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Abstract. In this paper a projection method for the Navier-Stokes equations with Coriolis force is considered.
This time-stepping algorithm takes into account the Coriolis terms both on prediction and correction steps. We study
the accuracy of its semi-discretized form and show that the velocity is weakly first-order approximation and the
pressure is weakly order 1

2
approximation.
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1. Introduction. In many physical and industrial applications there is the necessity of
numerical simulations for CFD models with moving geometries. In the literature one can find
several techniques for handling such type of problems. Among them are fictitious domain [4],
resp., fictitious boundary [17, 18] and arbitrary lagrangian eulerian [3] methods. Although

FIG. 1.1. STR geometry.

being quite popular these methods require often a large
amount of CPU time to simulate even 2D benchmark models
if high accuracy is desired. Moreover, their handling of ge-
ometry and meshes serves as a source of additional errors in
velocity and pressure fields. For example, the fictitious bound-
ary approach often uses a fixed mesh and therefore may cap-
ture boundaries of a moving object not sufficiently accurate
unless the mesh is very fine. At the same time, there is a large
class of “rotating” models, when the application of the above
methods can be avoided by some modifications of the underly-
ing PDEs and/or by special transformations of the model that

allow considering a static computational domain. As an example, let us consider the numeri-
cal simulation of a Stirred Tank Reactor benchmark problem (Fig. 1.1).

The motion of an incompressible Newtonian fluid in the tank is modeled by the system of
Navier-Stokes equations

vt + (v · ∇)v − ν∆v +∇q = f
div v = 0 in Ω× (0, T ] , (1.1)

where Ω is an open bounded domain with sufficiently smooth boundary Γ, f is a given force
and ν > 0 is a kinematic viscosity. Changing the inertial frame of reference to the noninertial
frame rotating with the blades leads to the following system:

ut + (u · ∇)u− ν∆u + 2ω × u + ω × (ω × r) +∇q = f
div u = 0 in Ω×(0, T ] , (1.2)

where ω is the angular velocity vector, r is the radius vector from the center of coordinates,
2ω × u and ω × (ω × r) are the so-called Coriolis and centrifugal forces, respectively, and
u = v + (ω × r). For a more detailed derivation of (1.2) see, e.g., [1]. Using the equality

ω × (ω × r) = −∇1
2
(ω × r)2
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and setting p = q − 1
2 (ω × r)2 in (1.2), we get the following system of equations

ut + (u · ∇)u− ν∆u + 2ω × u +∇P = f
div u = 0 in Ω× (0, T ] , (1.3)

which will be treated in this paper. Exclusively for the purpose of analysis we assume homo-
geneous Dirichlet boundary conditions u|Γ = 0.

To handle effectively the possibly dominating Coriolis force we modify the classical projec-
tion scheme [2, 14] in the following way: Given un ≈ u(tn)
Step 1: Find intermediate velocity ũn+1 from

{ 1
k

(ũn+1 − un)− ν∆ũn+1 + (un · ∇)ũn+1 + ω × ũn+1 = f(tn+1)

ũn+1|Γ = 0
(1.4)

Step 2: Find new velocity and pressure {un+1, pn+1} as the result of the projection into the
divergence-free subspace





1
k

(un+1 − ũn+1) + ω × (un+1 − ũn+1) +∇pn+1 = 0

div un+1 = 0
un+1 · n|Γ = 0

(1.5)

where k is the time step, tn+1 = (n + 1)k, and n is the normal vector to Γ. One notes
that the essential modification of the well-known Chorin-Temam method is introduced on
the correction step 2, which is not an orthogonal projection any more. The rationale and
motivation of this modified scheme can be found in [12], where the scheme is treated as an
incomplete LU factorization of the transition operator for fully implicit time discretization.
Numerical experiments from [12, 13] show that including ω-terms in (1.5) enhances stability
and accuracy of the scheme for the case of dominating Coriolis forces. The present paper
deals with convergence analysis for the method (1.4)–(1.5).

