
Efficient multigrid and data structures for

edge-oriented FEM stabilization

Abderrahim Ouazzi and Stefan Turek

Institute of Applied Mathematics, University of Dortmund, 44227 Dortmund,
Germany, ouazzi@math.uni-dortmund.de, ture@featflow.de

Summary. We study edge-oriented FEM stabilizations w.r.t. linear multigrid
solvers and data structures with the goal to examine the efficiency of such sta-
bilizations due to the extending matrix stencil which is not supported by standard
FEM data structures. A new edge-oriented data structure has been developed to
support the additional coupling. So, the local element-wise and edge-wise matrices
are easily deduced from the global ones. Accordingly, efficient Vanka smoothers are
introduced, namely a full cell-oriented and an edge-oriented Vanka smoother so that
it becomes possible to privilege edge-oriented stabilization for CFD simulations.

1 Introduction

1.1 Problem Formulation

As a model problem we consider incompressible flow described by the Navier-
Stokes equations:

∂u

∂t
+ u · ∇u − ν△u + ∇p = f , div u = 0 (1)

where p is the pressure and u being the velocity. Let us consider the nonsta-
tionary (or stationary, without the term ∂u

∂t
) Navier-Stokes problem (1) in a

bounded domain Ω ⊂ R
2, first discretized in time by a standard numerical

solution method for ODEs. The θ-scheme, as for instance backward Euler or
Crank-Nicholson or the Fractional-step-θ-scheme, yields a sequence of bound-
ary value problems of the following form [2]:
Given un, compute u = un+1 and p = pn+1 by solving

[αI + θ(u · ∇ − ν△]u + ∇p = [αI − θ1(u
n · ∇ − ν△]un

+ θ2f
n+1 + θ3f

n
(2)

subject to the incompressibility constraint ∇ · u = 0
Here, (·)n indicates the value of the generic quantity (·) at time step tn for

2 A. Ouazzi and S. Turek

time-dependent problems or the n-th iteration for the steady-state formula-
tion. The time-dependent problem is defined for α = 1/∆ t, while the steady-
state formulation is recovered for α = 0, θ = θ1 = θ3 = 1, and θ2 = 0.

For the spatial discretization let Vh and Qh be approximative spaces of
H1

0 (Ω), and L2(Ω) respectively, then the resulting discrete problems have the
following algebraic form:
Compute u and p by solving

Au + B p = g , B
T u = 0 where (3)

g = [αM − θ1L − θ1N(un)] un + θ2f
n+1 + θ3f

n (4)

Here, M is the (consistent or lumped) mass matrix, B is the discrete gradient
operator and −B

T is the associated divergence operator. Furthermore,

Au = [αM + θL + θN(u)] u, (5)

where L is the viscous term and N(u) is the nonlinear transport operator.
Furthermore, the discretized equations (2) as well as the linear subproblems
can be solved within the outer iteration loop by a fixpoint defect correction
or Newton method.

In this paper, we employ the stable Q̃1/Q0 finite element pair. In the two-
dimensional case, the nodal values are the mean or midpoint values of the
velocity vector over the element edges, and the mean values of the pressure
over the elements (see [2]). There are two well-known situations for noncon-
forming finite element methods when severe numerical problems may arise:
Firstly, the lack of coercivity for nonconforming low order approximations for
symmetric deformation tensor formulations, mainly visible for small Re num-
bers. Secondly, convection dominated problems, for instance for medium and
high Re numbers or for the treatment of pure transport problems. Then, the
standard Galerkin formulation fails and may lead to numerical oscillations or
convergence problems of the iterative solvers, too (see[1, 4]).

Among the stabilization methods existing in the literature for these types
of problems, we use the proposed one in [4] which is based on the penalization
of the gradient jumps over element boundaries. It takes the following form
(with hE = |E|)

〈Ju,v〉 =
∑

edge E

max(γ∗νhE , γh2
E)

∫

E

[∇u] : [∇v] dσ, (6)

and will be added to the original bilinear form in order to cure numerical
instabilities when computing incompressible flow problems using low order
nonconforming finite elements. Moreover, only one generic stabilization term
takes care of all instabilities (see [4]).

Efficient multigrid and data structures for edge-oriented FEM 3

2 Sparsity of the Matrix

Sparse matrices are an integral part of the FEM analysis for incompressible
flow problems which may lead to huge and ill-conditioned systems so that
very fast solvers of Krylov-space or particularly of multigrid type are required.
In addition the introduced edge-oriented stabilization techniques destroy the
typical local sparsity properties since this approach involves more than the
adjacent elements: The corresponding rows and columns for the new stiffness
matrices J may contain 23 nonzero matrix elements, in contrast to the usual 7
for the non-stabilized case in 2D (see Fig. 1), and 61 nonzero matrix elements
in contrast to the usual 11 for the non-stabilized case in 3D.

