the LED criterion (1). Due to thezero row sum property of
the arti�cial di�usion operator D, the diagonal coe�cients of L are given by

l ii := kii �
X

j 6= i

dij : (11)

The semi-discretized equation for the nodal valueui (t) can be represented as

mi
dui

dt
=

X

j 6= i

l ij (uj � ui ) + ui

X

j

kij ; (12)

where mi =
P

j mij > 0 and l ij � 0; 8i 6= j . The last term in the above expression
represents a discrete counterpart of� ur � v which is responsible for a physical growth of
local extrema [12]. In the semi-discrete case, it is harmless since (cf. [6])

ui (t) = 0 ; uj (t) � 0; 8j 6= i )
dui

dt
� 0; (13)

which proves that the low-order scheme (8) is positivity-preserving. For the fully discrete
system to inherit this property, the time step should be chosen in accordance with the
CFL-like condition (4) unless the backward Euler time-stepping (� = 1) is employed.
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5 Nonlinear FEM-FCT algorithm

The high-order system (7) discretized in time by a standard two-level � -scheme

[MC � � � tK ]un+1 = [ MC + (1 � � )� tK ]un (14)

admits an equivalent representation in the form (5) amenableto ux correction

[M L � � � tL ]un+1 = [ M L + (1 � � )� tL ]un + f (un+1 ; un ): (15)

The last term in the right-hand side is assembled from skew-symmetric internodal uxes
f ij which can be associated with the edges of the sparsity graph [12]

f i =
X

j 6= i

f ij ; where f ji = � f ij : (16)

Speci�cally, theseraw antidi�usive uxes , which o�set the discretization error induced by
mass lumping and discrete upwinding, are given by the formula [10],[12]

f ij = [ mij + � � tdn+1
ij ] (un+1

i � un+1
j ) � [mij � (1 � � )� tdn

ij ] (un
i � un

j ): (17)

Interestingly enough, the contribution of the consistent mass matrix consists of a truly
antidi�usive implicit part and a di�usive explicit part which has a strong damping e�ect.
In fact, explicit mass di�usion of the form (MC � M L )un has been used to construct the
`monotone' low-order method in the framework of explicit FEM-FCT algorithms [16].

In the case of an implicit time discretization (0< � � 1), the nonlinearities inherent
to the governing equation and/or to the employed high-resolution scheme call for the use
of an iterative solution strategy. Let successive approximations to the solution un+1 be
computed step-by-step in the framework of a �xed-point defectcorrection scheme [12].
Each solution update amounts to solving a linear system of the form (15) which reads

Au (m+1) = b(m) ; m = 0; 1; 2: : : : (18)

This �xed point iteration is preconditioned by the `monotone' low-order operator

A = M L � � � tL (19)

which enjoys the M-matrix property, since the o�-diagonal entries of L are nonnegative by
construction. The right-hand sideb(m) , which needs to be updated in each outer iteration,
consists of a low-order part augmented by limited antidi�usion[12]

b(m) = Bun + f � (u(m) ; un ); B = M L + (1 � � )� tL: (20)

In order to prevent the formation of nonphysical undershoots and overshoots, the raw
antidi�usive uxes f ij should be multiplied by suitable correction factors so that

f �
i =

X

j 6= i

� ij f ij ; where 0� � ij � 1: (21)

This adjustment transforms (15) into a nonlinear combinationof the low-order scheme
(� ij � 0) and the original high-order one (� ij � 1). The task of the ux limiter is to
determine an optimal value of each correction factor� ij individually so as to remove as
much arti�cial di�usion as possible without violating the posit ivity constraint.
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5.1 Semi-explicit FCT limiter

The �rst implicit FCT algorithm for �nite element discretizat ions on unstructured meshes
[7],[8] was based on the following limiting strategy which waseventually superseded by
further extensions proposed in a series of subsequent publications [9],[10]

1. Compute the high-order solution to (15) in an iterative wayby solving (18) using
the total amount of raw antidi�usion ( � ij � 1) to assemble the termf � .