A well established framework for numerical analysis of projection schemes is the fol-
lowing, see [8, 9]: one deduces an equivalent pseudo-compressibility or penalty method and
further treats a projection scheme as the discretization of perturbed Navier-Stokes equations.
However, applying this approach to (1.4)–(1.5) leads to a number of additional terms de-
pending on ω, which are not easy to handle. Therefore we analyse the problem using the
techniques developed by J. Shen in [10, 11] for the case of ω = 0. Although the arguments
in [10, 11] essentially use the fact that the projection on step 2 is orthogonal, we show that
the similar convergence results can be proved for the modified method (1.4)–(1.5). Finally,
although we discuss only the first order scheme in this paper, the second order modification
of (1.4)–(1.5) can be build in a standard way, cf. [12].

2. Preliminaries. Below we use the following notation:

| · |2 =
∫

Ω

| · |2dx, ‖ · ‖2 =
∫

Ω

|∇ · |2dx, ‖ · ‖s – norm in Hs(Ω).

By (·, ·) we will denote the inner product in L2(Ω) and by 〈·, ·〉 – the duality between H−s

and H−s
0 for all s > 0. We also define

H = {u ∈ (
L2(Ω)

)d
: div u = 0, u · n|Γ = 0},

V = {v ∈ (
H1

0 (Ω)
)d

: div v = 0}.
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In the following, we assume





u0 ∈ (H2(Ω))d ∩ V,

f ∈ L∞(0, T ; (L2(Ω))d) ∩ L2(0, T ; (H1(Ω))d),
ft ∈ L2(0, T ; H−1),
supt∈[0,T ] ‖u(t)‖ ≤ M.

(2.1)

We will use c or C as a generic positive constant which may depend on Ω, ν, T , constants
from various Sobolev inequalities, u0, f , ω and the solution u through the constant M in
(2.1).

Under the assumption (2.1) one can prove the following inequalities

sup
t∈[0,T ]

{‖u(t)‖2 + |ut(t)|+ |∇p(t)|} ≤ C, (2.2)

∫ T

0

‖ut(t)‖2 + t|utt|2dt ≤ C, (2.3)

which will be used in the sequel. Indeed, in [5] the estimates (2.2)–(2.3) were proved for the
Navier-Stokes equations (1.1) without Coriolis term. However adding linear skew-symmetric
term ω × u to the momentum equation does not change arguments from [5],but leads to
(2.2)–(2.3) with constant M depending, in general, on ω. Further we often use the following
well-known [15] estimates for the bilinear form b(u, v, w) =

∫
Ω
(u · ∇)v ·w dx:

b(u, v, w) ≤




c‖u‖‖v‖ 1
2 |v| 12 ‖w‖,

c‖u‖2|v|‖w‖,
c‖u‖‖v‖2|w|.

(2.4)

and b(u,v,w) = −b(u, w,v) for u ∈ H .
Let PH be the orthogonal projector in

(
L2(Ω)

)d onto H and define the Stokes operator

Au = −PH∆u, ∀u ∈ D(A) = V ∩ (
H2(Ω)

)d. We will use the following properties: A is
an unbounded positive self-adjoint closed operator in H with domain D(A), and its inverse
A−1 is compact in H and satisfies the following relations [10, 11]:

∃c, C > 0, such that ∀u ∈ H :

{ ‖A−1u‖2 ≤ c|u| and ‖A−1u‖ ≤ c‖u‖V ′ ,

c‖u‖2V ′ ≤ (A−1u,u) ≤ C‖u‖2V ′ .
(2.5)

Further in this section we will prove several auxiliary lemmas. The first lemma shows
that the projection (1.5) is uniformly (with respect to k) stable in H1. Another two prelimi-
nary lemmas extend the results of lemma 2 from [10] and lemma A1 from [11] for the case of
ω 6= 0 and non-orthogonal projection in (1.5). We also note that in [11] the similar result was
proved only the Stokes case (no nonlinear terms has been treated). We include the nonlinear
terms in the analysis and encounter additional assumption on the size of the time step.

