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SUMMARY

This paper presents a new efficient monolithic finite element solution scheme to treat the set of PDEs
governing a two-dimensional, biphasic, saturated TPM model with intrinsically coupled and incompressible
solid and fluid constituents for infinitesimal and large elastic deformation. Our approach, which inherits
some of its techniques from CFD, is characterized by the following aspects: (1) It only performs operator
evaluation with no additional Gateaux derivatives. In particular, the computations of the time-consuming
material tangent matrix are not involved here; (2) It solves the non-linear dynamic problem with no
restriction on the strength of coupling; (3) It is more efficient than the linear uvp solver discussed in
previous works; (4) It requires weaker derivatives and hence lower order FE can be tested; (5) The boundary
conditions are reduced, solution independent and more convenient to apply than in the old uvp formulation.
For the purpose of validation and comparison, prototypical simulations including analytical solutions are
carried out and at the end, an adaptive time stepping (ATS) procedure is introduced to handle the rapid
change in the numbers of non-linear iterations that may occur.

KEY WORDS: Theory of Porous Media (TPM); Updated Lagrangian (UL); Adaptive Time Stepping
(ATS); Finite Element Method (FEM); Computational Fluid Dynamics (CFD); Picard
Iteration Method; Hyperelasticity;

1. INTRODUCTION

The theoretical and numerical prediction of fluid-saturated porous solid behavior subjected to

dynamic or quasi-static loadings is a challenging and important problem in different fields of

engineering, such as in Geo-mechanics and Biomechanics, see, e. g., Ref. [1, 2, 3, 4]. The behavior

of such materials is mainly governed by the mutual interaction between the solid skeleton and

the pore fluid, where this interaction can be classified as a strong coupling especially in dynamic

problems, see Ref. [5, 6].

The material description of the fluid-saturated heterogeneous porous solids is introduced within a

thermodynamically consistent continuum mechanics framework using the Theory of Porous Media

(TPM). In the framework of the TPM, a macroscopic description of general immiscible multi-phasic

aggregates is introduced, where the individual constituents (here: solid and fluid) are considered to

be in a state of ideal disarrangement over a homogenized representative volume element (RVE)

in the sense of superimposed and interacting continua, cf. Ref. [7, 8] for detailed discussions.

With regard to saturated porous media dynamics, the theoretical and numerical procedures have
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intensively been put forward in distinctive works such as in Ref. [9, 10, 11, 12] among others.

Analytical solutions for one-dimensional (1-d) wave propagation in saturated poroelastic media are

given in, e. g., Ref. [13, 14].

For the numerical treatment, saturated, materially incompressible porous media are represented

by a set of differential-algebraic equations (DAE), which belong to the class of strongly coupled

problems discussed, e. g., in Ref. [15, 16, 6, 17]. In particular, such multi-field problems

cannot be solved in a straightforward manner as the governing set of DAE includes algebraic

equations representing some essential side condition or Lagrangian constraint, for instance, forcing

incompressibility or continuity. This typically leads to ill-conditioned saddle-point problems, which

become even more vulnerable to stability and robustness issues if they are accompanied by a certain

roughness of the model parameters associated with a tight coupling of the equations, cf. Ref. [17].

In this regard, a novel monolithic Newton-multigrid-based finite element method (FEM) solution

approach has been recently proposed by the authors in Ref. [17] to solve the arising coupled multi-

field problem for the case of a uvp formulation (where the governing set of equations are the

balance of momentum of the solid phase, the balance of momentum of the fluid phase and the total

volume balance. Here, the primary variables are u, v and p which refer to the field variables solid

displacement, fluid velocity and pore-fluid pressure). This choice appeared to be more accurate,

stable and efficient than previous methods in many test cases. However, this approach is restricted

to infinitesimal deformations so that the porosity can be considered as constant parameter.

In the underlying research work, we introduce a new numerical time-stepping approach based on

a new uwp formulation deploying the mixture momentum balance, the fluid momentum balance

and the total volume balance with u,w,p being the primary variables where w indicates the filter

velocity. The new approach borrows some of its techniques from the previous one and further allows

for solving general non-linear problems and enjoys several advantages against the preceding one.

Thus, the first step is to derive the weak or variational statements of the governing balance

equations, and the second step is to apply a well-conceived finite element discretization, which

meets the anticipated accuracy and stability requirements. Thereafter, a well-established and

advanced fast solver of Newton-multigrid type that can handle systems with large condition

numbers, thereby outperforming common single grid methods, is applied. In fact, having PDEs with

elliptic character, due to the incompressibility, hierarchical multigrid techniques as pure solvers or

as preconditioners in Krylov space solvers have proven their advantageous convergence behavior

since they may lead to iteration numbers independent of the problem size. This property allows to

design highly efficient solution schemes, particularly for large problem sizes.

To give an overview, Section 2 is concerned with the theoretical fundamentals of a macroscopic

porous media modeling including a brief presentation of the TPM, the concept of volume fractions,

the kinematics, the balance and constitutive modeling. To pave the way for the direct use of

some special CFD techniques, Section 3 reformulates the governing set of the considered PDEs

into Stokes-like form. In Section 4, the numerical treatment of the coupled problem is described

including the weak formulation, the spatial and temporal discretization as well as the final

matrix system. The linear and non-linear solvers are then discussed in Section 5. Section 6 is

concerned with the numerical validation and evaluation of the proposed solution strategy for linear

deformations by comparing the results of 1D and 2D benchmark simulations with published data.

In Section 7, two analytical simulations are carried out to validate our approach for the case of non-

linearity, while in Section 8 the effects of the convection term and the volume fractions changes are

quantitatively studied for the case of strong and weak coupling. In Section 9, a new adaptive time

stepping procedure is proposed to cope with rapid changes in the numbers of non-linear iterations.

Finally, Section 10 gives a brief summary and conclusions of the presented research work.

2. THEORETICAL FUNDAMENTALS

The considered porous media bi-phase model consists of a deformable porous solid skeleton and

a pore fluid. The solid material is assumed to be non-polar and incompressible, while the fluid

material is assumed to be incompressible and viscous. The model is simplified by excluding thermal
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effects (isothermal model) as well as any mass exchanges between the constituents. Moreover, the

permeability of such immiscible binary aggregates is assumed to be isotropic. As this paper concerns

the numerical treatment of the related PDEs, only a brief physical description is introduced to define

the terms of the examined PDEs. For a more detailed discussion, the interested reader is referred to

[11, 12, 5, 18, 19] and the citations therein.

2.1. Macroscopic Porous Media Approach

In the following macroscopic approach, the binary aggregate is treated as a macroscopic mixture

ϕ with overlaid and interacting but de facto immiscible solid and fluid constituents ϕα (α = S
: solid; α = F : fluid), so that ϕ = ϕS ∪ ϕF at any macroscopic spatial point x(t) at any time

t ∈ [t0, T ]. The local composition of the biphasic continuum is described by volume fractions

nα(x, t) := dvα/dv ∈ [0, 1] of ϕα (nS : solidity; nF : porosity) defined as the ratios of the partial

to the total volume elements of ϕ. Assuming fully saturated conditions, the saturation constraint

obviously yields
∑

α

nα = nS + nF = 1. (1)

Closely related is the introduction of two density functions, namely an effective density ραR(x, t)
and a partial density ρα(x, t) relating the local mass of ϕα to the partial or the bulk volume element,

respectively. It is easily concluded that

ρα = nαραR, α ∈ {S, F} (2)

revealing the general compressibility of porous solids through possible changes of the pore space.

Moreover, ρ =
∑

α ρα represents the mixture density.