2. Evaluate the contribution of the consistent mass matrix to the raw antidi�usive
uxes (17) using the converged high-order solution as a substitute for un+1 .

3. Solve the explicit subproblemM L ~u = Bun for the positivity-preserving intermediate
solution ~u which represents an explicit low-order approximation tou(tn+1 � � ).

4. Invoke Zalesak's multidimensional FCT limiter to determine the correction factors
� ij so as to secure the positivity of the right-hand side as explainedbelow.

5. Compute the �nal solution by solving the linear systemAun+1 = b, where

bi = mi ~ui +
X

j 6= i

f �
ij ; f �

ij = � ij f ij : (22)

In the fully explicit case, we haveA = M L so that un+1 = M � 1
L b can be computed

explicitly, and the classical FEM-FCT algorithm of L•ohner et al. [16],[18] is recovered.
The crux of the above generalization lies in the special choice of the preconditionerA
which guarantees that the positivity of the right-hand side ispreserved, whence

~u � 0 ) b � 0 ) un+1 = A � 1b � 0: (23)

The ux correction process starts with an optional `prelimiting' of the raw antidi�usive
uxes f ij . It consists of cancelling the `wrong' ones which tend to atten the intermediate
solution and create numerical artifacts. The required adjustment is given by [14]

f ij := maxf 0; pij g(~ui � ~uj ); pij = f ij =(~ui � ~uj ): (24)

The remaining uxes are truly antidi�usive and need to be limited. The upper and lower
bounds to be imposed on the net antidi�usive ux depend on the local extrema

~umax
i = max

j 2 Si

~uj ; ~umin
i = min

j 2 Si

~uj ; (25)

where Si = f j j mij 6= 0g denotes the set of nodes which share an element/edge with
nodei so that the basis functions' i and ' j have overlapping supports.

In the worst case, all antidi�usive uxes into node i have the same sign. Hence, it is
worthwhile to treat the positive and negative ones separately, as proposed by Zalesak [23]

1. Evaluate the sums of all positive and negative antidi�usive uxes into nodei

P+
i =

X

j 6= i

maxf 0; f ij g; P �
i =

X

j 6= i

minf 0; f ij g: (26)
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2. Compute the distance to a local maximum/minimum of the low-order solution

Q+
i = ~umax

i � ~ui ; Q�
i = ~umin

i � ~ui : (27)

3. Calculate the nodal correction factors which prevent overshoots/undershoots

R+
i = min f 1; mi Q+

i =P+
i g; R�

i = min f 1; mi Q�
i =P�

i g: (28)

4. Check the sign off ij and apply R�
i or R�

j , whichever is smaller, so that

� ij =
�

minf R+
i ; R�

j g; if f ij > 0;
minf R�

i ; R+
j g; otherwise:

(29)

This symmetric limiting strategy guarantees that the corrected right-hand side (22) sat-
is�es the constraint ~umin

i � bi =mi � ~umax
i . Due to the fact that the preconditionerA was

designed to be an M-matrix, the resulting scheme proves positivity-preserving [8],[12].

It is worth mentioning that the constituents of the sumsP �
i vary with � t, while the

corresponding upper/lower boundsQ�
i are �xed. Consequently, the correction factors� ij

produced by Zalesak's limiter depend on the time step. This dependence, which is typical
of FCT methods, turns out to be a blessing and a curse at the same time. On the one
hand, a larger portion of the raw antidi�usive ux f ij may be retained as the time step is
re�ned. On the other hand, the accuracy of FCT algorithms deteriorates as � t increases,
since the positivity constraint (2) becomes too restrictive. The iterative limiting strategy
proposed in [10] alleviates this problem to some extent by adjusting the correction factors
� ij in each outer iteration so as to recycle the rejected antidi�usion step-by-step. However,
the cost of iterative ux correction is rather high and severe convergence problems may
occur. Therefore, other limiting techniques such as the general-purpose (GP) ux limiter
introduced in [14] are to be preferred for marching the solution to a steady state.