LEMMA 2.1. The estimate

‖un+1‖1 ≤ c̃‖ũn+1‖1

holds with some c̃ independent of k ∈ (0, 1].
3



Proof. First note that the pressure pn+1 from (1.5) satisfies the following elliptic equation

divM−1∇pn+1 =
1
k

div ũn+1 (2.6)
[M−1∇pn+1

] · n|Γ = 0 (2.7)

with M = [I + kω×]. One can verify [7] that for d = 3 it holds

M−1 = (1 + |ω̃|2)−1[I + ω̃ ⊗ ω̃ − ω̃×], ω̃ = k ω, (2.8)

where (ω̃ ⊗ ω̃)ij = ω̃i ω̃j . (For the 2D case the identity (2.8) holds without ω̃ ⊗ ω̃ term.)
Since ω̃ is a constant vector one has ω̃ ×∇q = ∇× (qω̃) for a scalar function q. Therefore
div (ω̃ ×∇q) = 0 and the equation (2.6) can be written as

divB∇pn+1 =
1
k

div ũn+1 (2.9)

with the symmetric diffusion tensor B =
1

1 + |ω̃|2 [I + ω̃ ⊗ ω̃]. One can easily see that the

inequalities

c1|ξ|2 ≤ (Bξ, ξ) ≤ c2|ξ|2 (2.10)

hold with c1 and c2 independent on k, e.g. c1 =
1

1 + |ω̃|2 , c2 = 1. (For the 2D case B is the

scaled identity matrix.) Furthermore, the boundary condition (2.7) can be rewritten as

∂pn+1

∂l

∣∣∣∣
Γ

= 0 with l = M−1n.

The angle φ(x) between the vector l(x) and tangential plane to Γ at x ∈ Γ is uniformly
bounded from below. Indeed, it holds:

| sin φ| = |lT · n|
lT · l =

|nTM−1n|
nTM−TM−1n

≥ |nTBn|
‖M−1‖2 ≥

c1

4
. (2.11)

Here we used the identity M−T +M−1 = 2B, inequalities (2.10) and ‖M−1‖ ≤ 2. Thus
the smoothness assumption on Ω, (2.10) and (2.11) imply the following H2 estimate for the
solution of (2.6)–(2.7) [6]:

‖pn+1‖2 ≤ ck−1|div ũn+1| ≤ ck−1‖ũn+1‖1
with some constant c independent of k. Finally, using this result we get from (1.5) and the
triangle inequality

‖un+1‖1 ≤ ‖ũn+1‖1 + k‖M−1∇pn+1‖ ≤ ‖ũn+1‖1 + k‖M−1‖‖pn+1‖2 ≤ c ‖ũn+1‖1.

It is straightforward to check that the solution to (2.6)–(2.7) satisfies the estimate

|M−1∇pn+1| ≤ c k−1|ũn+1|
Thus the projection (1.5) is also uniformly stable in L2:

|un+1| ≤ |ũn+1|+ k|M−1∇pn+1| ≤ c |ũn+1|. (2.12)
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LEMMA 2.2. Denote

en+1 = u(tn+1)− un+1 and ẽn+1 = u(tn+1)− ũn+1.

Assume (2.1) and 2k|ω|2 ≤ 1. It holds:

|eN+1|2 + |ẽN+1|2 + kν

N∑
n=0

{‖ẽn+1‖2 + ‖en+1‖2}

+
N∑

n=0

{|en+1 − ẽn+1|2 + |ẽn+1 − en|2} ≤ c k ∀ 0 ≤ N ≤ T/k − 1 (2.13)

Proof. Let Rn be the truncation error defined by

1
k

(u(tn+1)− u(tn))− ν∆u(tn+1) + ω × u(tn+1)

+ (u(tn+1) · ∇)u(tn+1) +∇p(tn+1) = f(tn+1) + Rn, (2.14)

where Rn is the integral residual of the Taylor series, i.e.,

Rn =
1
k

∫ tn+1

tn

(t− tn)utt(t)dt.

