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Abstract

The article focuses on adaptive finite element methods for frictional contact problems. The approach
is based on a reformulation of the mixed form of the underlying Signorini problem with friction as
a nonlinear variational equation using nonlinear complimentarity (NCP) functions. The usual dual
weighted residual (DWR) framework for a posteriori error estimation is applied. However, we have to
take into account the nonsmoothness of the problem formulation. Error identities for measuring the
discretization as well as the model error with respect to a model hierarchy of friction laws are derived
and a method for the numerical evaluation of them is proposed. The estimates are utilized in an adap-
tive framework, which balances the discretization and the model error. Several numerical examples
substantiate the accuracy of the proposed estimates and the efficiency of the adaptive method.

Keywords: Signorini’s problem with friction, mixed finite element method, goal-oriented a posteriori
error estimation, mesh and model adaptivity

1 Introduction

In the modelling of many physical or engineering processes, contact problems with friction
frequently occur, see, for instance, [20, 32]. Hence, the development of efficient and accurate
numerical solution techniques for frictional contact problems has been of special interest in
the last decades. One main ingredient is given by efficient solution algorithms for the arising
discrete problems. Furthermore, adaptive algorithms lead to an optimal convergence behavior
of the discretizations, which cannot be achieved by uniform methods due to the missing regu-
larity of frictional contact problems. They are based on accurate a posteriori error estimators,
which should control the error in user-defined quantities of interest involving in our case the
contact and frictional forces.

In literature, the obstacle problem, as model contact problem, is frequently studied. A
posteriori error estimates in the energy norm are derived, for instance, in [2, 4, 15, 18, 28,
31, 37, 54] using different techniques. Even the convergence of adaptive algorithms in the
context of obstacle problems is proven in [17, 16, 50]. Signorini’s problem is studied, e.g.,
in [19, 26, 35, 47, 55|, where a posteriori error estimates in the energy norm are discussed.
Moreover, multibody contact problems are in the focus of [33, 57]. The dual weighted residual
(DWR) method, see, e.g., [3, 5] is a popular approach to derive a posteriori error estimates,
which control the error in user-defined quantities of interest. The approach is based on the
representation of the quantity of interest by the solution of a so-called dual problem. Sim-
ilar arguments are used in [40, 41]. The DWR framework was applied to contact problems
in [10, 11| for the first time. The results are summarized in [53]. Here, a dual variational
inequality is used to represent linear quantities of interest in the displacement. In [49], an
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alternative procedure is used, which is based on a linear dual problem representing also non-
linear quantities of interest in the displacement. It is extended to frictional contact problems
and quantities of interest also in the Lagrange multiplier in [43]. There, a linear mixed dual
problem, which does not depend on the primal problem, is used to represent the quantities
of interest in the displacement as well as the Lagrange multiplier, which coincides with the
contact forces. This approach also leads to an improved localization of the error estimate.
In both approaches, the (frictional) contact conditions lead to extra additive terms in the
estimates, which is some product of the dual solution and the error of the primal solution.
However, the estimates do not directly measure the error in the (frictional) contact conditions
and the accurate numerical approximation of the extra terms include several difficulties, which
lead to involved and numerically costly algorithms. In [42], an approach is presented, which
overcomes these drawbacks for Signorini’s problem. Its starting point is a reformulation of
Signorini’s problem in mixed formulation as a nonlinear and nonsmooth variational equality
based on a nonlinear complementarity (NCP) function, see, for instance, [27]. Here, the dual
problem is also a linear mixed problem. However, it is determined by the active and inac-
tive set of the primal problem. The usual error identites can be derived based on the DWR
framework. However, the nonsmoothness of the underlying problem leads to remainder terms,
which are of first order in the error of the discrete active set. Here, we extend this approach
to frictional contact problems. Since the NCP function for friction includes combinations of
nonlinear functions in contrast to the one for contact, the derivation is more complex and
leads to several remainder terms. The basic idea is to seperate the smooth and nonsmooth
parts using fixed active sets. The results presented in this article can be applied on a wide
range of discretization schemes. For mixed discretization schemes like [24, 30], the application
of the developed framework is straight forward. If semi-smooth Newton methods are used for
solving the discrete contact problem, the dual problem coincide with the transposed system
of the last Newton step. In displacement based discretization schemes like [8, 34, 58|, an
approximation to the Lagrange multiplier has to be calculated in a post processing step, cf.
e.g. [15]. The derived error identities cannot be evaluated numerically. Thus, a numerical
approximation scheme depending on the different discretization approaches has to be realized.
We exemplify such a strategy for the mixed discretization introduced in [24].

The performance of the solution algorithm of frictional contact problems depends on the
chosen friction model. One can save a large amount of computation time and gain a more
stable algorithm by choosing a different model. The idea is now to select the model out
of a predefined model hierarchy based on an a posteriori error estimate corresponding to the
desired accuracy. In literature, one finds only few contributions to model adaptive algorithms.
Dimension adaptivity is considered in [1, 7, 12, 51, 52]. In these papers, volume elements are
combined with shells or plates. The automatic selection of the local model is one subject
in [38, 39], where heterogeneous linear elastic models and their homogenization are included
in the model hierarchy. The underlying a posteriori error estimates include the error in
the energy norm as well as in linear quantities of interest. Models for different physical
processes are adaptively coupled in [36] by means of problems from electrocardialogy. The
basic DWR idea is extended to control modelling errors in [13]. Here, the model error is
basically given by entering the solution to the coarse model into the fine one weighted by
the dual solution. In [13], diffusion-reaction-equations with highly oscillating coeffients are
considered. Further applications are given by time dependent problems in [14] as well as by
problems from elasticity in [22]. In this article, we use the ideas from [13] to derive a posteriori
estimates of the model error with respect to different friction laws, where the nonsmoothness
of the underlying problems complicates the derivation. In the model adaptive algorithm, we
globally balance the model and the discretization error, which cannot be done locally due to
the structure of the problem.
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The article is structured as follows: In Section 2, we introduce the strong and the mixed
formulation of Signorini’s problem with friction as well as the reformulation as a nonlinear
variational equation. Furthermore, the assumptions on the model adaptive discretization are
formulated. Section 3 focuses on the derivation of the error identities involving the model as
well as the discretization error. At first, we consider the model and the discretization error,
seperately. Afterwards, an identity for both is derived. In Section 4, we outline the ideas for
the numerical approximation of the error identites and exemplify them for a concrete mixed
discretization. Section 5 is devoted to numerical results, which substantiate the accuracy of
the presented error estimates and the efficiency of the adaptive schemes. We conclude the
article with a discussion of the results and an outlook on further tasks.

2 Problem formulation

In this section, we introduce the continuous problem formulation and a general model adaptive
discretization.