Following this, the kinematics of multiphase materials within a continuum-mechanical treatment

proceeds from superimposed and interacting continua but with individual unique states of motion

for each constituent, i.e. the velocity and the acceleration fields, respectively, read

vα :=
′
xα , (vα)

′
α =

′′
xα with

( q )
′
α :=

dα( q )

dt
=

∂ ( q )

∂ t
+ grad ( q ) · vα ,

(3)

where the material time derivative of a certain quantity ( q ) follows the motion of ϕα and

grad ( q ) := ∂ ( q )/∂x. In porous media theories, it is convenient to proceed from a Lagrangian

description of the solid matrix via the solid displacement uS and velocity vS as the kinematic

variables. However, the pore-fluid flow is expressed either in a modified Eulerian setting via the

seepage velocity vector wFS describing the fluid motion relative to the deforming skeleton, or by an

Eulerian description using the fluid velocity vF itself. In this connection, the so-called filter velocity

w can be introduced as an additional kinematic quantity relating wFS to the fluid part of the mixture.

In particular, we have

uS = x−XS , vS = (uS)
′
S =

′
xS ,

vF =
′
xF , wFS = vF − vS , w = nF wFS

(4)

with XS representing the position vector of the solid phase in the reference configuration and x is

the position vector in the current configuration.

2.2. Governing Balance Relations

Volume Balance

Each constituent must undergo the law of conservation of mass, which is given under the

assumption of no mass exchange between the constituents as

(ρα)′α + ραdiv (vα) = 0, α ∈ {S, F} , (5)
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where div ( q ) is the divergence operator related to grad ( q ). Moreover, under the assumption of

materially incompressible constituents

ραR = const., α ∈ {S, F}, (6)

relation (5) reduces to the following volume balance equation:

(nα)′α + nαdiv (vα) = 0, α ∈ {S, F}. (7)

The current volume fractions nα can be computed with the help of the initial solid volume fraction

nS
0S via

nS = det(F−1
S )nS

0S =
nS
0S

JS

. (8)

Summation of the left hand sides of the two volume balance equations (7) for α ∈ {F,S} and then

using (1) and (3) yields the continuity-like volume balance equation of the overall aggregate

div (nFvF + nSvS) = 0. (9)

Momentum Balance

The constituent momentum balance is given by

ρα(vα)
′
α = divTα + ρα b+ p̂α , (10)

where Tα is the symmetric Cauchy stress tensor for the constituent ϕα, b is the mass-specific body

force uniformly acting on the overall aggregate, and p̂α denotes the direct momentum production,

which can be interpreted as the volume-specific local interaction force between the percolating pore

fluid and the solid skeleton. Due to the overall conservation of momentum,

p̂S + p̂F = 0 (11)

must hold. Making use of the concept of effective stresses to describe the stress state in a material

point of a homogenized porous material, the partial stress and the fluid interaction force are

additively split as follows

Tα = Tα
E − nαpI, (12)

p̂F = p grad (nF) + p̂F
E. (13)

Therein, Tα
E and p̂F

E are the so-called ‘extra’ or ‘effective’ terms and p is the pore-fluid pressure,

which can also be interpreted as Lagrangian multiplier for the incompressibility requirement. It

follows from a dimensional analysis of the laminar flow in porous media on the micro and macro

scales that div (TF
E)≪ p̂F

E and thus the term div (TF
E) can be dropped from the fluid momentum

balance, cf. [20]. In case of isotropic permeability, the interaction force can be written as

p̂F
E = −

(nF)2 γFR

kF
wFS , (14)

where γFR = ρFR|b| is the effective weight of the fluid, |b| = g = const. is the gravity and kF the

Darcy permeability parameter. The left hand side of the momentum balance equation (10) for the

fluid constituent can then be rewritten as follows

div (TF) + ρFb+ p̂F

= div (TF
E)

︸ ︷︷ ︸

≈0

−div (nFpI) + ρFb+ p grad (nF) + p̂F
E

= − nFgrad (p)− p grad (nF) + ρFb+ p grad (nF) + p̂F
E

= − nFgrad (p) + ρFb−
(nF)2 γFR

kF
wFS .
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Hence, the momentum balance equation (10) for the fluid constituent simplifies to

ρF(vF)
′
F + nFgrad (p)− ρFb+

(nF)2 γFR

kF
wFS = 0 . (15)

The Darcy permeability parameter kF, which relates the filter velocity nFwFS to the pressure

gradient grad (p), depends on the fluid’s viscosity and the micro-topology of the pore space. In

general, kF is deformation dependent and can for instant be expressed as a function of nF according

to [19] as

kF(nF) = kF
0

(nF

nF
0

)κ

, (16)

where kF
0 is the initial permeability, nF

0 = 1− nS
0S is the initial fluid volume fraction, and the

parameter κ ≥ 0 determines the strength of the deformation dependency (κ = 0⇒ kF = const.).

For further particulars see also [1]. Moreover, using (3), the material time derivative of vF with

respect to the fluid motion can be written as

(vF)
′
F = (vF)

′
S + grad (vF) wFS . (17)

By use of (4) and (17), the momentum balance for the fluid constituent (15) reads

ρF(vF)
′
S + nFgrad (p)− ρFb+ ρF

(

grad (vF) +
g nF

kF
I

)

(vF − vS) = 0 . (18)

By use of (10), (11), (13) and (14), the momentum balance for solid constituent reads

ρS(vS)
′
S − div (TS

E) + nSgrad (p)− ρSb−
(nF)2 γFR

kF
(vF − vS) = 0 , (19)

where TS
E is the solid Cauchy extra stress tensor will be explained in Section 2.3. In summary, the

PDEs we seek to solve read:

• Balance of momentum of the solid phase:

ρS(vS)
′
S = div (TS

E) + ρSb+
(nF )2 γFR

kF
(vF − vS)− nSgrad (p) , (20)

• Balance of momentum of the fluid phase:

ρF (vF )
′
S + ρF grad (vF) (vF − vS) = ρF b−

(nF )2 γFR

kF
(vF − vS)− nF grad (p) , (21)

• Volume balance of the overall aggregate:

div (nFvF ) + div (nSvS) = 0 . (22)

Note that the chosen primary unknowns for this set of PDE are uS , vF and p. Hence, vS(uS)
as well as TS

E(uS), n
S(uS), n

F (uS) and wFS represent the secondary variables of the problem.

Additionally, a reduction in the order of the PDE to order one in time is achieved using

(uS)
′
S = vS , (23)

which eliminates the second time derivative of the solid displacement from (20), and allows the

applicability of a wide range of fundamental time-stepping algorithms. Finally, equations (20)-(23)

are referred to as uvp formulation.
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2.3. Constitutive Relations of the Solid Porous Medium

For infinitesimal linear deformations, the solid extra stress TS
E is determined by the Hookean

elasticity law

TS
E = 2µS

εS + λS (εS · I) I with εS = 1
2

[
grad (uS) + gradT(uS)

]
. (24)

In this case, nS ≈ nS
0S and kF = kF0S . For non-linear finite deformations, the material response is

described using a Neo-Hookean-type hyper-elastic constitutive model. The corresponding strain

energy function can be expressed as

W S =
1

2
µS
[
tr (CS)− 3

]
− µS ln(JS) + US(JS), (25)

where CS = FT
SFS is the right Cauchy-Green deformation tensor, µS is the macroscopic shear

modulus (first Lamé parameter) of the solid matrix and US(JS) is a function describing the response

to volumetric deformations. Although the solid skeleton is materially incompressible, the solid

matrix is compressible; large volume variations are possible due to the changes of the solid volume

fraction. Based on the relation between the solid volume fraction nS and the determinant of the solid

deformation gradient JS = det(FS) (see equation (8)) and due to the constraint nS < 1, the estimate

nS
0S < JS <∞ (26)

holds, i. e., the initial solid volume fraction is a lower bound for the determinant of the solid

deformation gradient. In this connection, Eipper [19] proposed the following thermodynamically-

consistent constitutive law that complies to this constraint

US(JS) = λS(1− nS
0S)

2

[
JS − 1

1− nS
0S

− ln
(JS − nS

0S

1− nS
0S

)]

. (27)

Here, λS is the second Lamé parameter. The solid Cauchy extra stress tensor TS
E = 1

JS
FS

(
2∂W S

∂CS

)
FT

S

corresponding to equations (25) and (27) is then given by

TS
E =

µS

JS

(FSF
T
S − I) + λS(1− nS

0S)
2
( 1

1− nS
0S

−
1

JS − nS
0S

)

I. (28)

Alternative formulations and further discussions on the strain energy and its volumetric extension

can be found in [2].