By subtracting (1.4) from (2.14), we obtain

1
k

(ẽn+1 − en)− ν∆ẽn+1 + ω × ẽn+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn −∇p(tn+1) (2.15)

Taking the inner product of (2.15) with 2kẽn+1 and using the identity

(a− b, 2a) = |a|2 − |b|2 + |a− b|2,
we derive

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2 + (ω × ẽn+1, 2kẽn+1)

= 2k〈Rn, ẽn+1〉+ 2k(∇p(tn+1), ẽn+1)− 2kb(en, ũn+1, ẽn+1)

+ 2kb(u(tn)− u(tn+1), ũn+1, ẽn+1)− 2kb(u(tn+1), ẽn+1, ẽn+1). (2.16)

Since the Coriolis term vanishes: (ω × ẽn+1, 2kẽn+1) = 0, using the same arguments as
in [10, 11] one deduces from (2.16) the estimate

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2

≤ c k

(∫ tn+1

tn

t‖utt‖2−1dt + k

∫ tn+1

tn

|ut|2dt

)
+ 2k2|∇p(tn+1)|2 + c k|en|2. (2.17)

From (1.5) we have

1
k

(en+1 − ẽn+1)−∇pn+1 + ω × (en+1 − ẽn+1) = 0. (2.18)
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Taking the inner product of (2.18) with 2ken+1, we get

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k(ω × ẽn+1, en+1 − ẽn+1) = 0.

Then

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k2|ω|2|ẽn+1|2 − 1
2
|en+1 − ẽn+1|2 =

|en+1|2 − (1 + kc̃)|ẽn+1|2 +
1
2
|en+1 − ẽn+1|2 ≤ 0

with c̃ = k|ω|2. This yields

|en+1|2 − |ẽn+1|2 +
1

2(1 + kc̃)
|en+1 − ẽn+1|2 ≤ kc̃|en+1|2 (2.19)

Taking the sum of (2.17) and (2.19) for n = 0, . . . , N (0 ≤ N ≤ T/k − 1), we obtain

|eN+1|2 +
N∑

n=0

{
1

2(1 + kc̃)
|en+1 − ẽn+1|2 +

1
2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ c k

N∑
n=0

|en|2+c k

(∫ T

0

t‖utt‖2−1dt + k

∫ T

0

|ut|2dt + sup
t∈[0,T ]

|∇p(t)|2
)

+kc̃|eN+1|2.

Thanks to the condition 2k|ω|2 ≤ 1 and (2.2)–(2.3) one can write

|eN+1|2 +
N∑

n=0

{
|en+1 − ẽn+1|2 +

1
2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ c k

N∑
n=0

|en|2 + c k

(∫ T

0

t‖utt‖2−1dt + k

∫ T

0

|ut|2dt + sup
t∈[0,T ]

|∇p(t)|2
)

≤ c k

N∑
n=0

|en|2 + c k.

Applying the discrete Gronwall lemma to the last inequality, we arrive at

|eN+1|2 +
N∑

n=0

{|en+1 − ẽn+1|2 + |ẽn+1 − en|2 + kν‖ẽn+1‖2} ≤ c k (2.20)

Further, lemma 2.1 provides the estimate

‖en+1‖1 ≤ c̃‖ẽn+1‖1 (2.21)

Applying (2.21) and the triangle inequality |ẽn+1| ≤ |en+1|+ |en+1 − ẽn+1| and (2.20), we
also obtain

|ẽN+1|2 + kν

N∑
n=0

‖en+1‖2 ≤ c k

This proves the lemma.
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LEMMA 2.3. Assume (2.1) and

∫ T

0

|∇pt|2 ≤ c . (2.22)

Moreover, assume that k is sufficiently small, then it holds

N∑
n=0

|ẽn+1 − ẽn|2 + k‖ẽN+1‖2 ≤ c k2 ∀ 0 ≤ N ≤ T/k − 1.