2.1 Continuous problem formulation

We consider Signorini’s problem with nonlinear friction laws on domains Q C R?, d = 2,3 with
sufficiently smooth boundary I' := 9€2. Homogeneous Dirichlet boundary conditions are as-
sumend on I'p C I', where I'p is closed with positive measure. The possible contact boundary
is given by I'c € T'\I'p with T C I'\T'p. Furthermore, we have the part 'y = I'\ (I'p UT¢),
where Neumann boundary conditions are prescribed. The usual Sobolev spaces are denoted
by L(Q), H'(Q) with [ > 1, and H/*(T'¢). We set H5(Q) := {v € HY(Q)|y(v)=0onTp}
and V := (H} (Q))d with the trace operator 7. The topological dual space of H'/?(I'¢)
is given by H~"/2(I'¢) with the norms || - |—1/5re and || - [lyor,., respectively. The L2-
scalar products on w C € and IV C I' are denoted by (-,-)o and (-,-)or . The linear and
bounded mapping v¢ = Y, : HL(Q) — H'2(D¢) is surjective due to the assumptions on
I'c, see [32, page 88]. We define v, := yc(v)n and v := ~yc(v)t;, where n denotes the
vector-valued function describing the outer unit normal vector with respect to I' and ¢ the
k x (k — 1)-matrix-valued function containing the tangential vectors. In the following, we use
the inequality symbols > and < for functions in L? (I'¢), where the symbols are defined as

“almost everywhere”. We set er/Q (Te):={ve H'/? (T¢)| v > 0}. The dual cone of er/Q (Te)
is A, = {,u e H'/? (Fc)‘ Yv € er/Q (Teo): (u,v) > 0}. Furthermore, we set

M) = e (B ) ) < 67 00 July o e (1))

with the euclidian norm |-|. Here, s" : A,, — A,, denotes the possible nonlinear friction law.
The index r stands for reference friction law, its meaning will be clearified in the discussion of
the modell adaptive approach. For a given displacement field v € V| the linearized strain ten-
sor is defined as £(v) := 3 (Vo + (V) ") and the stress tensor as o(v);; := Cjre(v)y describ-
ing a linear-elastic material law with Ci;p € L*(2), Cijii = Cjik = Criij and CijpTijTry > m’izj

for 7 € LQ(Q)fyXH’f and a k > 0. We define 0, := on, oy, :=n'on, op == t] on.
The strong formulation of Signorini’s problem with friction is to find a displacement field

u” € VN H?(Q) such that
—div(e (u")=finQ, o, (u")=0bon Ty, (1)
n—9)=0onTc, (2)

r r r ro__
’Unt’ <s (Unn) = Uy = 0 } on FC- (3)

ontl = 5" (o7n) = 3IC € Rxo 1 uf = —Copy

ug—ggo, UZHSO, UZn(u

lov,| < s"(o),) with {

nn
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Formula Name
50 (0nn) =0 Friction less contact
s1 Tresca friction with a constant Cr > 0

Coulomb friction with a constant F > 0

Friction law of Betten with n € N

Tab. 1: Some examples of friction laws
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Fig. 1: Tllustration of different friction laws

The equilibrium equation of linear elasticity is noted in (1), where the volume and surface
loads are specified by f and b. In the following weak formulation, we assume f € (LQ(Q))d,

be (L2 (T N))d. The geometrical contact conditions are described in (2). The possible contact
boundary I'c is parametrized by a sufficiently smooth function ¢ : R%! — R such that,
without loss of generality, the geometrical contact condition for a displacement field v in the
d-th component is given by ¢(z) +vgq(x, p(x)) < P(z1+v1(x, 0(x)),. .., x4-1+v4—1(2, 0(T)))
with 2 := (21,...,24_1) € R The sufficiently smooth function ¢ describes the surface
of the rigid obstacle. The linearization, presented for instance in [32, Chapter 2|, of this
condition results in v, < g in (2) with g(z) = (¥(z) — o(x))(1 + (Ve(z)) T Ve(z))~72. In
the weak formulation, we assume g € H7?(I'¢). The second condition, a sign condition on
the outer normal stress, ensures that only pressure occurs. By the complementary condition
in (2), we have either pressure or no contact. The frictional conditions are denoted in (3).
They indicate that sticking occurs if the magnitude of the tangential forces is below a critical
value given by the friction law s”. If this critical value is reached, we obtain sliding, where the
sliding direction corresponds to the negative direction of the tangential forces. Some examples
of friction laws are given in Table 1, see for instance [59]. They are illustrated in Figure 1.
From a physical point of view, Tresca’s friction law fits well for high contact pressure, while
Coulomb’s law is accurate for low contact pressure. If low as well as high contact pressures
occur, we need a nonlinear model handling both regions well. An example for such a type of
friction law is given by Betten’s law. For our analysis, we assume that the considered friction
laws are two times continuously differentiable w.r.t. A}.
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For the a posteriori error analysis, we use a mixed formulation of (1-3). The bilinear form of
linear elasticity is given by a(w,v) := (o(w),e(v))p on V' x V', which is symmetric, continuous
and due to Korn’s inequality V-elliptic. The volume and surface loads are represented by
(l,v) :== (f,v)0 + (b,un)ory- A function w” := (u", A\, \]) € V x Ay, x A (A},) is a saddle
point of the frictional contact problem (1-3) if and only if,

a(u",v) + (A, vn) + (A, v) = (L), (4)
(i — Aty — g) + (e — Af,up) <00, (5)

for all v € V, all u, € A, and all u; € A;. If some smoothness assumptions are fulfilled, it
holds A}, = —o7,, and A} = —o7,;. The existence and uniqueness of the solution w" depends
on the chosen friction law s” and its parameters. For Tresca’s and Coulomb’s friction law
with F small enough, there exists a unique weak solution. We refer to [21] for an overview
on existence and uniqueness results.

We now reformulate the frictional contact conditions (5) in terms of two nonlinear equa-

tions. The geometrical contact conditions are equivalently expresed by
g—ul, € H”(Te), Ny €An, (Ao ul—g) =0. (6)
Assuming A, € L?(T'¢), (6) simplifies to
g—u, € H}F/Q (Te), A >0ae onTg, A (u, —g)=0ae. onlc. (7)

For geometrical contact problems, we have A" € L? (I'¢) for instance, if Ciju € Whee(Q) and
g € H? (T¢), see [42]. The geometrical contact conditions (7) are equivalently reformulated
as

Ay, —max {0,\], + u;, — g} =0 ae. onI'¢ (8)

by an NCP function, cf. [29, Chapter 4|. Multiplying with a test function p, € L? (I'¢) leads
to

C (wr) (Mn) = (:un? )\; — max {07 )\; + u; - g})O,I‘c =0.
However, the semilinear form C' is not Fréchet differentiable in general.
If we require X, € L?(I'¢) and A} € (L? (Fc))d_l, we obtain s” € S, where S :=
{s:L*(T¢) = L2 (I'¢)| s continuously differentiable } with L2 (T¢) := {v € L? (T'¢)|v > Oa.e.}.
Furthermore, A; simplifies to

Ae () = { e € (22 0) "Il < 57 ()}

The calculations in |29, Section 2.1| show that we obtain also the frictional conditions (3) a.e.
Rewriting them with the help of a second NCP function, see [29, Chapter 5], gives us

max {s" (A7), |\f +ui|} A} —s" (A)) (A} +u;) =0 a.e. onI'c.
The multiplication with a test function p; € (L2 (Fc))dfl finally results in
D" (w") (pe) == (e, max {s” (Ap) , A} + wi[} A7 — 8" (A7) (Af + uf))or, =0

In general, the semilinear form D is not Fréchet differentiable, too.
We define the semilinear form

A" (w") () = a(u",0) + (A, vn)ore + (As oo re — (60) + C(w") () + D7 (W) (1t)

with ¢ = (v, i, 1) € W=V x L*(T¢) x (L? (FC))“H. Then Signorini’s problem (4-5) is
to find w" € W with
VoeW: A" (w") () = 0.
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2.2 Model adaptive discretization