5.2 Semi-implicit FCT limiter

For truly time-dependent problems, the use of moderately smalltime steps is dictated by
accuracy considerations so that ux limiting of FCT type is appropriate. In this case,
the underlying time-stepping method should provide (unconditional) stability and be at
least second-order accurate in order to capture the evolutionary details. For this reason,
we favor an implicit time discretization of Crank-Nicolson type (� = 1=2) and mention
the strongly A-stable fractional-step� � scheme [19] as a promising alternative.

The semi-explicit limiting strategy presented in the previoussection can be classi�ed
as an algorithm of predictor-corrector type since the implicit part of the raw antidi�usive
ux (17) is evaluated using the converged high-order solutionin place ofun+1 . This handy
linearization, which can be traced back to the classical FEM-FCT procedure [16], makes
it possible to perform ux correction in a very e�cient way, since Zalesak's limiter is
invoked just once per time step. However, a lot of CPU time needs to be invested in the
iterative solution of the ill-conditioned high-order system and the convergence may even
fail if the time step is too large. Moreover, the �nal solution fails to satisfy the nonlinear
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algebraic system (18) upon substitution. On the other hand, the update of P �
i , Q�

i , and
R�

i in each outer iteration would trigger the cost of ux limiting and compromise the
bene�ts of implicit time-stepping. In order to circumvent this problem, let us introduce
an e�cient semi-implicit FCT algorithm which can be implemented as follows:

� At the �rst outer iteration ( m = 1), compute a set of antidi�usive uxes ~f ij which
provide an explicit estimate for the admissible magnitude off �

ij = � ij f ij

1. Initialize all auxiliary arrays by zeros: P �
i � 0; Q�

i � 0; R�
i � 0:

2. Compute the positivity-preserving intermediate solution of low order

~u = un + (1 � � )� tM � 1
L Lu n : (30)

3. For each pair of neighboring nodesi and j , evaluate the raw antidi�usive ux

f n
ij = � tdn

ij (un
i � un

j ) (31)

and add its contribution to the sums of positive/negative edgecontributions

P �
i := P �

i + max
min f 0; f n

ij g; P �
j := P �

j + max
min f 0; � f n

ij g: (32)

4. Update the maximum/minimum admissible increments for both nodes

Q�
i := max

min
�

Q�
i ; ~uj � ~ui

	
; Q�

j := max
min

�
Q�

j ; ~ui � ~uj
	

: (33)

5. Relax the constraintR�
i � 1 for the nodal correction factors and compute

R�
i := mi Q�

i =P�
i : (34)

6. Multiply the raw antidi�usive uxes f n
ij by the minimum of R�

i and R�
j

~f ij =
�

minf R+
i ; R�

j gf n
ij ; if f n

ij > 0;
minf R�

i ; R+
j gf n

ij ; otherwise:
(35)

� At each outer iteration (m = 1; 2; : : :), assemblef � and plug it into (20)

1. Update the target ux (17) using the solution from the previous iteration

f ij = [ mij + � � td(m)
ij ](u(m)

i � u(m)
j )

� [mij � (1 � � )� tdn
ij ] (un

i � un
j ): (36)

2. Constrain each ux f ij so that its magnitude is bounded by that of ~f ij

f �
ij =

�
minf f ij ; maxf 0; ~f ij gg; if f ij > 0;
maxf f ij ; minf 0; ~f ij gg; otherwise:

(37)
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3. Insert the limited antidi�usive uxes f �
ij into the right-hand side (20)

b(m)
i := b(m)

i + f �
ij ; b(m)

j := b(m)
j � f �

ij : (38)

Due to the fact that f n
ij is not the real target ux but merely an explicit predictor used

to estimate the maximum amount of admissible antidi�usion, the multipliers R�
i are

rede�ned so that the ratio ~f ij =f n
ij may exceed unity. However, the e�ective correction

factors � ij := f �
ij =f ij are bounded by 0 and 1, as required for consistency.