3. NEW uwp FORMULATION

The aim in the following is to prepare for application of some special CFD techniques, originally

designed to solve the incompressible Stokes and Navier-Stokes equations, to treat the non-linear

system of PDEs (20)-(23). To apply these techniques (already discussed for the case of infinitesimal

deformation in [17]), the PDEs need to be written in the Stokes-like or Navier-Stokes-like form to

exploit the formal similarities of the model equations of CFD, i. e., our system of equations must be

similar to the following form







C D

DT 0













v

p







=







f(v)

0







with D representing the gradient operator acting on the pressure p, DT the adjoint divergence

operator, C a differential operator † acting on the fluid velocity vector v and f(v) is the right hand

†For stationary Stokes problem, for instance, this is related to the laplace operator.



7

side source function. To achieve this, a series of derivations and reformulations should be carried

out.

To allow for the direct use of the standard θ-scheme, we start by differentiating (ρ vS) by parts

which gives the following useful relation

(ρ vS)
′
S = (ρ)

′
S vS + ρ (vS)

′
S → ρ (vS)

′
S = (ρ vS)

′
S − (ρ)

′
S vS (29)

with the mixture density

ρ = ρS + ρF . (30)

For the same reason w/nF is also differentiated by parts to obtain another useful relation

( w

nF

)′

S
=

nF (w)
′
S −

(
nF
)′

S
w

(nF )
2 → ρF

( w

nF

)′

S
= −ρFR

(
nF
)′

S

nF
w + ρFR (w)

′
S . (31)

Here
(
nF
)′

S
is computed by virtue of (7) and condition (1) as

(
nF
)′

S
=
(
1− nS

)′

S
= −

(
nS
)′

S
= nS div (vS). (32)

Multiplying both sides of (32) by ρFR and using (2), we obtain

(
ρF
)′

S
=
(
ρFR nF

)′

S
= nS ρFR div (vS), (33)

which can be exploited together with (30) as well as (5), (2) and (6) (with α = S) to compute (ρ)
′
S

as

(ρ)
′
S =

(
ρS + ρF

)′

S
= −

(
ρSR − ρFR

)
nS div (vS) . (34)

Next, using (1) and (30), we add up (20) and (21) resulting in the mixture momentum balance,

which has a positive effect on the performance of our multigrid solver as will be shown later:

ρS(vS)
′
S + ρF (vF )

′
S + ρF gradvF (vF − vS)− divTS

E − ρb+ grad p = 0 . (35)

The main purpose of this step is to remove the variable nS in front of grad p in (20) in order to get

a Stokes-like form and to avoid arising of gradnS (which contains second-order derivatives) in the

weak form to allow for testing with lower order finite elements for the no-convection assumption.

The appearance of gradnS cannot be avoided if (20) is applied because the intention is to use

discontinuous pressure finite elements that do not carry derivatives and hence the indispensable

integration by parts (to remove the differential operator grad , acting on p) will generate the

undesirable gradnS . Furthermore, this step, as will be shown later, facilitates the application of

the boundary conditions.

For the same main purpose, (21) is divided by nF > 0 yielding

ρFR (vF )
′
S + ρFRgradvF (vF − vS)− ρFR b+

nF γFR

kF
(vF − vS) + grad p = 0 , (36)

which removes the leading coefficient nF before grad p and leads to a solution-independent external

load vector (tF ), which depends only on the ambient pressure as will be shown in the next section.

To continue with this reformulation to get a Stokes-like form, (22) should also be modified by use

of the filter velocity vector w

vF = w
/
nF + vS , where nF > 0 (37)

and then by substitution of (37) in (35), (36) and (22) and then making use of (29) and (31), we get

the new uwp formulation:
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• Balance of momentum of the binary saturated mixture:

(

ρ vS

)′

S
+ ρFR (w)

′
S + ρFRgradvF w − divTS

E − ρb

− (ρ)
′
S vS −

(
ρF
)′

S

nF
w + grad p = 0 , (38)

• Balance of momentum of the fluid phase:

ρFR (vS)
′
S + ρFR

( w

nF

)′

S
+

ρFR

nF
gradvF w

+
γFR

kF
w − ρFR b+ grad p = 0 , (39)

• Volume balance of the binary saturated mixture:

div (vS) + div (w) = 0 , (40)

• Velocity-displacement relationship:

(uS)
′
S = vS . (41)

The convective terms and the volume fraction changes are colored with orange and green,

respectively, because we will refer to them frequently when later studying their influence. Note

that the chosen primary unknowns for this set of PDE are uS , w and p. Hence, vS(uS) as well as

TS
E(uS), n

S(uS), n
F (uS) and vF represent the secondary variables of the problem. The spatial

discretization of (38)-(41) is applied using the Finite Element Method, whereas the time integration

can be carried out using the θ-scheme as described in [17] in which ∇p, (40) and (41) are always

treated fully implicitly with θ = 1 as will be explained in the following.

4. WEAK FORMULATION AND DISCRETIZATION IN SPACE AND TIME

Our subsequent variational form of the uwp approach is created by multiplying (38), (39), (40)

and (41) with the displacement test function δuS , the filter velocity test function δw, the pressure

test function δp and the velocity test function δvS , respectively, integrating over the current domain

Ω(t) and performing partial integrations. Finally, we obtain the following weak form:

∫

Ω(t)

grad δuS : T
S
E dvt

︸ ︷︷ ︸

Kuu+h see appendix

Kup

︷ ︸︸ ︷

−

∫

Ω(t)

p div δuS dvt +

∫

Ω(t)

δuS ·
(

ρ vS

)′

S
dvt

︸ ︷︷ ︸

Muv

+ ρFR
∫

Ω(t)

δuS · (w)′S dvt

︸ ︷︷ ︸

Muw

+ρFR
∫

Ω(t)

δuS ·

(

grad (vF )−

(
nF
)′

S

nF
I

)

w dvt

︸ ︷︷ ︸

KKuw

−

∫

Ω(t)

δuS · (ρ)
′
S vS dvt

︸ ︷︷ ︸

Kuv

=

∫

Ω(t)

ρ δuS · b dv +

∫

Γt

δuS · t̄ da
t

︸ ︷︷ ︸

fm

,

(42)
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ρFR
∫

Ω(t)

δw ·

(
1

nF
grad (vF ) +

g

kF
I

)

w dvt

︸ ︷︷ ︸

KKww

Kwp

︷ ︸︸ ︷

−

∫

Ω(t)

p div δw dvt

+ ρFR
∫

Ω(t)

δw ·
( w

nF

)′

S
dvt

︸ ︷︷ ︸

Mww

+ ρFR
∫

Ω(t)

δw · (vS)
′
S dvt

︸ ︷︷ ︸

Mwv

= ρFR
∫

Ω(t)

δw · b dvt +

∫

Γ
tF

δw · t̄F dat

︸ ︷︷ ︸

fw

, (43)

Kpv

︷ ︸︸ ︷∫

Ω(t)

δp divvS dvt +

Kpw

︷ ︸︸ ︷∫

Ω(t)

δp divw dvt = 0 ,
(44)

∫

Ω(t)

δvS · (uS)
′
S dvt

︸ ︷︷ ︸

Mvu

−

∫

Ω(t)

δvS · vS dvt

︸ ︷︷ ︸

Kvv

= 0 . (45)

The boundary Γ = ∂Ω is divided into Dirichlet (essential) and Neumann (natural) boundaries,

respectively, resulting in Γ = ΓuS
∪ Γt for the mixture balance of momentum and in Γ = Γw ∪ ΓtF

for the balance of momentum of the fluid phase, wherein the corresponding tractions are defined,

respectively, as

t̄ =
[
TS

E − pI
]
n, t̄F = −p n . (46)