The model adaptive discretization is carried out in two steps. At first, we specify a model
adaptive friction law. To this end, we define a friction model hierarchy H := {so, $1,...,Sm},
where sq is the most inexact model and sj; := s” the most accurate or reference model. An
example for such a hierarchy is given in Table 1. Finally, we compose a locally varying friction
law s € S based on the different models in H. Using the semilinear form

A(w) (¢) = a(u,v) + (A, vn)or, + (A, vi)o 1, — (60) + C(w) () + D (w) (p1e)
with w = (u, An, A\t) € W, 0 = (v, tin, py) € W and

D (w) (pe) = (pe, max {s (An) , [Ae +we[} A — s (M) (At +we))ory, »
w € W is a solution of Signorini’s problem with a model adaptive friction law, if
VpeW: A(w) (¢) = 0.
We directly obtain a generalized Galerkin orthogonality relation
a (" = 1,0) + (N = My v)ore + (F = A0y, = 0 (9)

forallv e V.

The second step consists in the specification of the general discretization requirements,
which ensure that the presented a posteriori error analysis applies to a wide range of techniques
to calculate approximations wy to w. They have to fulfill the following assumption:

Assumption 1. Let W), = Vj, x Ay, X Ayp, be a finite dimensional subspace of W, which
contains the discrete solution wy. Moreover, equation (4) has to hold for the discrete solution
Wy, 1.€.

a (un,vp) + (Anghs U)o r + Ak Unt)or, = (I vn) (10)

for all vy, € V.

Remark 2. From (10), a generalized Galerkin orthogonality follows, i.e.

a (u — Up, Uh) + ()‘n - An,ha vhvn)O,Fc + ()‘t - )‘t,h, vh,t)(),[‘c =0 (11)

for all vy, € V},.

Remark 3. In Assumption 1, we only prescribe A, , € L? (T'¢:) and Ay (A p) C (L2 (Fc))
We do not require A, p, € Ay, and Ay (An ) € Ay (An ). Thus, we consider also nonconform-
ing approximations of the Lagrange multiplier.

d—1

Remark 4. Our analysis applies to different discretization schemes. It includes method, which
are only based on the displacement. In this case, the Lagrange multipliers \,, and \; have
to be determined in a post processing step, cf., for instance, [15]. It also applies to mixed
discretizations like the one presented in [24], which we use in our numerical experiments, or
Mortar methods, see, e.g., [56].

3 A posteriori error analysis

This section focuses on the derivation of an a posteriori error estimate in a user defined
quantity of interest, where we employ the DWR method. Specifically, the error is estimated
in a possibly nonlinear quantity of interest J : W — R, i.e. J can include the displacement
u as well as the Lagrange multipliers A, and \; representing the contact and the frictional
stress respectively.
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3.1 Model error estimation

Initially, the model error J (w") —J (w) is treated. The first step in the derivation of the error
identities is the definition of a suitable dual problem: Find 2" = (y", &), &) € W with

a(v,y") = by (&, v) + b (&,0) = T, (w")(v), (12)
(s Yn)ore + €5 (i) + el (&, 1) = I, (W) (1), (13)
(e Y1 oo +db (& me) = T3, (w") (e) (14)

for all (v, fin, u¢) € W. Here, the bilinear forms b¢ : L? (I'¢) x V. — R and ¢ : L?(I'¢) x
L? (T¢) — R are given by

by (wn,v) = / Wp Xy do,
Te

C7c~ (wna :un) = /F Wn, [1 - Xﬂ Hn do,
C

with
& (") = 1, if A +u;, —g>0,
" 0, if A" +u —g<0.

We also write x¢ = x¢ (w"). The bilinear forms b° and ¢¢ correspond to weighted L2-scalar
products on I'¢, where the weight is given by the indicator function of the active and in-
active geometrical contact set, respectively. Furthermore, we consider the bilinear forms

bl (L2(00)" x V = R, of + (L2(Te)"™ " x L2 (To) — R, and df : (L2(To))" " x
(L2(T))"" = R with

bl (wi,v) = / wy {X{)\; (n' (wr))T —s"(\}) I} vy do,
o]
f ) = = [ ) O0) Gun) [N + ] do,
C
df (we, ) = / wy {max {s" (M"Y, n (W)Y T — s (X)) T+ x I (n' (wr))T] p do.
le
Here, we use the notation n (w") := |\] + uy| and
Ay
n' (wr) _ nt(wT§ ,ifw#0,
0, if w=0.

However, the case w = 0 does not occur because of the multiplication with the indicator

function Xf w.r.t. sliding and sticking, where

x) (w") = {

1, if s"(\) <n(w"),
0, if s"(A\)>n(w").

n

The shorter notation X,Jf = Xf (w") is mostly used. We point out that, if the Fréchet derivative

A’ of A exists, the dual problem (12-14) matches A’ (w") (¢, 2") = J' (w") (). Let us clearify
the connection between max {s” (\],),n (w")} and the indicator function Xi:

D" (") () = (peomax{s” (N) o (@)} X7 = 8" () O + 7))o r,
= (medn @A+ (1= xf) 7 RN =" ) (A + )

= (e ()X =" A =" () ) = D7 () ().
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If we consider D", we see Xff as a fixed weighting function. Thus, the Fréchet differentiability

of D" depends only on the smoothness of s”. In the following results, if not otherwise stated,
we assume that (un,s” (A,))or, is three times Fréchet differentiable w.r.t. Aj. A short
calculation now shows

(D) (w") (6w, )
= (D, (") s a) + (D7), () Oase) + (D7), () (B0, )
= (st (M7 (0" @) " 0 ) =" () )

(o (7Y V) BM) N + (57 ) A ),

(e (N (0 @) T 00+ () 6 — 57 (A7) )

= bvf (Mt,(SU) + CT{C (Mt7(s)\n) + d{ (,ut,é)\t) .

0,Tc

Analogously, we define the dual solution z = (y,&,,&) € W w.r.t. the model adaptive
friction law s using the bilinear forms b¢, ¢, b/, ¢f, and d as well as the indicator functions
x¢ and x/. Furthermore, we set

D () () = (2! (n(0) de = s ) M) = s () = D (w) 1)

and obtain B
D' (w) (0w, pe) = b7 (g, 0u) + ¢ (e, M) + a7 (e, ) . (16)

We denote the model adaptive error w.r.t. the primal as well as to the dual solution by

e, = (e eh.€eh,) = (U —u, A, = A\, AL — Ap),
&L= (k) = (1€~ 6~ &),

respectively. The error in the geometrical contact indicator function is elc := x; (w") —x¢ (w)

and in the frictional indicator function el ; := i (W) = X7 (w).
In preparation of the main result, we study the bilinear forms in the dual problem con-
cerning the contact conditions:

Lemma 5. We obtain that
Ci (5;7 egn) - bi (5;7 GZ) + c (5717 egn) —b° (gna GZ)

= / e (e, Ao +un —g) =& (€}, +ei,)] do=: 2R
Te

holds.

Remark 6. The term R" is the product of the error in the indicator function of the contact
conditions and the model error. Thus it is of higher order.