Instead of computing the optimal upper/lower bounds (27) fora given time step, it
is also possible to use some reasonable �xed bounds and adjust the time step if this is
necessary to satisfy a CFL-like condition (as in the case of TVD methods). For instance,
the auxiliary quantities Q�

i can be computed usingun instead of ~u

Q+
i = max

j 2 Si

un
j � un

i ; Q�
i = min

j 2 Si

un
j � un

i : (39)

The corresponding nodal correction factorsR�
i should be rede�ned as [14]

R�
i = ( mi � mii )Q�

i =P�
i ; (40)

wheremi � mii =
P

j 6= i mij is the di�erence between the diagonal entries of the consistent
and lumped mass matrices. This modi�cation eliminates the need for evaluation of the
intermediate solution ~u in (30) and leads to a single-step FCT algorithm.

For a given time step, the multipliers (40) will typically be smaller than those de�ned
by (34). However, in either case the denominatorP �

i is proportional to � t. Therefore,
the di�erence between the e�ective correction factors� ij will shrink and eventually vanish
as the time step is re�ned. As long as �t is su�ciently small, the accuracy of both FCT
techniques depends solely on the choice of the underlying high-order scheme.

5.3 Positivity proof

The positivity proof for the semi-implicit FCT algorithm (30) {(38) follows that for the
classical Zalesak limiter, see [8],[12]. In the nontrivial casef �

i 6= 0, the i � th component
of the right-hand side (20) admits the following representation

b�
i = mi ~ui + f �

i = ( mi � � i )~ui + � i ~uk ; (41)

where the coe�cient � i = f �
i =(~uk � ~ui ) is de�ned in terms of the local extremum

~uk =

(
~umax

i ; if f �
i > 0;

~umin
i ; if f �

i < 0:
(42)

This de�nition implies that f �
i = � i Q�

i , where � i > 0. By virtue of (41), the sign of the
intermediate solution ~u is preserved if the inequalitymi � � i � 0 holds.

In the casef �
i < 0, the antidi�usive correction to node i is bounded from below by

mi Q�
i � R�

i P �
i �

X

j 6= i

minf 0; ~f ij g � f �
i = � i Q�

i : (43)
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Likewise, a strictly positive antidi�usive correction f �
i > 0 is bounded from above by

� i Q+
i = f �

i �
X

j 6= i

maxf 0; ~f ij g � R+
i P+

i � mi Q+
i : (44)

It follows that 0 � � i � mi , which proves that b�
i � 0 provided that ~ui � 0 and ~uk � 0.

In light of the above, the semi-implicit FCT limiter is positivity-preserving as long
as the diagonal coe�cients of the matrix B as de�ned in (20) are nonnegative. The
corresponding CFL-like condition (4) for the maximum admissible time step reads

(1 � � )� t � min
i

jmi =lii j: (45)

The positivity of the single-step algorithm based on the slack bounds (39){(40) can
be proven in a similar way using the following representation ofthe right-hand side

b�
i = ( mi � � i )un

i + � i un
k + (1 � � )� t

X

j

l ij un
j : (46)

In this case, the limited antidi�usive correction to nodei can be estimated as follows

(mi � mii )Q�
i � f �

i � (mi � mii )Q+
i (47)

so that mi � � i � mii . Thus, the right-hand side given by (46) preserves the sign ofun if
the time step satis�es the positivity constraint for all diagonalcoe�cients

(1 � � )� t � min
i

jmii =lii j: (48)

Under the above conditions, the M-matrix property of the preconditioner A is su�cient
to guarantee that each solution update is positivity-preserving.