2.1 Storage in the same FEM data structure

To overcome the problem of storing the new matrix J – coming from 〈Ju,v〉
– with regard to the standard FEM data structures, the matrix J is written
as a sum of two matrices J

∗ and Jrest,

J = J
∗ + Jrest (7)

where J
∗ has the same sparsity structure as the usual corresponding finite

element matrix; then, Jrest = J−J
∗. Hence, J

∗ can be handled with the same
linear algebra techniques which are typically used for the treatment of the
standard nonconforming finite element approach; Jrest is the complementary
part and will be used as a correction for the calculation of the residuals inside
of the linear solvers only. Then, given any approximation v, and by A denoting
the standard stiffness matrix from (5) without the new stabilization matrices,
we can write the complete residual as:

f − (A + J)v = f − (A + J
∗)v − Jrestv (8)

Consequently, only the partial matrix A+J
∗ has to be stored in the complete

stiffness matrix so that the first part of the residual can be obtained via
standard matrix-vector multiplication while the second part is assembled via
elementwise operations. Moreover, the construction of preconditioners for the
corresponding linear systems may only include parts of the (sub)matrix A+J

∗,
too, which will be explained in the following (see also [3] for more details).

2.2 Storage in a special edge-oriented data structure

A data structure for the storage of the stiffness matrix for edge-oriented sta-
bilization is not common in FEM community. Fortunately, it is not difficult to
develop one from the available FEM storage techniques. In fact, each edge Ei

has two surrounding elements with ni edges (Ei,j)
ni

j=1, then by the intermedi-

ate of the edges (Ei,j)
ni

j=1 the other contributed elements and edges (Ei,jk
)
mj

k=1

required for edge-oriented stabilization techniques are obtained (see Fig. 1).

4 A. Ouazzi and S. Turek

This is exactly the graph of the extended matrix: In fact, let the index i be
assimilated to any matrix row and the index j be the corresponding nonzero
columns in the standard FEM data structure, the extension will consist of the
corresponding nonzero columns jk to the rows j.

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

xx

x

x

xx

x

Ei

E
k3

i,j5

Ei,j4

E
k2

i,j6

E
k1

i,j4

E
k2

i,j4
E

k3

i,j4

Ei,j1
E

k2

i,j3
E

k3

i,j2

E
k1

i,j1

E
k3

i,j1
E

k2

i,j1

E
k3

i,j3

E
k2

i,j5

E
k2

i,j2

E
k3

i,j6

E
k1

i,j5

Ei,j5 Ei,j6

E
k1

i,j6

E
k1

i,j3 Ei,j3 Ei,j2
E

k1

i,j2

Storage two-dimensional mesh three-dimensional mesh
Technique FEM EO FEM EO

Level Elements Matrix entries Elements Matrix entries

1 4 60 128 27 918 3474

2 16 232 628 216 7236 32436

3 64 912 2732 1728 57456 277632

4 246 3616 11356 13824 457920 2292768

5 1024 14400 46268 110592 3656448 18627264

6 4096 57472 186748 884736 29223936 150155136

Fig. 1. An illustration for edge-oriented storage technique and the total number of
nonzero matrix entries for the Q̃1 element on a unit square.

Edge-oriented storage algorithm

Based on the standard Compressed Sparse Row CSR-FEM storage technique,
let NA be the number of entries in the matrix A, NEq be the number of
equations, Pc(NA) a vector with dimension NA to be the column pointer and
Pr(NEq +1) a vector with dimension NEq +1 to be the pointer row. Then, the
edge-oriented storage technique is deduced from the standard FEM storage
technique as following

ÑA = 1 , l1 = 1. (9)

For each i = 1, .., Neq the corresponding nonzero columns are given by the
following nested loops

P̃r(i) = li. (10)

1. In standard FEM storage we get

ij = Pc(l), Pr(i) ≤ l ≤ Pr(i + 1) − 1. (11)

2. For each ij the extension consists of the nonzero corresponding column in
the standard FEM storage which is given by

kij
= Pc(l), Pr(ij) ≤ l ≤ Pr(ij + 1) − 1

ÑA = ÑA + 1; li = li + 1; P̃c(li) = kij
.