PROOF. By the definition of the bilinear forms c¢, ¢¢, b¢, and b°, we obtain using C' (w") (u,) =

s YUps
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C (w) (pn) = 0 for all u, € L? (T¢)

o (&nrex,) — b5 (&hen) + ¢ (6nr€h,) — b (6nser)

= "1 —x¢lel do— "vCel do+ nll—xes do— a X do
n Xrl €x, nXr u,n X An X u,n
FC FC FC I1C’
— /F & ler, — x5 (e, +enn)] do —i—/F En l€X, —X° (€}, +enn)] do
C C

= & —xr A +up —g)l do— | & A — x5 (An 4 un — g)] do
T'c o]

+ En [N — X“ (A, +uy, — g)] do — §n A — X (A +un — g)] do
T'c o]

= — | G- xrQatun—g)do+ [ &M =X (An+un—g)| do
I'c T'e

— [ &N = XEN +ul —g) do+ | En[N — xE (AT +ul —g)] do
I'c T'e

= [ e (At —g) do— / Enele (AL + 1l — g) do

T'c o]
= [ el Ot i —9) 6 (N~ )] do

Te
= / e lef, A +un —g) —&n (), +eh,)] do=2RT".

T'e

O

We define the semilinear form A (w) () := D" (w) (pt)—D (w) (p1¢) and obtain A (w) (¢)+
A (w) () = A” (w) (¢). Furthermore, we set A (w, @) = (D")I (w) (w, ). The second step
is now to consider the bilinear form in the dual problems concerning the frictional conditions:

Lemma 7. With the remainder term
R?L = 7?,;21 + RQQ + 7?,8

including the frictional conditions, where

R = = (& (d @) = xd @) @) d =" Q) )
Rya = =3 (D7) ) (&) = D' () (5, 80)]

m 1 1 ~r\/! r r r - .
RQ - 5/0 (D ) (w+$ew) (ew7ewaew7§t)s($—1) dS’

it holds

bl (&7 en) + el (& €8,) +dl (&, €5,) b7 (& €n) + e (€eeh,) +d (&€5,)
= —2A(w) (&) — 2A (w) (egt) — A (ez), egt) + 27?,;”.
Remark 8. The remainder R is dominated by RY;, which consists mainly of the error in
the indicator function of the sticking and the sliping region. The other parts are of second
and third order in the error, respectively.
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PROOF. At first, we notice using the definition of D" and D (w) (u¢) = 0

D" (w) (&)
= (G x = Q) A) = M)

= (5 (@)= @) ) d = ),

(& (@) (0 (@) A =" M) M) =" )
= “RY 4D (W) () = D' (w) (§ ~ &) + D" (w) (&) ~ R,y
= D" (w) (& ~ &)~ D (w) (& — &) + D (w) (&) ~ D (w) (&) ~ R
= A(w) () + A (w) (&) - RY.

The trapezoidal rule with its remainder term together with D" (w") (y;) = D" (w") (pz) = 0
and the preceding calculations lead to

—A () (eg) = A (w) (&) + Ry
= D" (w")(&)— D" (w) (&)

1
(D7) (w + sel,) (¢l &) ds

I
=S~

5 (D7) () (€5 &) + 5 (D7) (") (€5, &7) — RE

\V)

From (15), (16) and

(D7) (w) (€}, &)
= (D) (w) (e} er,) + (D) (w) (€},.&) — D' (w) (€, &) + D' (w) (€}, &)
= Af(ep,ef) — 2RV + 0 (& e) + ¢l (&neh,) +d (&6h,),

we deduce the assertion by rearranging the single terms. O

Combining Lemma (5) and (7), we obtain the following Proposition concerning the model
error:

Proposition 9. Let the third Fréchet derivative of J, J" : W — L(W,L(W,W?*)), exist.
Then, the error identity

T ()~ T (w) = ~A () (2) ~ A (w) () ~ 54 (€l ) + RY + R+ RY

wr Tz

holds for the model error in the quantity of interest with the remainder terms

1 1
m_ 5/0 J" (w+ sel) (€0, €y, eh) 5(5 — 1) ds

w.r.t. the quantity of interest J, R* from Lemma 5 and R}” from Lemma 7.

Remark 10. The remainder R’} is of third order in the error. Consequently, the remainder
terms are dominated by RY;.

PrROOF. The trapezoidal quadrature rule with its remainder term leads to

1
J(w) = J (w) = /0 T (et sely) (eh) ds = 27 (w) (€5) + 3 (u") () + R
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From the definition of the dual problems together with the generalized Galerkin orthogonality
(9), we deduce

J'(w") (er,) = a(@Z,yT) =05 (&n,en) + 0] (& ) + (€5, um) or
cf (G eh,) + el (€ e8,) + (U )or, +f (&, €3,)
= —bi( no€a) FOL (€ eh) e (el ) el (61,8, +dl (€ €5,)
and
T (w)(ey,) = aleg,y) = b (Gnel) +b (Eoel) + (€5, 9n) o r
+Cc (én, egn) + Cf (ét, Bgn) + (egt’yt)(),[‘c + df (é-t? Bgt)
= —b (Gnen) + (Gren) + ¢ (Gnreh,) + ¢! (Geh,) +d (6€h,) -
Lemma 5 and 7 together with the calculations above lead to
J(w") = J (w)
1
37 (W) (€) + 57" (W) (e},) + RY
|05 (Ehven) + 6L (€1 en) + 5 (€ eh, )+l (&.eh,) +df (5,3,
1
5 |: é.717 u + bf (§t7 u CC (57176371) + cf (§t7e§n) + df (é.t’egt)] +R5n
“A(w) (2) = Aw)(eh) = 5 (D7) (w) (€l eg,) + R + R + R,

the assertion. O

1
2
1
2
+

\_/

DO | —

3.2 Discretization error estimation

In this section, we consider the discretization error J (w)—J (wp,) between the model adaptive
solution w and its approximation wy. To this end, we need a discrete approximation z, =
(Uns&n.hyEen) € Wy, to z, which does not have to fulfill any further assumptions. We denote
by e, and e, the discretization error, i.e.
Cw = (eua e)\na e)\t) - (u — Up, )‘n - )\n,ha )‘t - )‘t,h) )
€ = (eya €¢ns eft) = (y — Yh, én - én,h, é-t - ét,h) .

Furthermore, we define

Dy, (wp) (pg,p) == <Mt,h, X5 (0 (wp) Ay — s ) Aep) — 5 (M) Uhﬂs)o = Dy, (wn) (p1e,n)

Lo

and notice

D}, (wp) (Sw, 1) = bj, (e, ) + ¢f (1, 00n) + b (12, 6) (17)

with the bilinear forms bf : Arj, x Vi = R, ¢f : Ay x App = R, and df : Apjy x Ay — R
concerning the frictional condltlons

b£ (we,v) = /F wy |:X£)\t,h (n(wp))" — s (wp) I] vy do,
C
f — 4 /
hlnma) = = [ s ) (o) iAo+ un] do
C

df (i) = /F o [max {s Q) ()} =5 ) T+ Xf A (1 (wn)) ] g do,



3 A posteriori error analysis 12

and
1, if s(Apn) <n(wp),

f o
X (wh) = {o, if 5 (An,n) > 7 (wp).