Based on [5] and [17], the above boundary conditions are now more convenient to impose, not

only because one can appoint them independently (due to the absence of the volume efflux as

additional boundary condition) but also t̄F (as being free of nF ) depends only on the ambient

pressure while the surface traction t̄ acts simultaneously on both the solid and the fluid phase such

that the segregation of the boundary conditions is dispensable

So far, we have only discretized in space. The purpose was to show the Neumann boundary

conditions (46) and to label the bilinear forms (Kuu, Kup ... etc). To have full discretization (in

space and time), we further apply the theta scheme, described in [17], on (42)-(45), which leads

eventually to the following task, where

ũ =





uS

vS

w



 and p̃ = p ∆t and y =

[
ũ

p̃

]

(47)

Given yn and the time step ∆t = tn+1 − tn, then solve for y = yn+1

A(y) y = g (y) (48)

with right hand side

g (y) = r+ θ ∆t f(y), (49)
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where ∆t = tn+1 − tn denotes the step size, tn is the current time step, tn+1 is the next time step

and (.)n and (.)n+1 are quantities in the current and the next time step, respectively. Furthermore,

A(y) =















Mvu θ1Kvv 0 0

θ1Kuu(uS) Muv(uS) + θ1Kuv(uS ,vS) Muw + θ1KKuw(ũ) Kup

0 Mwv Mww(uS) + θ1KKww(ũ) Kwp

0 Kpv Kpw 0















(50)

r =















Mvu θ2Kvv 0 0

θ2Kuu(u
n
S) Muv(u

n
S) + θ2Kuv(u

n
S ,v

n
S) Muw + θ2KKuw(ũn) 0

0 Mwv Mww(un
S) + θ2KKww(ũn) 0

0 0 0 0















×















un
S

vn
S

wn

p̃















+ θ2















0

fu(u
n
S)

fw(un
S)

0















, (51)

g(y) = r+ θ∆t















0

fu(uS)

fw(un
S)

0















︸ ︷︷ ︸

f(y)

(52)

with

θ1 = θ∆t, θ2 = (θ − 1)∆t . (53)

Equations (49) - (52) lead to Stokes-like saddle point problems







Ã B

BT 0







︸ ︷︷ ︸

A







ũ

p̃







︸ ︷︷ ︸

y

=







rhs ũ

0







︸ ︷︷ ︸

g(y)

(54)
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with

Ã(ũ) =











Mvu θ1Kvv 0

θ1Kuu(uS) Muv(uS) + θ1Kuv(uS ,vS) Muw + θ1KKuw(ũ)

0 Mwv Mww(uS) + θ1KKww(ũ)











(55)

and

B =











0

Kup

Kwp











. (56)

Therefore, we can directly use the special CFD techniques as presented in [17].

5. ULP NON-LINEAR SOLVER

To solve (54), we shall combine the updated Lagrangian approach (used in non-linear structural

mechanics) with the pure Picard iteration method (often used in CFD) and we shall refer to this

special non-linear solver as Updated Lagrangian-Picard solver or shortly ULP solver. In this

algorithm, we only do operator evaluation with no additional Gateaux derivatives. Thus, the full

Jacobian matrix is not used; in particular, the expensive material tangent matrix
dTS

E

duS
is excluded

here. For more details, see Algorithm 1.

Algorithm 1: ULP: the Updated Lagrangian-Picard Iterative Solver. This algorithm is designed

for dynamic non-linear problems.

1 Data: nS
0S , ρFR, ρSR, kF0S , κ, λS , µS , ∆t, θ

2 start value: y0;

3 for n← 0 to nstep do

4 update domain shape Ω(t): set x = XS + un
S ;

5 compute B, see (56);

6 compute r, see (51);

7 initial start for Picard iteration: z0 = yn;

8 for i← 1 to imax do

9 compute g(zi−1) = r+ θ ∆t f(zi−1);

10 compute Ã(zi−1) and build A(zi−1) =

(

Ã B

BT 0

)

;

11 compute zi = zi−1 + ωi−1
(
A(zi−1)

)−1

di−1

︷ ︸︸ ︷
(

g(zi−1)−A(zi−1) zi−1
)

, see (57)-(61);

12 if
∥
∥d (zi)

∥
∥ ≤ Tol then go to 14;

13 end

14 set yn = zi;

15 set t = t+∆t;

16 end

With regard to step 11 of this algorithm,
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zi = zi−1 + ωi−1
(
A(zi−1)

)−1

= di−1

︷ ︸︸ ︷
(

g(zi−1)−A(zi−1) zi−1
)

, (57)

we follow the standard CFD procedure described in [21] in which (57) is split into the following

three steps:

• Calculate the non-linear residual di−1:

di−1 = g(zi−1)−A(zi−1) zi−1, (58)

• Compute
(
A(zi−1)

)−1
di−1 via iteratively or directly solving for qi−1

A(zi−1) qi−1 = di−1, (59)

• Perform the updating step:

zi = zi−1 + ωi−1 qi−1, (60)

where the damping parameter ωi−1 in our case is set to 1.

The iterations will continue unless the maximum number of iterations (imax) is reached or the

norm of the non-linear residual goes below a given tolerance:

∥
∥di
∥
∥ ≤ Tol . (61)

We use the special multigrid solver discussed in [17] (for more references see for example

[22, 23, 24, 25], to solve (59) iteratively or UMFPACK to solve it directly.

It remains to mention that in the case of infinitesimal linear elastic deformations, updating the

domain shape has almost no influence. Therefore, step 4 in Algorithm 1 is canceled. Hence, we end

with the pure PICard solver) described in Algorithm 2 .

Algorithm 2: PIC: the Picard Iterative Solver. This algorithm is designed for dynamic

infinitesimal linear elastic problems.

1 Data: nS
0S , ρFR, ρSR, kF0S , κ, λS , µS , ∆t, θ

2 start value: y0;

3 compute Mvu, Kvv . . .B;

4 for n← 0 to nstep do

5 compute g = r+ θ ∆t f ;

6 build A =

(

Ã B

BT 0

)

;

7 initial start for Picard iteration: z0 = yn;

8 for i← 1 to 2 do

9 compute zi = zi−1 + ωi−1 (A)
−1

di−1

︷ ︸︸ ︷
(

g −A zi−1
)

;

10 if
∥
∥di
∥
∥ ≤ Tol then go to 12;

11 end

12 set yn = zi;

13 set t = t+∆t;

14 end
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p
p,1
p,2

uS
vS
w

ξ1 ξ1

ξ2 ξ2

Figure 1. The discontinuous linear pressure element P1 (left) and the 9-node Lagrange bi-quadratic element
Q2 (right) that are used for the uwp-TR method and ξ1 and ξ2 are the local element coordinates.

Table I. Averaged number of iterations (# Iter.) and elapsed CPU time (CPU) in seconds per time step for
the described multigrid solver for uvp(3)-TR-Q2/P1 and uwp-TR-Q2/P1 for the first 10 time steps and for

the unstructured grid and kF0S = 10−10 [m/s ]. Here, Div. indicates divergence of the solver.

time step size = 50× 10−3 [s ]

Level
1 smoothing step 2 smoothing steps 4 smoothing steps

uwp uvp uwp uvp uwp uvp

Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

2 14 0.6 Div. Div. 8 0.6 14 1.1 5 0.7 5 0.9

3 16 3.7 Div. Div. 8 3.9 20 8.9 4 4.0 5 4.3

4 17 17.4 Div. Div. 8 16.9 15 30.3 5 19.1 5 19.1

time step size = 1× 10−3 [s ]

Level
1 smoothing step 2 smoothing steps 4 smoothing steps

uwp uvp uwp uvp uwp uvp

Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

2 3 0.1 Div. Div. 1 0.1 5 0.4 1 0.2 1 0.2

3 3 0.7 Div. Div. 2 0.8 3 1.3 1 1.0 1 1.0

4 4 4.4 Div. Div. 2 5.6 5 10.4 2 6.9 2 7.4

6. RESULTS FOR THE LINEAR CASE

The three numerical examples, already solved in the first part of our work (see [17]) using the

highly accurate uvp(3)-TR-Q2/P1 solver, were solved again but with our new uwp-TR-Q2/P1

solver, which stands for the described monolithic solver for the uwp formulation based on the weak

forms (42)-(45) using the implicit Crank-Nicolson (θ = 1/2) time integration scheme as shown in

(48)-(53) and the mixed finite element pairs Q2/P1 shown in Figure 1.