(12)

Here, ÑA denotes the number of entries in the matrix A, P̃r is the row pointer
and P̃c is the column pointer in the edge-oriented storage. In practice we
consider the so-called edge-oriented patches Ωi which consist of the neigh-
boring elements sharing the same edge

Ωi = ∪{T, T ∈ Th ∧ ∩T∈Th
= Ei} . (13)

All our elementary operations will be based on Ωi.

Efficient multigrid and data structures for edge-oriented FEM 5

Looking more carefully at the resulting matrix stencils for the terms
∫

E
[∇φi][∇φj]dσ, the matrix structure can be seen in Fig. 2. While the matrix

stencils are always increased, leading to couplings between FEM basis func-
tions which do not have common local support, it is also visible that reduced
integration, for instance via midpoint rule, may lead to a different amount of
additional memory requirements. We can see this reduction for the Q̃1 ele-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

156

10 4 10

-2

2 2

410 10

-2

2 2

-4 -4

2 -52 -52 2

2 -52 -52 2

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

12

1 0 1

0

0 0

01 1

0

0 0

0 0

0 -4 -4 0

0 -4 -4 0

Quadrature technique
Level exact Gauss 1x1 Gauss

1 128 76

2 628 328

3 2732 1360

4 11356 5536

5 46268 22336

6 186748 89728

Fig. 2. Stencil for
R

E
[∇φi][∇φj]dσ with exact (left), and with 1x1 Gauss quadrature

(middle); total number of nonzero matrix entries (right) for the Q̃1 element with
midpoints as degree of freedom on the unit square.

ment with midpoint values on edges as degree of freedom, which shows that
the connections for the edge-oriented finite element methods can be chosen
optimally which will lead to moderately increased matrix stencils. A more
detailed analysis will be performed in a forthcoming paper.

3 Local Pressure Schur Complement Approach

Local Pressure Schur complement schemes (see [2]) as generalization of so-
called Vanka smoothers are simple iterative methods for coupled systems

(

A + J B

B
T 0

)[

u

p

]

=

[

Resu

Resp

]

, (14)

of saddle point type which are acting directly on element level and which
are embedded into an outer block Jacobi/Gauss-Seidel iteration. The local
character of this procedure together with a global defect-correction mechanism
is crucial for our approach. If Resu and Resp denote the residuals for the
(complete) discrete momentum and continuity equations which include the
complete stabilization term due to J as described in (6), then, two types of
Vanka smoothers can be applied with respect to the decomposition of the
domain Ω to patches {Ωi, i = 1, ..., I} which is not required to be disjoined.

6 A. Ouazzi and S. Turek

3.1 Cell-oriented Vanka smoother

In this case the patches Ωi may consist of only one element and the index I is
the total number of elements, which means that the global stiffness matrix is
restricted to the single cells/quadrilaterals of the mesh. It is straightforward to
deduce the element stiffness matrix from the global stiffness matrix as follows

K =
∑

T∈Th

KT , (15)

where K and KT denote the global and element stiffness matrices respectively.
It follows that

[KT]ij =
[

A|T

]

ij
+

[

J|T

]

ij
for 1 ≤ i, j ≤ 4

[KT]i5 =
[

B|T

]

i
for 1 ≤ i ≤ 4

[KT]5i =
[

B
T
|T

]

i
for 1 ≤ i ≤ 4

[KT]55 = 0.

(16)

With the standard FEM data structure (without the extension of the matrix)
the contribution of the jump term will be restricted to J

∗. Then, there holds

[K∗
T]ij =

[

A|T

]

ij
+

[

J
∗
|T

]

ij
for 1 ≤ i, j ≤ 4. (17)

The basic iteration step, which means one smoothing step, can be described
as follows

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th

[

K̃∗
T

]−1
[

Resu(un, pn)
Resp(u

n, pn)

]

|T

(18)

where the matrix K̃∗
T is easily invertible and remains close to K∗

T . Related
to the choice of the matrix K̃∗

T two types of Vanka smoothers are described,
namely diagonal Vanka smoother and full Vanka smoother.

(a)Diagonal Vanka smoother: The diagonal Vanka smoother updates the
velocity and the pressure values connected to the element T by

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th
[diag(K∗

T)]
−1

[

Resu(un, pn)
Resp(u

n, pn)

]

|T

. (19)

(b)Full Vanka smoother: The full Vanka smoother updates the velocity and
the pressure values connected to the element T by

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

T∈Th
[K∗

T]
−1

[

Resu(un, pn)
Resp(u

n, pn)

]

|T

. (20)

As can be seen, for the preconditioning step only parts of the matrix
(here: A+ J

∗) are involved while the residual contains all parts of the matrix.
Consequently, when this approach converges, the result is the solution of the
stabilized version while the preconditioning steps only determine the speed of
the overall iteration procedure.