5.4 Convergence behavior

A remark is in order regarding the convergence behavior of the iterative defect correction
scheme (18) preconditioned by the low-order operator (19). The converged solutionun+1

is supposed to satisfy a nonlinear algebraic system of the form

A � un+1 = Bun ; A � un+1 := Aun+1 � f � ; (49)

whereA � is the nonlinear FCT operator which includes some built-in antidi�usion. Clearly,
the rate of convergence will depend on the approximation property of the preconditioner,
i.e., on the normjjA � � Ajj . On the one hand, the operatorA as de�ned in (19) is linear
and easy to `invert' because it is an M-matrix. On the other hand, it represents a rather
poor approximation to the original Galerkin operatorMC � � � tK which is recovered in
the limit � ij ! 1. As a result, the convergence of a highly accurate FCT algorithm is
likely to slow down as the high-order solution is approached.

In particular, the lumped-mass version, which is obtained by setting mij = 0 in the
de�nition of the raw antidi�usive ux, converges much faster than the one based on the
consistent target ux (17). However, mass lumping may have a devastating e�ect on the
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accuracy of a time-dependent solution, as demonstrated by thenumerical examples in the
next section. At the same time, the high phase accuracy providedby the consistent mass
matrix comes at the cost of slower convergence, due to the fact that the preconditioner
A is based onM L rather than MC . The high-order system (14) which corresponds to
� ij � 1 is particularly di�cult to solve, even though it is linear (see below).

In general, there is a tradeo� between the accuracy of the numerical solution and
convergence of the �xed-point iteration (18). Any modi�cation of the ux limiter which
makes it possible to accept more antidi�usion has an adverse e�ect on the convergence
rates. Conversely, more di�usive schemes converge better but their accuracy leaves a lot
to be desired. The only way to accelerate convergence withoutsacri�cing some accuracy
is to use a sophisticated preconditioner which should include limited antidi�usion but
remain an M-matrix. In the context of TVD-like methods such nonlinear operators can be
assembled from the solution-dependent coe�cients involved inthe positivity proof [6],[14].
In fact, driving the residual of time-dependent problems to machine zero is hardly worth
the e�ort. Indeed, a half-converged time-accurate solutionis probably better than a fully
converged one obtained at a much higher cost or using a less accurate discretization.

6 Numerical examples

In order to illustrate the performance of the semi-implicit FCT algorithm, we apply it
to a number of time-dependent benchmark problems discretized in space by the stan-
dard Galerkin method on a quadrilateral or triangular mesh. The time discretization is
performed by the second-order accurate Crank-Nicolson scheme.All numerical solutions
were computed by the algorithm (30){(38) since the single-stepversion based on (39){(40)
yields virtually identical results in the range of time steps considered below. The goal of
this numerical study is to investigate the accuracy of the proposed discretization tools as
well as the convergence behavior of the iterative ux/defect correction scheme (18).

6.1 Solid body rotation

Let us start with the two-dimensional benchmark problem proposed by LeVeque [15]
which makes it possible to assess the ability of a high-resolution scheme to preserve both
smooth and discontinuous pro�les. To this end, a slotted cylinder, a sharp cone and
a smooth hump are exposed to the nonuniform velocity �eldv = (0 :5 � y; x � 0:5) and
undergo a counterclockwise rotation about the center of the unit square 
 = (0 ; 1)� (0; 1).
Each solid body lies within a circle of radiusr0 = 0:15 centered at a point with Cartesian
coordinates (x0; y0). In the rest of the domain, the solution is initialized by zero. The
shapes of the three bodies as depicted in Fig. 2 can be expressed in terms of the normalized
distance function for the respective reference point (x0; y0) thus:

r (x; y) =
1
r0

p
(x � x0)2 + ( y � y0)2:

The center of the slotted cylinder is located at (x0; y0) = (0 :5; 0:75) and its geometry in
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Figure 2: Solid body rotation: initial data / exact solution.

the circular regionr (x; y) � 1 is given by

u(x; y; 0) =
�

1 if jx � x0j � 0:025 _ y � 0:85;