For the full description of the solver see Algorithm 2. By comparing the solutions of the past

uvp(3)-TR-Q2/P1 for all problems of [17] with the new uwp-TR-Q2/P1, we conclude that they

both (1) have almost identical accuracy, (2) do not exhibit pressure instabilities and (3) show much

weaker deficiencies at permeable loaded boundaries. In particular for large permeabilities, these

deficiencies are not existent anymore.

And more interesting is that such oscillations (used to form a hindrance that deprives from using

the more convenient boundary conditions, we are now using) did not show up despite of proceeding

from the momentum balance of the whole mixture. This issue was discussed in detail in [5].

Next, we will study the efficiency of the special multigrid solver discussed in [17] for the new

uwp(3)-TR-Q2/P1 method. As example, the unstructured mesh of the large-scale problem presented

in [17] is considered and based on Table I, it turned out that the new uwp solver (in particular, in

case of strong coupling) is remarkably better than the old uvp solver because the new converges

even with one smoothing step while the old needs at least 2 smoothing steps to converge.
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2
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w1 = t2 w2 = x2
1 t

2

uS1
= x2

2 t
2/12

uS2
= 0

w1 = x2
2 t

2

w2 = 0

x1

x2

Figure 2. A square domain meshed with one element for mesh level 1. uwp-Q2/P1-TR was used to solve
the problem. This problem has no real physical meaning and the UL formulation is deactivated to allow for

pure testing of the Picard iterative method.

Table II. Physical properties of the porous medium used only for section 7. The gravitational acceleration is

set to 10 [m/s2 ]

Parameter Symbol Value SI Unit

second Lamé constant of solid µS 1 [N/m2 ]

first Lamé constant of solid λS 1 [N/m2 ]

Effective density of dense solid ρSR 2 [kg/m3 ]

Effective density of pore fluid ρFR 1 [kg/m3 ]

Initial volume fraction of solid nS
0S 0.5 −

Initial volume fraction of fluid nF
0S 0.5 −

Initial permeability kF0S 1 [m/s ]

Permeability exponent κ 1 −

7. SIMULATION OF ANALYTIC TEST PROBLEM

Since we do not have yet results for a rigorous quantitative benchmark to compare with, we first

of all present results for an analytical solution. This is a pure mathematical test which has no

physical meaning. The UL formulation is deactivated (i. e., step 4 of Algorithm 1 is omitted) since

uS in this simulation does not indicate displacements that have a real physical meaning and are

merely a mathematical function. The purpose is to validate the code and to make sure that the

implementation of the Picard method, the time integrators, the generation of linear and bilinear

forms and the implementation of the boundary conditions were done correctly by evaluating the L2-

and H1-norms of the error. The stress tensor TS
E is defined in the appendix and the constant physical

parameters are given in Table II:
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uS1
= 1

12 x2
2 t

2, uS2
= 0, w1 = x2

2 t
2, w2 = x2

1 t
2, p = 1

2 − x1

Then, the following set of equations were solved analytically:

(

ρ vS

)′

S
+ ρFR (w)

′
S + ρFRgrad (vF ) w − divTS

E + grad p

− ρFR
(
nS

nF

)

w div (vS) +
(
ρSR − ρFR

)
nS div (vS) vS = fu,

ρFR (vS)
′
S + ρFR

( w

nF

)′

S
+

ρFR

nF
grad (vF ) w +

γFR

kF
w + grad p = fw,

div (vS) + div (w) = 0,

where

fu =







(
4 x2 x

2
1

)
t4 +

(
1
3 x2 x

2
1

)
t3 −

(
1
6

)
t2 +

(
2 x22

)
t +

(
1
4x

2
2 − 1

)

(
4 x x22

)
t4 +

(
2 x21

)
t







,

fw =







(
8 x2 x

2
1

)
t4 +

(
2
3 x2 x

2
1

)
t3 +

(
10 x22

)
t2 +

(
4 x22

)
t +

(
1
6 x22 − 1

)

(
8 x x22

)
t4 +

(
10 x21

)
t2 +

(
4 x21

)
t







.

The domain, the boundary conditions and the mesh are depicted in Figure 2. Solving the problem

analytically gives: It should be noted that the above solution functions are polynomials of second

degree (for uS and w) and first degree (for p) which belong to the finite element space of the

adopted Q2/P1 element pair (Q2 for uS and w, and P1 for p), thence using a one element mesh

must be enough to eliminate the spatial errors. This allows us to focus on the time errors without

being disturbed by spatial errors. The purpose of this problem is to check whether reduction in time

of order 1 and 2 for BE and CN, respectively, does occur as it is supposed to do.

To this end, the FE solutions of uwp-TR-Q2/P1 are directly compared with the analytical

solutions via L2 and H1 norms of the errors as shown in Table III.

Next, we focus on spatial errors by picking an extremely small time step such that the temporal

errors are almost non-existent. For this purpose, the same set of equations with the same physical

parameters are solved but for the following right hand side functions:

fu =







(
1
12

)
t2 +

(
x32 +

1
8x

2
2 − 1

)

0







,

fw =







(
10 x32

)
t +

(
2 x32 +

1
12 x22 − 1

)

0







.

The domain, the boundary conditions and the mesh are depicted in Figure 3.

Solving the problem analytically for the full assumption gives the following exact solution

functions: The results are shown in table IV.
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Table III. The errors in the finite element solutions at time t = 0.01 [s ] and mesh level 1 of the ULP-uwp-
Q2/P1 solver for both Crank Nicolson (CN) and Backward Euler (BE) measured through the L2 and H1

norms.

error norm
Backward Euler (BE)

∆t = 1× 10−5 [s ] ∆t = 1× 10−6 [s ] ∆t = 1× 10−7 [s ]

||uS − ref.||L2 2.0× 10−9 2.0× 10−10 2.0× 10−11

||vS − ref.||L2 2.6× 10−8 2.6× 10−9 2.6× 10−10

||w − ref.||L2 3.4× 10−8 3.4× 10−9 3.4× 10−10

||p− ref.||L2 2.8× 10−6 2.8× 10−7 2.8× 10−8

||uS − ref.||H1 9.0× 10−9 9.0× 10−10 9.0× 10−11

||vS − ref.||H1 1.2× 10−7 1.2× 10−8 1.2× 10−9

||w − ref.||H1 1.5× 10−7 1.5× 10−8 1.5× 10−9

||p− ref.||H1 6.3× 10−6 6.3× 10−7 6.3× 10−8

error norm
Crank Nicolson (CN)

∆t = 1× 10−4 [s ] ∆t = 1× 10−5 [s ] ∆t = 1× 10−6 [s ]

||uS − ref.||L2 9.3× 10−11 9.3× 10−13 9.3× 10−15

||vS − ref.||L2 3.4× 10−17 3.5× 10−17 3.7× 10−17

||w − ref.||L2 1.6× 10−9 1.6× 10−11 1.6× 10−13

||p− ref.||L2 1.7× 10−14 1.2× 10−14 5.7× 10−14

||uS − ref.||H1 2.4× 10−10 2.4× 10−12 2.4× 10−14

||vS − ref.||H1 1.5× 10−16 1.5× 10−16 1.6× 10−16

||w − ref.||H1 4.1× 10−9 4.1× 10−11 4.1× 10−13

||p− ref.||H1 4.7× 10−14 3.9× 10−14 1.4× 10−13

uS1
= 1

24 x3
2 t, uS2

= 0, w1 = x3
2 t, w2 = 0, p = 1

2 − x1.