Proof. We shift the index n + 1 → n in (2.18) and take the sum with (2.15). This brings
us to

1
k

(ẽn+1 − ẽn)− ν∆ẽn+1 + ω × (ẽn+1 − ẽn)

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn −∇(p(tn+1)− pn)− ω × en (2.23)

We take the inner product of (2.23) with k(ẽn+1 − ẽn) and obtain

|ẽn+1 − ẽn|2 +
kν

2
(‖ẽn+1‖2 − ‖ẽn‖2 + ‖ẽn+1 − ẽn‖2)

= −k(ω × en, ẽn+1 − ẽn) + k〈Rn, ẽn+1 − ẽn〉+ k(p(tn+1)− pn, div (ẽn+1 − ẽn) )

+ kb(un, ũn+1, ẽn+1 − ẽn)− kb(u(tn+1), u(tn+1), ẽn+1 − ẽn). (2.24)

Now we estimate terms on the right-hand side of (2.24). Below δ is a positive constant to be
determined later. Using (2.13) we get

−k(ω × en, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + c k2|en|2 ≤ δ|ẽn+1 − ẽn|2 + c k3. (2.25)

Thanks to the estimate |Rn|2 ≤ c
∫ tn+1

tn
t|utt|2dt from [11] we have

k〈Rn, ẽn+1 − ẽn〉 ≤ δ|ẽn+1 − ẽn|2 + c k2

∫ tn+1

tn

t|utt|2dt. (2.26)

Let us estimate the pressure-depended term. Denote qn = p(tn+1) − pn, then we deduce
from (2.18) :

k(p(tn+1)− pn, div (ẽn+1 − ẽn) ) = k(∇qn, ẽn+1 − ẽn)
= k2(∇qn,∇(pn+1 − pn)) + k2(∇qn,ω × (ẽn+1 − en+1 − ẽn + en))

≤ −k2(∇qn,∇(qn+1 − qn)) + k2(∇qn,∇(p(tn+2)− p(tn+1)))
+k2(∇qn,ω × (ẽn+1 − en+1)− k2(∇qn,ω × (ẽn − en)) (2.27)

We estimate the terms on the right-hand side of (2.27) separately:

−k2(∇qn,∇(qn+1 − qn)) =
k2

2
(‖qn‖2 − ‖qn+1‖2 + ‖qn+1 − qn‖2) (2.28)

We obtain from (2.18) the following relation:

kM−1∇(qn+1 − qn) = (ẽn+1 − en+1)− (ẽn − en) + kM−1∇(p(tn+2)− p(tn+1)).
7



Multiplying by ∇(qn+1 − qn) and using (2.10) and condition k|ω| ≤ 1
2 we get

k2‖qn+1 − qn‖2 ≤ 5
4
k2(M−1∇(qn+1 − qn),∇(qn+1 − qn))

≤ 5
4
k(ẽn+1 − ẽn,∇(qn+1 − qn)) +

5
4
k2(M−1∇(p(tn+2)− p(tn+1),∇(qn+1 − qn))

≤ 1
2
k2‖qn+1 − qn‖2 +

5
4
(
5
8

+ σ)|ẽn+1 − ẽn|2 + c k2

∫ tn+2

tn+1

|∇pt|2dt, ∀ σ > 0.

Thus, choosing sufficiently small σ we obtain:

k2

2
‖qn+1 − qn‖2 ≤ 5

6
|ẽn+1 − ẽn|2 + c k2

∫ tn+2

tn+1

|∇pt|2dt (2.29)

The second term on the right-hand side of (2.27) we estimate as follows:

k2(∇qn,∇(p(tn+2)− p(tn+1))) ≤ k3‖qn‖2 + c k2

∫ tn+2

tn+1

|∇pt|2dt (2.30)