The error in the frictional indicator function is e{( =/ — Xﬁ- First, we clarify the connection

between the frictional part of the dual problem and the frictional conditions:

Lemma 11. Let (yin, s (An))g 1, for arbitrary p, € L? (T¢) be two times Fréchet differentiable
w.r.t. Ap. Then we have the identity

b (&, e) + ! (&ren) +d! (€,ex,) = =D (wn) (eg,) = D (wn) (€0) + RY.

The remainder term R}Z) = R( ) + R( ) consists of

Rgf) = (§t7 e)f( (n (wh) )\t7h -9 ()\n’h) )\t7h)>0,rc

and

1
RS) :/0 D" (wp, + sew) (€w, ew; &) s ds.

PROOF. We obtain using the box quadrature rule with its remainder and (16)

D (w) (&) — D (wp) (&) = / D' (wp, + sey) (€w, &) ds
= D' (w)(ew &)~ RY
= v (&, eu) + cf (& en,) + d! (&, en,) — Rg).

The equation D (w) (&) = D (w) (&) = 0 leads to

D (w) (&) — D (wp) (&) = =D (wn) (&)
= =D (wn) (&) — Dn (wn) (&) + Dp (wa) (&)
= ( X! (n (wp) My — 5 ) M) — 8 ) uhﬂs)o e
( n(wn) Aen — 5 (A n) Aen) — 5 (M) uh,t)o o D (wp) (&)
= ( n(wp) Ap — s (Ann) At,h))(],rc — D (wp) (eg,) — D (wp) (&,n)
= RY) — D (wn) (ee,) — D (wn) (&) -
Rearranging the terms finishes the proof. O

Using only the primal residual, we get the following error identity:

Proposition 12. If the second Fréchet derivative of J, J" : W — L(W,W™*), exists as well
as Assumption 1 and the assumptions of Lemma 11 hold, we obtain the error identity

J (w) — J (wp) =p (wn) (2 = 21n) — C (wn) (§n,n) — D (wn) (&)

+RY + RO +RP, (%)

with the primal residual
p(wn) (@) == —A(wp) (p) -
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The remainder term w.r.t. the quantity of interest, RSQ), 15 given by

1
RS2) = —/ J" (wp, + sew) (ew, ew) sds.
0
For the contact conditions, we have the remainder
7?,22) — 5,16; [Anh + upn — gl do,
Te

with €5, = x° — xj,, and
Xc - 17 Zf )\n,h + uh,n —4g > 07
" 0, Zf )‘n,h + Uhn — 9 <0.

Remark 13. By C (wy) (§,,n), we measure the violation of the geometrical contact condi-
tions (2). The term D (wp,) (§:4) represents the error of the discrete solution concerning the
frictional conditions (3).

Remark 14. The term RSQ) corresponds to the usual remainder term of the DWR method for
linear problems with nonlinear quantities of interest, cf. [3, Proposition 6.6]. It vanishes for
linear quantities of interest J.

Remark 15. The remainder Rg) w.r.t. the geometrical contact conditions becomes zero, if the

)

analytic active set equals the discrete one. The frictional remainder term RE}

order part of the same order as Rf) and one in the indicator function of friction. The second

part vanishes, if the sliding and sticking regions are exactly resolved. The remainder terms
will be discussed in more detail in Section 4.

has a higher

PrOOF. We use the box quadrature rule with its remainder term to obtain

1
J(w) = J (wp) = / T (wh + sew) (ew) ds = J' () (ew) + R
0
= J(w) (en) + I}, (w) (ex,) + T4, (w) (ex,) +RY.
From the definition of the continuous dual problem, cf. (12-14), we conclude

Ty (w) (ew) + J5 (w) (ex,) + T3, (w) (ex,)
= a (eu7 y) —b° (fm eu) + bf (5157 eu) + (6)\”, yn)o,[‘c +cf (gm e)\n) + cf (51&7 e)\n)
+ (eAt’yt)O,Fc + @/ (gt’ e>\t) :

The Galerkin orthogonality (11) leads to

a(ew,y) + (exUn)ors + (€xoUtdor, = a(€usey) + (ex,seyn)or, + (€xs€yt)or,
= (l,ey) — a(un, ey) = (Anhseyn)or. — (Aths €yt)or,, -
From the proof of Proposition 4 in [42], we know

c (€nsen,) — b (§nyew) = —C (wn) (&n — én,h) — C (wp) (gn,h) + 7?,&2)

and from Lemma 11

b (&,e0) + ¢! (&en,) +df (Eex) = =D (wn) (& — &n) — D (wn) (o) + RY.
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In summary, we obtain
J (w) — J (wp)
= a(ewy) = b (& eu) + b (& en) + (exn Un)ore + ¢ (Gnen,) + ¢/ (& en,)
+(exs¥do,ro + & (G ex) + RS
= (ley) —a(un ey) = Anpseym)or, — Aen eyt)or, — C (wr) (& — &nn)
~D (wp) (& — &) — C (wn) (€nn) — D (wp) (r4) + R + RD + R
= p(wn) (2= 2) = C (wn) () — D (wn) (&0) + RY + R + R,

which is the assertion. |

Now, we study the error identity involving the dual residual. To this end, we need to
apply the following lemma:

Lemma 16. Under the general assumptions of this section, we obtain the identity

b (€ en) + ¢! (€ en,) + A (€en) + b (Eonyen) + ¢ (Eonen,) +df (Eon,en,)
= D (wp) (eg,) — 2D (wp) (&) + 2RV

The remainder term R?) = Rg? —i—RS’) —i—Rg’) —i—RS) s given by a remainder in the frictional
indicator function 7?,&3) = R;?’,)l + 7?,;3:)2 with

1.- _
RO = =5 [D' (wn) (ews &) — D, (wn) (ews &)
3 1. - _
ROy = 5 [D(wn) (ee) — Du (wi) (cg,)]
a cubic remainder .
1 _
Rg) = —5/ D" (wp, + sew) (€w, €w, €g,) sds
0
in ey, and eg,, as well as a quadrature remainder
(3) 1t A
Ry = 3 ), D" (wp, + sey) (ew, €w, ew, &) s(s — 1) ds,

which is of third order in the error e,,.

Remark 17. The remainder term Rgcg) is dominated by the remainder R

of higher order in the error.

&2), all other parts are

PRrOOF. Using Lemma 11 and the trapezoidal rule with its remainder term, we obtain
—2D (wy,) (eg,) — 2D (wy) (&) + 2R
1
— 2[D() (&)~ Dlwn) @] =2 [ D' (wn+ se0) (c0 o) ds
0

= D'(w)(ew &) + D' (wp) (ew, &) — 2R
= o (€ea) + ¢! (Een,) +df (&en,) + D (wp) (ew, &) — 2R
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Studying D’ (wp,) (ew, &) in more detail lead to

D' (wp) (ew; &)
= D' (wp) (ew, eg,) + D' (wn) (ew,&n)
= D' (wn) (ew,eg,) + D' (wn) (ew; i) — Dy, (wh) (ews Exn) + Dj, (wh) (€w )
= D' (wp) (ews ee,) + 2R, + 0] (Euneu) + ] (Eonen,) +d, (Eonren,).