Table IV. The errors in the finite element solutions for different mesh levels at time t = 0.01 [s ] of the ULP-

uwp-Q2/P1 solver for ∆t = 1× 10−5 [s ] for both Crank Nicolson and Backward Euler measured through
the L2 and H1 norms.

errors mesh level 2 mesh level 3 mesh level 4 reduction, level 3/ 4

||uS − ref.||L2 1.81132× 10−6 2.27358× 10−7 2.82564× 10−8 8.0463

||vS − ref.||L2 1.81207× 10−4 2.27381× 10−5 2.82476× 10−6 8.0496

||w − ref.||L2 4.36619× 10−5 5.41021× 10−6 6.74468× 10−7 8.0214

||p− ref.||L2 6.11228× 10−6 3.35809× 10−7 8.77083× 10−8 3.8287

||uS − ref.||H1 2.33429× 10−5 5.86860× 10−6 1.46165× 10−6 4.0150

||vS − ref.||H1 2.33538× 10−3 5.86971× 10−4 1.46140× 10−4 4.0165

||w − ref.||H1 5.64424× 10−4 1.40021× 10−4 3.49498× 10−5 4.0063

||p− ref.||H1 2.33453× 10−5 1.68093× 10−6 4.95731× 10−7 3.3908
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Figure 3. A square domain meshed with one element for mesh level 1. uwp-Q2/P1-TR was used to solve
the problem. This problem has no real physical meaning and the UL formulation is deactivated to allow for

pure testing of the Picard iterative method.

Table V. Physical properties of the porous medium used for all simulations except the ones in section 7. The

gravitational acceleration is set to 10 [m/s2 ]

Parameter Symbol Value SI Unit

first Lamé constant of solid µS 5.583× 106 [N/m2 ]

second Lamé constant of solid λS 8.375× 106 [N/m2 ]

Effective density of dense solid ρSR 2000 [kg/m3 ]

Effective density of pore fluid ρFR 1000 [kg/m3 ]

Initial volume fraction of solid nS
0S 0.67 −

Darcy permeability kF0S from 10−5 to 0.5 [m/s ]

8. TWO-DIMENSIONAL WAVE PROPAGATION IBVP

In this example, we study the 2D dynamical problem, depicted in Figure 4 under plane-strain

conditions. The solid skeleton is hyper-elastic as defined in Section 2.3 and the appendix. The

material parameters are given in Table V.

The load f(t) is given by

f(t) = sin (25 π t) [1−H(t− τ)] [106 Pa ] (62)

with H(t− τ) being the Heaviside step function and τ = 0.04 [s ]. The water saturated mixture

domain is surrounded by impermeable, frictionless (t̄F1 = 0 for the bottom and t̄F2 = 0 for the left

and right sides) but rigid boundaries except for the loaded top side, which is perfectly drained

(t̄F = 0). The objective of this initial boundary value problem (IBVP) is to study quantitatively the

effect of the volume fractions rate of change (the green terms in (38)) and the effect of convection

(the orange terms in (38)-(39)) on the solutions. Here we differentiate between three reduced cases:

(1) ‘fully reduced ’ in which all the green terms and all the orange terms are neglected, (2) ‘no

orange ’ that excludes only the convection, (3) ‘no green’ case where only the changes in volume
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t̄2 = f (t)

ū
S
1
=

0

ūS2
= 0

w̄
1
=

0

w̄2 = 0

10
m

10 m 10 m

A : (10.5, 10)
B : (10.5, 9.75)

C : (10.5, 9.5)

x1

x2

Mesh # Elements # DOFs

Level (width-height) (Q2/P1)

1 21-10 6048

2 42-20 23430

3 84-40 92214

4 168-80 365862

Mesh # Elements # DOFs

Level (total) (Q2/P1)

1 364 10314

2 1456 40278

3 5824 159174

4 23296 632838

5 93184 2523654

Figure 4. Geometry, boundary conditions and isotropic mesh level 1 of the symmetric 2D wave propagation
problem (top-left). Total number of elements and unknowns for the Q2/P1 approach (top-right). Anisotropic
mesh level 1 (bottom-left). total number of elements and unknowns for the Q2/P1 approach (bottom-
right). Going from mesh level i to mesh level i+1, every old local element is isotropically refined into 4
new elements. The symmetry of the problem can be exploited to reduce the problem size. However, the

computation was performed for the full problem.

fractions are ignored. To do so, we prefer to do the comparison on a mesh level that leads to full

convergence of the solutions (uS2
and p) for the full uwp formulation. Therefore, three equidistant

points initially located on the axis of symmetry and in the first half meter below the top loaded

boundary were opted for this purpose. The results are depicted in Figure 5 and show the full

convergence on mesh level 5.

Based on the results of this problem (for sample solutions, see Figure 6), we observed that the

convection may noticeably influence the fluidic solution components (p and vF ) if the considered kFS
is large enough. However, the influence on the deformation (uS) by convection remains negligible.

On the other hand, the influence on the pressure is much weaker than the deformation in case of

volume fraction changes (the green terms) and remains very small for both uS and p . To gain a

better picture, the deviations of the solutions pr (subscript r refers to one of three reduced cases)

from the solutions p of the ‘full ’ uwp form is quantitatively measured using the following relative

error formula

errorp =

n∑

i=1

|p(ti)− pr(ti)|

n∑

i=1

|p(ti)|
, (63)

where n denotes the number of time steps. By replacing p in (63) with uS2
, we obtain the formula

for erroru2.
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Figure 5. The displacement and the pressure versus time for different points located on the axis of symmetry

in the first meter below the top loaded boundary for kF0S = 10−2 [m/s ], κ = 1 and for the three reduced

cases using ULP-uwp-TR-Q2/P1 method with ∆t = 2.5× 10−5 [s ] and the anisotropic mesh level 5.

Based on Figure 7, we conclude that in case of strong coupling‡ (i. e., moderately small kF

(kF ≤ 10−5 [m/s ]) and very small kF (kF ≤ 10−10 [m/s ])), the convective terms become more

or less unimportant and can be canceled, whereas in case of weak coupling it depends on our main

concern. That is, if we are only interested in the deformation uS , then the convectiveless assumption

is not bad, otherwise, the convection should be involved.

‡Note that by use of (2), nF in (21), can be factored out and then for κ = 1, we have that nF γFR

kF =
nF
0
γFR

kF
0S

= const.× 1

kF
0S

which means that the fraction remains constant with time and hence, we can study its effect by switching the values of
kF
0S only.
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Figure 6. The displacement and the pressure at a point B for kF0S = 10−2 [m/s ], κ = 1 and for the three

reduced cases using ULP-uwp-TR-Q2/P1 method with ∆t = 2.5× 10−5 [s ] s and the anisotropic mesh
level 5.

9. ADAPTIVE TIME STEPPING (ATS)

The convergence speed of the ULP solver is strongly influenced by the non-linear Cauchy extra

stress TS
E which, in turn, is inversely proportional to the minimum value of the deformation

dependent nF . This can be seen if we let nF → 0. Then by (8) J → nS
0S and consequently h̃(JS) in

(69) goes to infinity.

Strictly speaking, if min
x∈Ω

nF (x) gets smaller, then corresponding local TS
E becomes larger and

more iterations are required. However, when integrating in time, the non-linear operator divTS
E is

drastically reduced by small ∆t as shown below,

ρvS + ρFRw + θ∆t ρFRgradvF w − θ∆t divTS
E − θ∆t (ρ)

′
S vS

− θ∆t

(
ρF
)′

S

nF
w + grad p̃ = rhs (64)

so that ∆t divTS
E is not dominant over the weakly non-linear momentum terms.