For the third and the fourth terms on the right-hand side of (2.27) we have:

k2(∇qn,ω×(ẽn+1−en+1))−k2(∇qn,ω×(ẽn−en)) ≤ k3‖qn‖2+c k
∑

i=0,1

|ẽn+i−en+i|2

(2.31)
Now estimates (2.27)–(2.31) gives

k(p(tn+1)− pn, div (ẽn+1 − ẽn) ) ≤ 5
6
|ẽn+1 − ẽn|2 + ck3‖qn‖2

+ k2(‖qn‖2 − ‖qn+1‖2) + c k2

∫ tn+2

tn+1

|∇pt|2dt + c k
∑

i=0,1

|ẽn+i − en+i|2. (2.32)

Further, consider the following splitting:

u(tn+1) · ∇u(tn+1)− un · ∇ũn+1 = u(tn+1) · ∇ẽn+1

+ (u(tn+1)− u(tn)) · ∇ũn+1 + en · ∇u(tn+1)− en · ∇ẽn+1 (2.33)

Based on this splitting we estimate the last two terms on the right-hand side of (2.24). The
first three resulting terms can be estimated in the straightforward manner with the help of
(2.4) and a priori estimates (2.2), (2.3):

kb(u(tn+1), ẽn+1, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2c ‖u(tn+1)‖22‖ẽn+1‖2
≤ δ|ẽn+1 − ẽn|2 + k2c ‖ẽn+1‖2, (2.34)

kb(u(tn+1)− u(tn), ũn+1, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + ck3‖ũn+1‖
∫ tn+1

tn

‖ut‖22
≤ δ|ẽn+1 − ẽn|2 + k3c , (2.35)

kb(en, u(tn+1), ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2c ‖u(tn+1)‖22‖en‖2
≤ δ|ẽn+1 − ẽn|2 + k2c ‖en‖2. (2.36)
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Due to (2.4) the last term is treated as follows:

kb(en, ẽn+1, ẽn+1 − ẽn) ≤ ck‖en‖‖ẽn+1‖‖ẽn+1 − ẽn‖ 1
2 |ẽn+1 − ẽn| 12 (2.37)

≤ ck
3
2 ‖en‖2‖ẽn+1‖2 +

√
kνδ‖ẽn+1 − ẽn‖|ẽn+1 − ẽn|

≤ ck
3
2 ‖en‖2‖ẽn+1‖2 +

kν

2
‖ẽn+1 − ẽn‖2 + δ|ẽn+1 − ẽn|2

Finally (2.24) with (2.25)–(2.26) and (2.32)–(2.38) yield for sufficiently small δ > 0:

|ẽn+1 − ẽn|2 +
kν

2
(‖ẽn+1‖2 − ‖ẽn‖2) + k2(‖qn+1‖2 − ‖qn‖2)

≤ C
(
k3 + k2

∫ tn+2

tn+1

|∇pt|2dt + k2(‖ẽn+1‖2 + ‖en+1‖2) + k
3
2 ‖en‖2‖ẽn+1‖2

+ k3‖qn‖2 + k
∑

i=0,1

|ẽn+i − en+i|2
)
. (2.38)

We sum up the last inequalities for n = 0, . . . , N and use the assumption (2.22) and the
estimate (2.13). This gives

N∑
n=0

|ẽn+1−ẽn|2+k2‖qN+1‖2+kν

2
‖ẽN+1‖2 ≤ C

(
k2+

N∑
n=0

k3‖qn‖2+
N∑

n=0

k
3
2 ‖en‖2‖ẽn+1‖2

)
.

Now we assume that k is sufficiently small such that 2C
√

k‖eN‖2ν−1 < 1 holds (note that
‖eN‖ is uniformly bounded due to lemma 2.2), then the application of the discrete Gronwall
inequality and (2.13) yields

N∑
n=0

|ẽn+1 − ẽn|2 +
kν

2
‖ẽN+1‖2 ≤ c k2 exp(

√
k

N∑
n=0

‖en‖2) ≤ c k2 exp(
√

kC)

Thanks to the embedding H−1 ↪→ L2 and the L2 stability of projection, see (2.12), we
conclude:

‖en+1 − en‖−1 ≤ c |en+1 − en| ≤ c |ẽn+1 − ẽn|.
Therefore the lemma 2.3 yields

N∑
n=0

‖en+1 − en‖2−1 ≤ c k2 ∀ 0 ≤ N ≤ T/k − 1. (2.39)

3. Error estimate. In this section we show that the scheme (1.4)–(1.5) for the Navier-
Stokes equations with the Coriolis force (1.2) has the same order of accuracy as the classical
projection scheme [2, 14] for the Navier-Stokes equations (1.1). The following theorem is the
main result of the paper.