Efficient multigrid and data structures for edge-oriented FEM 7

3.2 Edge-oriented Vanka smoother

To incorporate the full jump J into the preconditioning step we use the edge-
oriented patches Ωi. This will keep the size of the local problem small and the
full matrix J will be used for the preconditioning steps. The extension of the
matrix to support the jump term leads to a 5 × 5 FEM matrix block of the
type (16). To keep the size of the local problem small, the element matrix is
disassembled to its edge contributions

KT =

m
∑

i=1

KEi

T , (21)

where KEi

T is the contribution of the edge Ei to KT and m is the number of
the edges on the cell T . From the definition of edge-oriented patches (13), the
edge stiffness matrix may contain the contributions of all sharing elements

KEi =
∑

T∈Ωi

KEi

T = KEi

Ωi
. (22)

Then, one basic iteration can be described as follows

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

i∈I

[

KEi

Ωi

]−1
[

Resu(un, pn)
Resp(u

n, pn)

]

|Ωi

, (23)

where I is the total number of internal edges. This blocking strategy is different
from that used in [2] to generate isotropic subdomains for stabilizing strong
mesh anisotropy. Indeed, for the edge-oriented patches the number of block
matrices is only depending on the number of edges and not on the number of
patches itself.

The global defect restricted to a single patch Ωi is given by

[

Resu(un, pn)
Resp(u

n, pn)

]

|Ωi

=

([

L + Ñ + J B

B
T 0

] [

un

pn

]

−

[

f

0

])

|Ωi

. (24)

In practice the following auxiliary problem

[

KEi

Ωi

]

[

vn+1
i

qn+1
i

]

=

[

Resu(un, pn)
Resp(u

n, pn)

]

|Ωi

(25)

is solved, and then the new iterates un+1 and pn+1 are computed

[

un+1

pn+1

]

=

[

un

pn

]

+ ωn
∑

i∈I

[

vn+1
i

qn+1
i

]

. (26)

The resulting local MPSC method corresponds to a simple block-Jacobi itera-
tion for the mixed problem (14) and to a block-Gauss-Seidel method by using
the updated solution for the computation of the local defect (24).

8 A. Ouazzi and S. Turek

4 Numerical Example

The realistic evaluation of the efficiency of the edge-oriented FEM storage
technique versus the standard one is difficult to handle because of the interplay
of different components. Here, we restrain the numerical examples to the DFG
benchmark of flow around cylinder (see [4]).

Our numerical test (Stokes problem) is concerned with the symmetric de-
formation tensor formulation to show the advantage of using the edge-oriented
stabilization with special storage technique. We also present the gradient for-
mulation for comparison since it does not require any stabilization. In Table 1,
we list the total number of multigrid sweeps (MG) and the total CPU time
for both storage techniques with and without using the jump terms.

Table 1. Vanka smoother coupled with standard and edge-oriented FEM for the
symmetric deformation tensor and gradient formulations

edge-oriented storage technique standard FEM storage technique
without jump stab. with jump stab. without jump stab. with jump stab.

Level MG Time MG Time MG Time MG Time

the gradient formulation
4 12 37 12 44 12 32 12 180

5 12 153 11 166 12 128 12 780

6 12 634 11 676 12 531 11 2594

the deformation tensor formulation
4 191 542 8 28 191 442 8 115

5 535 6209 9 133 535 5426 9 524

6 1225 63614 8 525 1225 49502 8 1905

The results in Table 1 for several mesh refinement levels show that the edge-
oriented storage technique moderately increases the CPU cost. Moreover, the
need for edge-oriented stabilization for the deformation tensor formulation is
cleary visible.

Summarising, we have developed new techniques to make edge-oriented
FEM stabilizations more advantageous for CFD simulations. However, more
research is required concerning the corresponding time-accurate methods and
approximate preconditioners for global Pressure Schur Complement schemes.

References
1. Burman, E. and Hansbo, P.: A stabilized non-conforming finite element method

for incompressible flow, J. Comput. Methods. Appl. Mech. Engrg. (2004) accepted
2. Turek, S.: Efficient solvers for incompressible flow problems: An algorithmic and

computational approach. Springer, Berlin-Heidelberg (1999)
3. Turek, S., Ouazzi, A. and Schmachtel, R.: Multigrid method for stabilized non-

conforming finite elements for incompressible flow involving the deformation tensor
formulation, JNM, 10, 235–248 (2002)

4. Turek, S. and Ouazzi, A.: Unified edge–oriented stabilization of nonconforming
finite element methods for incompressible flow problems: Numerical investigations,
JNM, (2005) (accepted)