0 otherwise:

The corresponding analytical expression for the conical body reads

u(x; y; 0) = 1 � r (x; y); (x0; y0) = (0 :5; 0:25);

whereas the shape and location of the hump att = 0 are as follows

u(x; y; 0) = 0:25[1 + cos(� min f r (x; y); 1g)]; (x0; y0) = (0 :25; 0:5):

After one full revolution (t = 2� ) the exact solution of the continuity equation (6)
coincides with the initial data. The numerical solutions presented in Fig. 3 were produced
by the semi-implicit FCT algorithm on a uniform mesh of 128� 128 bilinear �nite elements
using the time step � t = 10� 3. The upper diagram demonstrates the detrimental e�ect of
mass lumping which manifests itself in signi�cant amplitude andphase errors. The lower
diagram was computed using the consistent target ux (17) including the contribution
of mass antidi�usion. In this case, the shape of the rotating bodies is reproduced very
well and even the narrow bridge of the slotted cylinder is largely preserved. This example
con�rms that time-dependent problems call for the use of a time-accurate high-order
scheme based on the consistent mass matrix. A further improvementof phase accuracy
is possible in the framework of (semi-implicit) Taylor-Galerkin methods.
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FEM-FCT, lumped mass matrix

FEM-FCT, consistent mass matrix

Figure 3: Solid body rotation: numerical solutions att = 2� .
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6.2 Swirling ow

The second benchmark problem, which was also introduced in [15], deals with a swirling
deformation of the initial data by the incompressible velocity �eld given by

vx = sin2(�x ) sin(2�y ); vy = � sin2(�y ) sin(2�x ):

The initial condition to be prescribed is a discontinuous function of the spatial coordinates
which equals unity within a circular sector of�= 2 radians and zero elsewhere:

u(x; y; 0) =
�

1 if (x � 1)2 + ( y � 1)2 < 0:64;

0 otherwise:

In the course of deformation, the mass distribution assumes a complex spiral shape
which is nicely resolved by the semi-implicit FCT algorithm. The numerical solution at
time t = 2:5 calculated using the same mesh and time step as in the previous example
is displayed in Fig. 4. The use of a piecewise-linear �nite element approximation on a
triangular mesh with the same number of nodes yields virtuallythe same results, see Fig. 5.
For the di�erence between the underlying triangulations tobe visible, both solutions were
output on coarser meshes consisting of 4,225 vertices. In either case, the evolution details
are captured with high precision and the resolution of discontinuities is remarkably crisp.
These results compare well to those computed in [12] using ux limiters of TVD type.

6.3 Convection skew to the mesh

In order to compare the convergence behavior of the semi-implicit FEM-FCT algorithm
to that of the underlying Galerkin scheme, let us solve equation (6) with v = (1 ; 1)
so that the initial pro�le is translated along the diagonal of the computational domain

 = (0 ; 1) � (0; 1). The numerical study is to be performed for two di�erent initial
con�gurations centered at the reference point (x0; y0) = (0 :3; 0:3)

TP1 The �rst test problem corresponds to the discontinuous initial condition

u(x; y; 0) =
�

1 if maxfj x � x0j; jy � y0jg � 0:1;
0 otherwise:

(50)

TP2 The second test problem deals with translation of a smooth function de�ned as

u(x; y; 0) =
1
4

[1 + cos(10� (x � x0))][1 + cos(10� (y � y0))] (51)

within the circle
p

(x � x0)2 + ( y � y0)2 � 0:1 and equal to zero elsewhere.

Figure 6 displays the approximate solutions att = 0:5 computed using � t = 10� 3 on
a quadrilateral mesh consisting of 128� 128 bilinear elements. The left diagrams were
produced by the consistent-mass FCT algorithm which yields nonoscillatory solutions
bounded by 0 and 1. The underlying high-order scheme remains stable but gives rise to
nonphysical undershoots and overshoots, as seen in the right diagrams.
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Figure 4: Swirling deformation on a quadrilateral mesh,t = 2:5.