THEOREM 3.1. Assume (2.1) and 2k|ω|2 ≤ 1, then both ũn+1 and un+1 are weakly
first-order approximations to u(tn+1) in L2(Ω)d:

kν

T/k−1∑
n=0

{|en+1|2 + |ẽn+1|2} ≤ c k2 (3.1)

9



Additionally assume that k is sufficiently small and
∫ T

0
|∇pt|2 ≤ c , then pn+1 as well as

(I − k ν∆)pn+1 are weakly order 1
2 approximations to p(tn+1) in L2(Ω)/R:

k

T/k−1∑
n=0

{
|pn+1 − p(tn+1)|2L2(Ω)/R − |(I − k ν∆)pn+1 − p(tn+1)|2L2(Ω)/R

}
≤ c k (3.2)

Proof. (i) Error estimate for the velocity.
Taking the sum of (1.4) and (1.5), we obtain

1
k

(un+1 − un)− ν∆ũn+1 + (un · ∇)ũn+1 + ω × un+1 +∇pn+1 = f(tn+1). (3.3)

Let us denote

q̃n+1 = p(tn+1)− pn+1.

Subtracting (3.3) from (2.14), we obtain

1
k

(en+1 − en)− ν∆ẽn+1 + ω × en+1 +∇q̃n+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn. (3.4)

Taking the inner product of (3.4) with 2kA−1en+1, splitting the nonlinear term into three
parts, using (2.5) and noticing that

(A−1u,∇p) = 0, ∀u ∈ H,

we derive

‖en+1‖2V ′ − ‖en‖2V ′ + ‖en+1 − en‖2V ′ +
15kν

8
|en+1|2

≤ −2k(ω × en+1, A−1en+1) + 2k〈Rn, A−1en+1〉 − 2kb(en, ũn+1, A−1en+1)

− 2kb(u(tn+1), ẽn+1, A−1en+1) + 2kb(u(tn)− u(tn+1), ũn+1, A−1en+1)

+ ck|en+1 − ẽn+1|2. (3.5)

The Coriolis term is estimated as follows

|2k(ω × en+1, A−1en+1)| ≤ c k‖A−1en+1‖|en+1|
≤ c k‖en+1‖V ′ |en+1| ≤ νk

8
|en+1|2 + c k‖en+1‖2V ′ . (3.6)

Applying the same arguments as in [10, 11] we deduce from (3.5) and (3.6) the estimate

‖en+1‖2V ′ − ‖en‖2V ′ + νk|en+1|2 + ‖en+1 − en‖2V ′
≤ c k‖en+1‖2V ′ + c (k2 + k3)‖ẽn+1‖2 + c k|ẽn+1 − en| (3.7)

+ c k|en+1 − ẽn+1|2 + c k

(∫ tn+1

tn

t‖utt‖2−1dt + k

∫ tn+1

tn

|ut|2dt

)
.

The only modification of the arguments from [10, 11] here is that instead of identity

|ẽn+1|2 = |en+1|2 + |en+1 − ẽn+1|2,
10



which is no longer true we use the triangle inequality

|ẽn+1|2 ≤ |en+1|2 + |en+1 − ẽn+1|2, (3.8)

Taking the sum of (3.7) for n = 0, . . . , N , N ∈ [0, T/k − 1], we derive from lemma 2.2 that

‖eN+1‖2V ′ +
N∑

n=0

{‖en+1 − en‖2V ′ + k ν|en+1|2} ≤ c k2 + c k

N+1∑
n=0

‖en‖2V ′ .