A particular ∆t which means to lower the dominant non-linear term TS
E may not be suitable if

TS
E raises above a certain limit and as a result, we need to switch to another smaller ∆t. Therefore,

using fixed time steps is not recommended here.
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Figure 7. errorp and erroru2 computed using (63) at a point initially located at the axis of symmetry and
0.25 m below the top loaded boundary for κ = 1 and for the three reduced cases using ULP-uwp-TR-Q2/P1

method with ∆t = 2.5× 10−5 s and the anisotropic mesh level 5.

To demonstrate this fact, we will adopt the problem of a saturated poroelastic column (cf. Figure

8) under compression load, because for this specific problem, we know that

min
x∈Ω

nF (x(t)) = nF (xtop(t)) ∀t ∈ [0 2],

where xtop refers to the top surface.

Note from Figure 9, we frequently have to shorten the time step size ∆t to adapt to the further

increase in the non-linear TS
E , provoked by smaller nF(xtop) in t ∈ [0 2].

But this reduction in ∆t should be done carefully so that the simulation is finished as fast as

possible and within the desired accuracy. An excessive reduction in the time step size will prolong

the CPU time, while poor reduction may slow down the speed of convergence of the ULP. Therefore,

a possibility for enlarging the time step size to accompany weakening non-linearity that may occur

must be considered.

Since we do not yet have an excellent predictor for the best time step increase or decrease, we

present an adaptive time stepping algorithm (see Algorithm 3) which differs from Algorithm 1 by

the red statements.

The algorithm uses the non-linear convergence rate ξ for iteration i,

ξi = i

√

‖di‖

‖d0‖
,

as indicator for the strength of the non-linearity to adjust the time step size.

Here, we set an upper bound (ξmax) for ξi and if ξi happens to exceed ξmax, the time step gets

aborted (unless the solver accidental converged to the desired tolerance to avoid time wasting) and

then reduced by rat% as described in the algorithm.

Large values for percentage reduction rat% produce highly oscillating ∆t’s, while low values

yield almost smooth ∆t’s as shown in Figure 10.
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Figure 8. Geometry and boundary conditions (left) and Cartesian mesh level 1 with 1 element per meter

(middle). The physical parameters are found in Table V and we set kF0S = 10−4m/s.
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Algorithm 3: ATS-ULP: Adaptive Time Stepping based Updated Lagrangian-Picard Iterative

Solver. This algorithm is designed for dynamic problems.

1 Data: nS
0S , ρFR, ρSR, kF0S , κ, λS , µS , ∆t, θ, ξmax ∈ [0.05 0.3], rat% ∈ {50%, 5%, 0.5%}

2 start value: y0;

3 for n← 0 to nstep do

4 update domain shape Ω(t): set x = XS + un
S ;

5 compute B see (56);

6 compute r, see (49), (51) and (52);

7 initial start for Picard iteration: z0 = yn;

8 for i← 1 to imax do

9 compute g(zi−1) = r+ θ ∆t f(zi−1);

10 compute Ã(zi−1) and build A(zi−1) =

(

Ã(zi−1) B

BT 0

)

;

11 compute zi = zi−1 + ωi−1
(
A(zi−1)

)−1
(

g(zi−1)−A(zi−1) zi−1
)

;

12 if
∥
∥d (zi)

∥
∥ ≤ Tol then go to 19;

13 if ξi > ξmax AND i > 1 then

/* Cancel this time step and decrease the time step

size by rat% */

14 t = t−∆t;
15 ∆t = (1− rat%) ∆t;
16 go to 6;

17 end

18 end

19 set yn = zi;

20 if ξi < ξmax then

/* depending on how far ξ is from ξmax, increase the time

step size by less than rat% */

21 ∆t =
(

1 + (rat%) ξmax−ξ
ξmax

)

∆t;

22 end

23 set t = t+∆t;

24 end

With regard to CPU timings, Table VI shows similar values for rat% ∈ {50%, 5%, 0.5%}.
Therefore, we shall switch to larger problems to find good combinations of ξmax and rat%.

To do so, we will solve the problem illustrated in Figure 4, but with the following large impulse

load

f(t) = 6.0 sin (25π t) [1−H(t− 0.04)] [106 pa ], (65)

which generates large compression (and hence large local stresses TS
E) quickly, such that fixed

time steps may fail (or become impractical) and ATS is pressingly needed. Next, we inspect the

point positioned on the intersection of the top boundary with the axis of symmetry because the

axis of symmetry experiences the largest settling (or minimum nF ) for the considered time interval

t ∈ [0 0.2].
From Figure 11, we notice larger settling (and hence larger local TS

E), which requires a smaller

∆t and vice versa.

Now, we come to our main issue, that is finding good combinations ξmax and rat%. From Table

VII and Table VIII and since all ξmax ≤ 0.3 give good accuracy, we conclude that ξmax ∈ [0.05 0.3]
(in particular ξmax = 0.1) together with rat = 5% are pretty good choices.

It remains to mention that in order to get the best ∆t generated by this procedure (that is, a

∆t which is as large as possible), one needs to start with an initial ∆t large enough (for instance

3× 10−3 for our problems), so that it gets reduced from first the time step because otherwise, the
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1, tolerance = 10−12.

selected ∆t may be too small and the small rat% increase will take long time to reach to the optimum

option for this technique.

10. CONCLUSION

In preparation for the numerical treatment, the governing equations of porous media dynamics were

briefly recapped. This covers the porous media modeling approach, the corresponding kinematics

as well as the equilibrium and constitutive relations. Mathematically, this leads eventually to a set

of four non-linear elliptic partial differential equations, which need to be solved: (1) the balance

of momentum of the solid phase, (2) the balance of momentum of the fluid phase, (3) the volume

balance of the mixture, (4) the solid velocity-displacement relation.

Thereafter, the governing set of these four PDEs was converted into Stokes-like form, referred to

as uwp formulation. The purpose is to permit the direct application of some special CFD techniques,

used to solve the incompressible Navier-Stokes equation and already realized in our in-house code

FEATFLOW2.

The discretization in time has been done by the standard θ-scheme, while the spatial discretization

has been carried out by the well-known (non-parametric) Q2/P1 finite element pair, which belongs
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Table VI. Total number of steps (# Step), Total number of non-linear iterations (# Iter.) and total elapsed CPU
time (CPU) in seconds for the described ULP solver for t ∈ [0 2] uwp-TR-Q2/P1 + UMFPACK including

the successful and the aborted steps.

rat% = 0.5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 209 346 782538 9332 338114 1598911 158058

0.05 27131 209857 2252 159781 1048473 99478

0.10 23788 243543 2585 138671 1135668 110425

0.30 16896 304417 3217 109966 1520808 143824

rat% = 5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 211895 785829 9188 340414 1610024 159398

0.05 26944 208853 2340 161031 1053202 99742

0.10 23623 239730 2531 139526 1134378 109241

0.30 15704 290501 2992 110735 1512872 140950

rat% = 50%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 256174 950533 11088 382596 1714069 170020

0.05 29073 203776 2204 184107 1136921 111305

0.10 26692 241811 2588 159349 1193064 107856

0.30 17711 289811 3013 127108 1509608 139835

to the best FEM choices for incompressible flow problems in terms of efficiency, accuracy and

robustness. The outcome is a weak form that demands less regularity and allows Neumann boundary

conditions that are more convenient to apply.

The resulting systems of non-linear algebraic equations were solved by means of the updated

Lagrange-Picard (ULP) method, which does not entail computations of time-consuming material

tangent matrix and many other Gateaux derivatives.

For every non-linear iteration, either the direct UMFPACK solver or iterative fast geometrical

multigrid method with special block Vanka smoother (both are subroutines already implemented in

FEATFLOW) are called to precondition the non-linear residual generated by ULP.