To finish the proof, we use the box quadrature rule and obtain

wll

' (wh) (ew7 e&)
1
D' (wp, + sew) (ew, eg,) ds+ 27?,%)

I
S—

= D (w)(eg) — D (wp) (eg,) +2RY
= D (wy) (eg,) + Dy, (wn) (eg,) — Dy (wy) (eg,) + 2R
= —D(wy) (eg,) + 2R, +2RY,

the assertion. O

The bilinear forms b5 : A, x V3 — R and ¢, : A, x Ay, — R wor.t. the geometrical
contact conditions are given by

bf (wn,v) = / Wn X}, Un do,
Te

5 (wny pon) 1= /F wp, [1 = x3] pn do.
C

Using the presented lemma above, we obtain the error representation:

Proposition 18. We assume that the third Fréchet derivative of J, J" : W — L(W, L(W, W*))
exists and that Assumption 1 hold. Then the error representation

T () =T (wn) =5 (wn) (e2) + 50" (w20 (ew) = C () (€)= D (wn) (610)

3) 3) (19)
+RY +RE + RS
1s valid. Here, the dual residual p* is defined as
P (whszn) (@) = T (wn) (9) = @ (v,9n) + b, (§nnsv) = By (s ©) = (s Yhn)g

—Cﬁ (5n,h, ,Un) - Ci (ft,h, ,Un) - (,Ut, yhvt)O,I‘c - d£ (ft,h, Mt) .

For the remainder Rf}g) w.r.t. the quantity of interest, it holds

1 /1
= —/ J" (wp, + sew) (ew, €w, ew) s(s — 1) ds
0

3)

(3)

and for the remainder R¢’ concerning the geometrical contact conditions

1
R = 5 [ e Do+t — 9]+ €0 A+ — ]} do
C

Remark 19. The remainder RL(?) is also obtained, if the DWR method is applied on other
types of problems, see [3, Proposition 6.2] and compare Remark 14. It vanishes, if J is linear
or quadratic in w.
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Remark 20. The remainder terms RS and Rgcg) are of the same order in the error ef and e{(

as R((f) and RSE) because of the nonsmoothness of C' and D.

Proor. By applying the Trapezoidal quadrature rule with its remainder term, we obtain
! / 1 / 1 / 3)
J(w) —J(wp) = / J" (wp, + seyw) (ey) ds = §J (wp) (ew) + §J (w) (ew) + Ry
0

= ST (e) b, (0) (o) + 573, () (en) + 5 (un) (eu)

1 1
+§J£n (wn) (ex,) + §J£t (w) (ex,) + RS,

We know from the proofs of Proposition 4 and 8 in [42] that

CC (5717 e)\n) - bC (5717 eu) + C?L (fn,lw e)\n) - bz (é.n,hn eu)
= —C (wn) (& — &nn) = 2C (wn) (€nn) +2RE.

From the proof of Proposition 12 together with Lemma 16 and the preceding equations, we
deduce

T} (w) (en) + J5 (w) (en,) + J, (w) (ex,)

= (, ey> —a(up,ey) — ()‘n,ha ey,n)o,rc - ()‘t,ha ey,t)o,rc — b (nyew) + bf (&treu)
+c (&n,en,) + ol (&, ex,) + a’ (&, ex)

= (ley) —a(un, ey) = (Anpn, ey,n)o,rc = (A, ey,t)o,l“c = ¢, (§n,hy€x,) £ bl (§n,hs €u)
—C (wp) (&n = &np) — 2C (wp) (Enp) + 2R — bi (&tn,€u) — Ci (&nren,) — di (&t €n:)
—D (wp) (& — &) — 2D (wp) (&) + 2R}

= p(wn) (2= 21) = ¢ (Enprex,) + b5 (Ennreu) = b (Eenen) — ¢ (Eonren,) — df (€nnen,)
=20 (wn) (€0) — 2D () (€) + 2R + 2R,

Inserting the Galerkin orthogonality (11) and the definition of the dual residual p* leads to

J (w) = J (wp)
= () (== 20) + 5L () (e) 5 4, (i) (en,) + 575, (un) (e

1
—5a (€u,yn) — 3 (exns Unn)ory — 3 (x> Yntdor, — 502 (&n,hsen,)

1 1 1 1
505 (Enen) = 504 (€ en) = 56l (Gemren,) = i (Eunsen,)

2 2 2
—C (wn) (6np) — D (wp) (€) + RY + RE) 4 RY)
= %p(wh) (z — zp) + %p* (wn, 21) (w —wp) — C (wp) (€n,n) — D (wr) (§e,n)

+RE +RY + RY.

The comparison of primal and dual residual leads to

Proposition 21. If the second Fréchet derivative of J, J" : W — L(W,W?*), exists and
Assumption 1 holds, we obtain for the difference between the primal residual p and the dual
residual p*

p* (wh, 2n) (w —wp) = p(wp) (2 = zp) + AJ + AC + AD,
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where
1
AJ = —/ J" (wp, + sew) (ew, ew) ds,
0

AC = [ fec, Pt un =gl = er, + cunl) do
le
4

AD = ZADZ‘,

1
AD; = /D/,(wh+56w)(ew’ew’£t) ds
0

1
AD, = /D”(wh+56w)(6w’ew’eft)5d8’
0

AD3 = D (wp)(eg,) — D (wp) (eg,)
ADy = D' (wp) (ew,&n) — Djy (wh) (€w,&en) -

Remark 22. From Proposition 21 we learn that the difference between the primal and the dual
residual is of higher order in the error than the remainder terms R(2) R?), R((;?’), and RSE’).
Thus, the difference between the primal and dual residual is no estimate for the remainders

Rg) and R}Z) in contrast to smooth nonlinear problems, cf. [3, Proposition 6.6 and Remark
6.7].

Remark 23. The term AJ equals zero, if the quantity of interest J is linear in w.

PROOF. The definition of the dual residual p*, the continuous dual problem, and the definition
of the primal residual lead to
p* (wh, 1) (€w)
= J (wn) (ew) — a(ew, yn) + b5, (én,ns eu) — b (Enreu) — (exns Unndore — h (Enh€r,)
—C£ (&ensexa) = (exUnt)ore — (ft ho e)\t)
= J'(wp) (ew) — a(ew, yn) + b (én,h, ew) = b, (Senren) = (ex,sYnn)ory, = (Snmrern)
—cf (Emen,) = (ex Untdor, — db (Ensex) = J (W) (ew) + a(ew,y) — b° (€n )
+b (& eu) + (exn Un)ore + ¢ (Enren,) + ¢ (&nen,) + (ex, uore +d (&ren,)

1
= _/ J" (wp, + sew) (ew ew) ds + a(ey, ey) + (e, , eyn)ore 1 (€xe€yt)ore
0

—Hﬁz (gn,ha eu) - e (fm eu) - Cﬁ (fn,m e)\n) +c° (fm e)\n) - b£ (gt,fn eu) + bf (5157 eu)
—cf (Gnren,) + ¢! (Eren,) = df (Gnen) + @ (Gen)
= AJ+p(wn) (z = 21) + C(wn) (eg,) + D (wn) (eg,) — [ch (&nns €xn) — by (&n,hs €u)]

+CC (gna e)\n) - bc (gna eu) - |:b£ (ft,hn eu) + C£ (gt,ha e)\t) + d£ (ft,ha e)\t)]
+0! (& en) +¢f (Gen,) +d (Gen,)