By applying the discrete Gronwall lemma to the last inequality, we obtain

‖eN+1‖2V ′ +
N∑

n=0

{‖en+1 − en‖2V ′ + k ν|en+1|2} ≤ c k2 ∀0 ≤ N ≤ T/k − 1.

Then, from (3.8) and lemma 2.2 we arrive at

k

N∑
n=0

|ẽn+1|2 ≤ k

N∑
n=0

{|en+1|2 + |ẽn+1 − en+1|2} ≤ c k2 ∀0 ≤ N ≤ T/k − 1. (3.9)

(ii) Error estimate for the pressure.
The skeleton of our derivations for the pressure estimate remains the same as in [10]. Remarks
from [11] are applied through lemma 2.3.

We start from rearranging (3.4) to

∇qn+1
∗ =

1
k

(en+1 − en)− ν∆en+1
∗ + ω × en+1

+ (u(tn+1) · ∇)u(tn+1)− (u(tn) · ∇)ũ(tn+1)−Rn, (3.10)

where {en+1
∗ , qn+1

∗ } = {ẽn+1, q̃n+1}.
Next, we split the nonlinear term on the right hand side of (3.10) as

(u(tn+1) · ∇)u(tn+1)− (un · ∇)ũn+1

= ((u(tn+1)− u(tn)) · ∇)u(tn+1) + (en · ∇)u(tn+1) + (un · ∇)ẽn+1.

From lemma 2.2 we derive that

‖un‖ ≤ ‖en‖+ ‖u(tn)‖ ≤ c ∀n.

By using (2.4) we obtain that, for all v ∈ H1
0 (Ω)d,

((u(tn+1) · ∇)u(tn+1) − (un · ∇)ũn+1, v)
≤ c |u(tn+1)− u(tn)|‖u(tn+1)‖2‖v‖

+ c‖en‖‖u(tn+1)‖‖v‖+ c‖un‖‖ẽn+1‖‖v‖ (3.11)
≤ c̄{‖ẽn+1‖+ ‖en‖+ |u(tn+1)− u(tn)|}‖v‖.

Using the Schwarz inequality we have also, for all v ∈ H1
0 (Ω)d,

(
1
k

(en+1 − en)− ν∆en+1
∗ + ω × en+1 −Rn, v

)
≤

1
k
‖en+1 − en‖−1 + ν‖en+1

∗ ‖+ c̃ ‖en+1‖+ ‖Rn‖−1, ∀ v ∈ H1
0 (Ω)d (3.12)

11



From the inequalities (3.10), (3.11), (3.12) and

|p|L2(Ω)/R ≤ ĉ sup
v∈H1

0 (Ω)d

(∇p,v)
‖v‖ ,

we obtain that

|∇qn+1
∗ |L2(Ω)/R ≤ ĉ sup

v∈H1
0 (Ω)d

(∇qn+1
∗ , v)
‖v‖ ≤ c

k
‖en+1 − en‖−1

+ c (‖Rn‖−1 + ‖ẽn+1‖+ ‖en‖+ (1 + c̃)‖en+1‖+ |u(tn+1)− u(tn)|).
Therefore, applying lemmas 2.2 and 2.3, and the inequality (3.9), we derive

k

T/k−1∑
n=0

|∇qn+1
∗ |2L2(Ω)/R ≤ c k

T/k−1∑
n=0

{ ‖ẽn+1‖2 + (1 + c̃)‖en+1‖2

+ ‖Rn‖2−1 + |u(tn+1)− u(tn)|2}

+
1
k

T/k−1∑
n=0

‖en+1 − en‖2−1 ≤ c k.

The proof of theorem 3.1 is complete.
REMARK 3.2. It was discussed in [5] that the assumption

∫ T

0
|∇pt|2 ≤ c , which we need

to prove pressure error estimate does not hold for general flows, but requires a compatibility
condition on given data, cf. [5]. The sufficient assumption for this condition to be valid is
f(x, t)|t=0 = 0.
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