The previously mentioned special CFD approach (Q2/P1 FE pair + uwp formulation + θ-scheme

+ special multigrid + ULP) was then validated through several analytical simulations via L2-

and H1-error norms. However, only two of them were recorded in this paper. After that, more

realistic simulations were performed to investigate the effect of the convections and the volume

changes on the final solutions. The final results were then provided. In conclusion and after several

numerical test cases performed on canonical one and two-dimensional wave propagation examples,

we strongly recommend our new CFD approach, which is not only highly accurate, but also

speeds up the special multigrid solver, demands less regularity, does not require the computation

of the expensive material tangent matrix, involves easy-to-impose solution-independent boundary



26

-0.4

-0.3

-0.2

-0.1

0.04 0.08 0.12 0.16 0.2

0

0
time t [s ]

d
is

p
la

ce
m

en
t
u
2

in
m

et
er

s

0.04 0.08 0.12 0.16
0.2

0.2

0.3

0.4

0
time t [s ]

ti
m

e
st

ep
si

ze
∆
t
[1
0−

3
s
]

Figure 11. Time step ∆t vs. time (right) Displacement of point A vs. time (left). The results were
generated for uwp-TR-Q2/P1-ATS-ULP-UMFPACK solver with rat% = 0.5% and ξmax = 0.1, mesh level

2, tolerance = 10−12 and kF0S = 10−2 [m/s ].

conditions and typical for the most challenging situation, general three field non-linear PMD

problem with strong coupling and with no restriction to the considered frequency range in which

the reduced up form is no longer feasible. Finally, an adaptive time stepping strategy was suggested

to cope with situations in which the strength of non-linearity (or number of non-linear iterations per

time step) may suddenly (and rapidly) go up or down.

In future works, we will investigate the effect of the material tangent matrix on the performance

of this approach and account for different material models. Moreover, an extension of our

implementation to 3D problems is on the road map, which opens the avenue to more practically

relevant applications

APPENDIX

We shall show how to compute Kuu and h mentioned in (42). Recall that the Cauchy extra stress

tensor TS
E for the considered hyper-elastic material is given by the material model

TS
E =

µS

JS

(
FSF

T
S − I

)
+ h̃(JS)I, (66)
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Table VII. Total number of steps (# Step), Total number of non-linear iterations (# Iter.) and total elapsed
CPU time (CPU) in seconds for the described ATS-ULP solver for t ∈ [0 0.2] and convectiveless uwp-TR-
Q2/P1 + UMFPACK (as preconditioner) including the successful and the aborted steps. This table is related

to the configuration of Figure 4 with load as defined in (65).

kF0S = 10−2 [m/s ]

rat% = 0.5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 2651 12114 2616 4117 21537 22383

0.05 803 4508 960 1130 9641 9934

0.10 609 4142 879 854 9182 9418

0.30 413 3579 755 547 10240 10464

rat% = 5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 1525 9090 1950 2942 17911 18556

0.05 366 3526 741 712 7433 7664

0.10 257 3124 657 514 6783 6958

0.30 158 3244 674 314 7392 7551

rat% = 50%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 1375 8354 1794 3072 18996 19677

0.05 341 3527 745 741 7720 7928

0.10 242 3190 671 580 7347 7536

0.30 159 3522 734 381 8015 8188

where µS is the first lame parameter for solid skeleton, FS is the solid deformation gradient and

defined as follows

F−1
S = I− graduS (67)

and JS is the solid Jacobian given by

1

JS

= detF−1
S = 1− divuS + |graduS | (68)

for 2D problems. The source term h̃(JS) is given by the following relation

h̃(JS) = λS
(
1− nS

0S

)2
(

1

1− nS
0S

−
1

JS − nS
0S

)

. (69)
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Table VIII. Total number of steps (# Step), Total number of non-linear iterations (# Iter.) and total elapsed
CPU time (CPU) in seconds for the described ATS-ULP solver for t ∈ [0 0.2] and convectiveless uwp-TR-
Q2/P1 + UMFPACK (as preconditioner) including the successful and the aborted steps. This table is related

to the configuration of Figure 4 with load as defined in (65).

kF0S = 10−5 [m/s ]

rat% = 0.5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 1192 6505 1417 2257 12852 14433

0.05 666 4173 913 1127 8041 9107

0.10 516 3638 787 877 7149 8086

0.30 336 3484 744 582 6849 7697

rat% = 5%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 688 5102 1106 1618 11090 12415

0.05 318 3170 687 641 6602 7405

0.10 232 2853 609 453 5789 6508

0.30 140 2992 633 269 5861 6549

rat% = 50%

ξmax

level 1 level 2

# Step # Iter CPU # Step # Iter CPU

0.01 660 5076 1098 1712 11990 13368

0.05 288 3094 685 619 6662 7498

0.10 228 2964 663 477 6272 7046

0.30 150 3240 709 334 6785 7591

Assuming that TS
E =

(
TS
E11

TS
E12

TS
E21

TS
E22

)

and uS =

(
uS1

uS2

)

, according to the previous 4 equations, it

follows that

TS
E11

= µS
(
1− uS2,2

)
uS1,1

+ µS
(
JS uS1,2

+ uS2,1

)
uS1,2

(70)

+ µS
(
JS uS2,2

− 2J + 1
)
uS2,2

+
=h(JS)

µS (JS − 1) + h̃(JS)
︸ ︷︷ ︸

,

TS
E12

= µS
(
JS − JS uS1,1

)
uS1,2

+ µS
(
JS − JS uS2,2

)
uS2,1

,

TS
E21

= µS
(
JS − JS uS1,1

)
uS1,2

+ µS
(
JS − JS uS2,2

)
uS2,1

,

TS
E22

= µS
(
1− uS1,1

)
uS2,2

+ µS
(
JS uS2,1

+ uS1,2

)
uS2,1

+ µS
(
JS uS1,1

− 2J + 1
)
uS1,1

+
=h(JS)

µS (JS − 1) + h̃(JS)
︸ ︷︷ ︸

/.
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Where uSi,j
=

∂uSi

∂xj
are the spatial derivates of the displacement and δSi,j

= ∂δSi

∂xj
are the spatial

derivatives of the displacement test functions and they are both interpolated with the same basis

function φi. We have

∫

Ω(t)

grad δuS : T
S
E dv =

(
δuS1

δuS2

)
(
K11 K12

K21 K22

)

︸ ︷︷ ︸

Kuu

(
uS1

uS2

)

+
(
δuS1

δuS2

)
(
h1

h2

)

︸ ︷︷ ︸

h

, (71)

where the element stiffness matrices are:

(K11)
e
ij = µS

∫

Ω(t)

(
1− uS2,2

)
φi,1φj,1 +

(
JSuS1,2

+ uS2,1

)
φi,1φj,2 +

(
JS − JSuS1,1

)
φi,2φj,2 dvt,

(72)

(K12)
e
ij = µS

∫

Ω(t)

(
JSuS2,2

− 2JS + 1
)
φi,1φj,2 +

(
JS − JSuS2,2

)
φi,2φj,1 dvt,

(K2,1)
e

ij
= µS

∫

Ω(t)

(
JSuS1,1

− 2JS + 1
)
φi,2φj,1 +

(
JS − JSuS1,1

)
φi,1φj,2 dvt,

(K22)
e
ij = µS

∫

Ω(t)

(
1− uS1,1

)
φi,2φj,2 +

(
JSuS2,1

+ uS1,2

)
φi,2φj,1 +

(
JS − JSuS2,2

)
φi,1φj,1 dvt

These element matrices are then assembled to give the global matrices K11, K12, K21 and K22.

We also get extra source terms h due to the material model which consist of two components:

(h1)
e
i =

∫

Ω(t)

φi,1 · h(JS) dvt = µS

∫

Ω(t)

φi,1 ·

(

JS − 1 +
h̃(JS)

µS

)

dvt, (73)

(h2)
e
i =

∫

Ω(t)

φi,2 · h(JS) dvt = µS

∫

Ω(t)

φi,2 ·

(

JS − 1 +
h̃(JS)

µS

)

dvt .

The element source terms are then assembled to give the global sources h1 and h2.
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