Figure 5: Swirling deformation on a triangular mesh,t = 2:5.
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FEM-FCT Galerkin scheme

Figure 6: Convection skew to the mesh: 128� 128Q1� elements,t = 0:5.

In either case, the numerical solution was computed in an iterative way using the
defect correction scheme (18) preconditioned by the low-order operator (19). The stopping
criterion was based on the Euclidean norm of the residual vector

r = Aun+1 � Bun � f � ; jj r jj =
p

r T r (52)

which was required to satisfy the inequalityjj r jj � 10� 4. The di�erence between the exact
solution u and its �nite element approximation uh was measured in theL1-norm

jju � uh jj 1 =
Z



ju � uh j dx �

X

i

mi ju(x i ; yi ) � ui j (53)

as well as in theL2-norm de�ned by the following formula

jju � uh jj 2
2 =

Z



ju � uh j2 dx �

X

i

mi ju(x i ; yi ) � ui j2; (54)

where mi =
R


 ' i dx are the diagonal coe�cients of the lumped mass matrix. Further-
more, the global minimumumin = min i ui and maximum umax = max i ui of the discrete
solution uh were compared to their analytical values 0 and 1.
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Tables 1 and 2 illustrate the convergence behavior of the iterative ux/defect correction
scheme as applied to the test problems TP1 and TP2 on three successively re�ned meshes.
The �rst three columns in each table display the re�nement level NLEV, the number of
vertices/nodes NVT and the total number of outer iterations NDC required to compute
the numerical solution att = 0:5. The di�erent performance of the four algorithms under
consideration supports the arguments presented in Section 5.4. In particular, it can readily
be seen that the use of the consistent mass matrix results in a much better accuracy but the
convergence slows down, whereas the lumped-mass version is lessaccurate but much more
e�cient. In the di�erence jjun+1 � un jj is large, mass antidi�usion a�ects the convergence
rates even stronger than the convective part of the antidi�usive ux. Since the latter is
proportional to � t, the mass lumping error plays a dominant role at small time stepssuch
that A � M L . Note that the consistent-mass Galerkin scheme faces severe convergence
problems and the error may even increase as the mesh is re�ned (see Table 2).

On the other hand, the results computed by the semi-implicit FCT algorithm exhibit
a monotone grid convergence as well as some improvement of theconvergence rates. Even
the consistent-mass version converges slowly but surely to a nonoscillatory time-accurate
solution. For large time steps, the single-step implementation based on (39){(40) would be
more di�usive and converge faster. However, for time steps as small as the one employed

FEM-FCT algorithm / consistent mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 2,500 1.1737e-2 6.2176e-2 0.0 1.0
7 16,641 2,461 7.3688e-3 4.8577e-2 0.0 1.0
8 66,049 2,489 4.7039e-3 3.8715e-2 0.0 1.0

FEM-FCT algorithm / lumped mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 751 1.9356e-2 8.4294e-2 0.0 0.9988
7 16,641 1,000 1.2402e-2 6.5356e-2 0.0 1.0000
8 66,049 1,014 7.8511e-3 5.1182e-2 0.0 1.0000

Galerkin scheme/ consistent mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 4,666 3.6283e-2 7.4952e-2 -0.2557 1.4505
7 16,641 7,379 2.7340e-2 5.8124e-2 -0.2743 1.3797
8 66,049 13,852 2.3000e-2 5.2536e-2 -0.4437 1.4080

Galerkin scheme / lumped mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 1,000 6.5181e-2 1.3073e-1 -0.4022 1.5608
7 16,641 1,423 4.7055e-2 9.8663e-2 -0.4340 1.5732
8 66,049 1,500 3.5126e-2 8.0298e-2 -0.3713 1.5628