From Proposition 11 in [42] we know

C (wh) (eﬁn) - [Cﬁ (5717/15 e)\n) - bﬁ (én,ha eu)] + ¢ (é-na eAn) —b° (é-n, eu) = AC.
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The equations (16) and (17) imply
D (wn) (eg,) + b (&, ea) + ¢! (&ex,) +d (&,en,)
[b£ &by €u) +Ch (Enrex,) +d (ft,h,e,\t)]
= D (wp) (eg,) + D' (w) (ew, &) — l?h (wn) (ew, &en) i
D (wp,) (eg,) + D" (w) (ew, &) — D' (wp) (ew, &) + D' (wp) (ew, &) — D, (wh) (€w &)
= D (wn) (eg,) + /01 D" (wh + sew) (€w, €w, &) ds + D' (wp) (ew, &) — Dy, (wn) (ws &up)

= D (wn)(eg) + AD1+ D' (wp) (ew, &) — D} (wh) (ew, t.n) -
Furthermore, we find using D (w) (eg,) = D (w) (eg,) = 0 and the box quadrature rule with
its remainder that
D (wn) (eg,) + D' (wp) (ew, &) — Dy, (wp) (ew, &xp) + AD;
= D (wn)(eg) + D' (wn) (ew €g,) + D' (wn) (€w, &,n) — Dy, (wh) (€, &n) + ADy
= D (wp) (6&) — D (w) (eft) + D (wn) (ew, 6&) — D (wp) (6&) + D (wp) (6&)
+ADy + ADy

o~ o~

1
= —/ D' (wp, + sew) (ew, €g,) ds + D' (wy) (ew, e¢,) + ADy + AD3 + AD;y
0

1
= / D" (wp, + sew) (ew, €w, €¢,) sds + ADy + AD3 + AD;
0
= ADl + ADQ =+ ADg =+ AD4
Combining the different parts, we get the assertion with AD = AD1+ADs+AD3s+ADy. O

3.3 Estimation of model and discretization error

As last result in this section, we estimate the error J (w") — J (wy,) including the modeling as
well as the discretization error in the quantity of interest. We define

h h h h

e :(e; Leh, egt) = (W = N = A AT — An) s
h h h h

e = (et eptegt) = W=~ €l — )

Furthermore, we set ell = Xy — X7, and e;’? = Xf — Xﬁ- In addition, we need an analogous

X
result to Lemma 7:

Lemma 24. [t holds
bl <§th, )—i—ch <§th,e/\ )+d (&h,e;h)
+f (&5 el) el (&el) +df (655" ) + D (wn) (e)
= 2D (wn) (€n) — 2 (wn) (€n) — 2 (wn) (7)) — A (e, en?) + 2R

with the remainder term R;n’ = leh + R .2 by RQ ,

Rt = = (6 (6 @) = xd (wn) o om) Mg = " (s M)
REp = =5 [(07) Gon) (e 6n) = Dh n) (e 1)

1t
RG" = 5 [0 (weser) (et et e ) st~ 1) ds,
0
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PROOF. The definition of D" leads to

D" (w > (&)

= (& (i) M =" ) ) = 5 Q) une)
< < —x/ (w )) (n (wp) Adep — 8" (An,p) At,h))

+ <£{, xi (wp) (n(wp) Adep — " (M) Aen) — 8" (Ann) Uh,t) ore

= Ry D (wn) (&) = D" (wn) (") + D" (wn) (€n) = RY

= D" (wp) ( gh> — D (wp) <egh) + D" (wp) (&,n) — D (wn) (ft,h) + D (wn) (62;")
+D (wp) (&) — R

= Auwn) (") + A (wn) (66) + D (wn) () + D (wn) (€)= Ry

The trapezoidal rule with its remainder term together with D" (w") (u;) = D" (w") (pz) = 0
and the preceding calculations lead to

=8 ) (¢5) = & o) () = D an) (¢5) = D ) () + R
= D) ()~ D () (€)

G
s
= /0 (D) (wn +sei) (ent.&r) ds
= L (DY o) (i) + 5 (D7) ) (e ) - R
We use equation (15) and
(D7) (wn) (<€)
= (D) (wn) (€5 e ) + (D) (om) (€ €on) = D (n) (5" )
+Dj, (wn) (€3, )
= A () 2R b (i) o] () + ] ().

apply (17) to deduce the assertion by combining the single terms. O

0,l'c

Applying the above presented lemma, we obtain the following error identity for the error
w.r.t. modeling and discretization:

Proposition 25. We assume that the third Fréchet derivative of J, J" : W — L(W, L(W, W*)),
exist and that Assumption 1 holds. Then, the error identity

T ()~ 7 (wn)
= — A ) (21) + 50 () (e2) + 5" (e 20) () = € (i) (€)= D (i) (€0) (20
~ Auwn) () — 5A (5 i) + R 4RI 4 R

holds for the model and discretization error in the quantity of interest. Here, the remainder
terms are given by

1 1
RT’h = 5/0 J" (wh + seﬁ;h) (e;h,efvh,egh> s(s—1)ds
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w.r.t. the quantity of interest J,
R = / Enel" Ann + unp — gl + &nney” [N, + up, — g do

and R}” from Lemma 7.

Remark 26. The remainder R’}L’h is of third order in the error e} and equals mainly the

3)

remainders R} from Propositon 9 and RS

3)

the same structure as R£

from Proposition 18. The remainder R7"" is of

in Proposition 18.

PRrROOF. The starting point is again the application of the trapezoidal rule with its remainder
leading to

Jw") = J(wy) = /01 J <wh + seZ;h> <e£;h> ds
= %J, (wp) (GZ}h> + %J' (w") <ez;h) + RT’h.

We now proceed as in the proof of Proposition 9. However, we have to take into account that
(11) holds instead of (9). Thus, we obtain by (11)

() (81, (500

o rh h h shorh
= (et et) +(Aleph), (e,
= p(wp) (egh) +C (wp) (€k,) + D (wp) (eF,) -

The defintions of the continuous dual problem (12-14) and the preceding calculation imply

7@ () = alet ) o (Gner) +of (et + (),
o (gmesn) ol (&) + (ew) +df (.5)
= ot () -0t () + Dlon) ()
05 (& ent) +of (g, u)+cr(5n, Mol (gt +al (6,60
By (11) and the definition of the dual residual p*, we deduce
J (") (")
= ) () ()~ (), (500,

05, (&nns ) = 0F (Gunsei™) = i (&nmr i) = (&meel) = df (€€l
=0, (&) + 0] (&onsei®) + i (S ) + o (G i) + ] (€0me5))
= b, <$n,h, BZ’h> +b] (§t,h, €Z’h> ch, (§n hs eAn) +cf <§t hs 6§h) (§t hs 6§h>
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By the same technique as in the proofs of Proposition 4 and 8 in [42], we obtain

(€, ex) =0 (et} + i (&) = b5 (Gn i) +C (wn) ()
= (g el) — b (shei) + C wn) (€)
0, (S €0 ) = b, (Snns i) + € (wn) (§n,) = 2C (wn) (&)
_ Erevl D+ i — 9]+ Enn€ll N+ uly — g] do — 2C (wy) (€np)
P20 () )
All in all, we deduce applying Lemma 24
2(J (w') — J (wn))
= (wn) () + I (") () + 2R
= p(wn) (e2) + p (wny 2n) () + 2R
(fn,eA ) e ( T en ) el (é“n ho ey ) - bf, (ﬁn,h,efzh) + C (wp) (e§;h>
+0f (€ome) +f (€on ) +df (onrexl)