Table 1: Convection skew to the mesh: discontinuous initial data.
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FEM-FCT algorithm / consistent mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 2,486 1.4799e-3 9.2813e-3 0.0 0.8562
7 16,641 1,833 4.3436e-4 2.7820e-3 0.0 0.9418
8 66,049 2,867 1.7887e-4 1.2032e-3 0.0 0.9740

FEM-FCT algorithm / lumped mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 1,000 4.2704e-3 2.7827e-2 0.0 0.7308
7 16,641 1,000 1.7834e-3 1.1294e-2 0.0 0.9218
8 66,049 736 7.6982e-4 4.6142e-3 0.0 0.9612

Galerkin scheme / consistent mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 2,500 1.3961e-3 2.6234e-3 -0.0158 0.9890
7 16,641 6,437 1.8892e-3 3.9001e-3 -0.0480 0.9925
8 66,049 13,700 2.3237e-3 8.1553e-3 -0.1363 1.0012

Galerkin scheme / lumped mass matrix

NLEV NVT NDC jju � uh jj 1 jju � uh jj 2 umin umax

6 4,225 1,000 1.0904e-2 4.2409e-2 -0.1911 0.8809
7 16,641 1,000 3.4837e-3 1.4234e-2 -0.0811 1.0098
8 66,049 1,000 1.3092e-3 4.3179e-3 -0.0322 1.0046

Table 2: Convection skew to the mesh: smooth initial data.

in this section, it would be just as accurate and converge at thesame rate as the algorithm
(30){(38). The values ofumax in Table 2 reveal that ux correction may lead to undesirable
`peak clipping', which is a well-known phenomenon discussed, e.g., in [12],[23]. On the
other hand, the associated high-order solution is corrupted byundershoots and overshoots
which are particularly large for discontinuous initial data(Table 1) and less pronounced for
the smooth cosine hill (Table 2). These nonphysical oscillationsresult in a dramatic loss of
accuracy and slow/no convergence, so that the results are inferior to those produced by the
FEM-FCT algorithm using the same parameter settings. Since the latter converges faster
than the Galerkin scheme, it is more e�cient than semi-explicit ux correction (24){(29)
which represents a positivity-preserving postprocessing of the high-order predictor.

Of course, the linear system (14) could be solved in one step without resorting to defect
correction. However, this straightforward approach would lead to a severe deterioration
of linear convergence rates. Indeed, the high-order operator MC � � � tK is much harder
to `invert' than the preconditioner A which enjoys the M-matrix property. In many cases,
the high-order solution may prove prohibitively expensive oreven impossible to compute
in such a brute-force way, unless a direct solver is employed. Hence, even linear high-order
systems of the form (15) call for the use of iterative defect correction [8].
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7 Conclusions

The semi-implicit approach to ux correction of FCT type leads to a robust and e�cient
special-purpose algorithm for time-dependent problems discretized in space by the �nite
element method. The accuracy of the resulting scheme improvesas the time step is re�ned
and the consistent mass matrix can be included in a positivity-preserving fashion. The
new limiting strategy makes it possible to avoid a repeated computation of the nodal
correction factors at each outer iteration. Therefore, theuse of an implicit time-stepping
method pays o� inspite of the CFL-like condition to be satis�ed by the time step in the
case� < 1. For su�ciently small time steps, the new algorithm is more accurate and/or
e�cient than the algebraic ux correction schemes proposed in[8],[10]. On the other
hand, it is not to be recommended for steady-state computations which call for the use
of large time steps. In this case, it is worthwhile to rede�ne theunderlying constraints as
explained in [14] and switch to an upwind-biased limiting strategy. A promising direction
for further research is the design of characteristic FCT limiters for the Euler equations
[25] on the basis of (39){(40). Indeed, the use of upper/lower bounds depending on the
local extrema ofun rather than ~u makes it possible to decouple the discrete Jacobian
operators and limit them separately as in the case of characteristic TVD methods [13].
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