+f (&5 ei) +ef (5.5 ) +af (&.e5) + D (wn) (")
= p(wn) (e2") +p" (wnyzn) (€l) +2RG" + 2RI = 20 (wn) (§n.n)

—2D (wn) (§0n) — 24 (wn) (§0n) — 24 (wn) (e2) = A (e, 2" ) + 27"

Division by 2 then gives the assertion. O

4 Numerical evaluation of the error identities

The error identities (18), (19), and (20) from Proposition 12, 18 and 25 cannot be evaluated
numerically, because they involve the analytic solutions w and z as well as the unknown
remainder terms. The remainder terms Rf), RL(JB’), and R?’h are of second and third order
in the error, respectively, which implies that they are of higher order and negligible. The
remainder terms with respect to the geometrical contact conditions, R( ) R?) and R?L’h,
are of first order in the error of the active set. Numerical examples substantiate that they
are decreasing fast. However, a strict analysis of there convergence properties is missing and
strongly depends on the chosen discretization. The remainder terms R(2), R and R?L’h
with respect to the friction conditions consist of terms which are of first order in the error
of the frictional active set and ones which are of higher order in the error. While it is clear
that the second ones can be neglected, the same is not true for the first ones. However,

the remarks for the remainder terms Rg), RS’) and R?’h also hold here. The remaining

terms A (wp,) < rh) and %A <eZ}h,eZ h), which arise in the estimation of the model error,
are of second as well as third order in the error and are neglected. The numerical results in
Section 5 substantiate that neglecting the remainder terms is feasible. Beside the remainder
terms, the error identities also include the analytic primal and dual solution, which have to be
numerically approximated. The corresponding discretization dependent operator is denoted
by A. We refer to [3, Section 4.1 and Section 5.2] for an overview of possible choices and their
mathematical justification under strong smoothness assumptions.



4 Numerical evaluation of the error identities 22

All in all, we obtain the primal error estimator

J(w) = J(wp) = np:=p(wn) (A(zn) = 2n) = C(wn) (§a,p) — D (wn) (&e.n) ,
the primal dual one

T(w) =T (un) = o) (A(on) — 21) + 507 () (A (wn) — i)

—C (wn) (€n,n) — D (wr) (§e.n)

and the model as well as discretization error estimator
J(w") = J (wp) = —A (wp) (2) + 1 = 1 + 1.

Up to this point, we have not specified any further assumptions on the discretization.
Henceforth, we carry out further steps to obtain concrete error estimators for a mixed dis-
cretization. It was first proposed for geometrical contact problems in [23] and extended to
frictional contact problems in [24, 25| as well as higher order methods in [48]. In the aforemen-
tioned references, a Schur-complement ansatz is used to solve the discrete problems. Here,
we use a primal-dual-active-set-strategy, which was developed for this discretization approach
in [9]. We outline the discretization in more detail here: Let 7, be a finite element mesh
of Q with mesh size h and let £ be a finite element mesh of I'c with mesh size H, respec-
tively. The number of mesh elements in 7 is denoted by Mg and in £ by Mgo. We use
line segments, quadrangles or hexahedrons to define 7, or £o. But this is not a restriction,
triangles and tetrahedrons are also possible. Furthermore, let Up : [-1,1]¢ — T € T}, and
®p: [~1,1]%t - E € & be affine and d-linear transformations. We define

Vi={veV|VTe€T,: vyroV¥r €@},
Agg ;:{MGLZ(FCH VEe&c: ppo®p ey},
An,H ::{,U’nEAH| VE € &c: Mn|E20},

_ 1
A (M) == {Mt € ACIl{ 1‘ VE€&c: e < E/ 5 (An,m) do},
E

where @ is the set of d-linear functions on [—1,1]¢ and PPy the set of piecewise constant basis
functions for the Lagrange Multiplier on [—1,1]"!. The discrete saddle point problem is to
find (up, A1, Ade,gr) € Vi X Ap g X Ay g such that

a(up,vn) + (A, V) r, + At vnt)or, = (Lvn) (21)

(Mn,H - )\n,Ha Unh,p — 9)071‘0 + (Mt,H - )\t,Ha uh,t)O,Fc < O, (22)

holds for all v, € Vp, all pup g € App, and all py g € Appm. It is well-known that we
obtain a stable discretization if a discrete inf-sup condition is fulfilled. In the case of quasi-
uniform meshes the discrete inf-sup condition holds if the quotient of the mesh sizes h/H
is sufficiently small, cf., for instance, [48|. If different mesh sizes h and H are used, the
Lagrange multiplier has to be defined on a coarser mesh leading to a higher implementational
complexity than using a surface mesh £¢ inherited from the interior mesh 7. In our numerical
experiments, we observe oscillating Lagrange multipliers for h = H and stable schmes for
H = 2h, which corresponds to the results in the mentioned reference. Consequently, the
numerical experiments in Section 5 are based on meshes with H = 2h.

Our definition of the discrete dual solution is motivated by the primal-dual-active-set-
strategy to solve the discrete problem (21-22) outlined in [9, Section 5.4]. There, the active
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and inactive sets are based on the surface mesh £-. Consequently, we define the following
discrete indicator functions for FE € Eq:

1, lf )\ 7H+uh —gd0>0,
0, if fEAnH+uhn—gdo§0,

xé (wp) = L if [y ( — [|E| A, + ung| do <0,
0, if fE An,H —||E|>\tH+uht| do > 0.

The discrete bilinear forms are then given by

b (wn,v) = Z /wnXEvndo

Ecéc

Ez(wnuun) = Z/F Wn 1_XE Hndo

Ecéc

Bi(wt,v) = Z /wt XE)\tH (wh)) —s()\n,H)I] v do,

Eecée

h i) = = 3 [ @) Qo) (o) [xhAen + ] do

Eecée E
J{l(wt,ut) = Z/wt max {s (A, m),n (wp)} I — s (Ap m) I] e do
Eecée
+ ) /thE)‘tH (n (wn)) " e do.
Eecée

The discrete dual problem is to find a dual solution zp, = (yn,&n,H, 1) € Vi X A X A%‘l
with

a (vh, yn) = bf, (Snirsvn) + Bf, (€ernon) = T, (wn) (vn),
(Lot Yhn)o pos + G Gty pintr) + 8, (St i) = T4, (wn) (ptn,1r)
(1,15 Ynt)ore + df (Emopn) = Jh, (wn) (e m) .,

for all (yn, pin 1, pe.1) € Vi X A X A?jl. We should remark that we use the bilinear forms

Bﬁ, Bﬁ, s éﬁ, and d7;: instead of b}, bﬁ, s cﬁ, and dz, since the dual problem using bf, bﬁ, s

cﬁ, and dZ is not necessaryly well posed.

(a) Mesh with patch structure (b) Corresponding patch mesh

Fig. 2: Tllustration of the patch structure of the finite element mesh

In this article, we use higher order reconstructions of the discrete solutions for the approx-
imation of w and z, because this procedure is computationally cheaper than the calculation
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Fig. 3: Tllustration of ')

of higher order solutions or extrapolation techniques. The primal and dual displacement wu
and y is approximated using patchwise d-quadratic reconstruction, cf., e.g., |3, Section 4.1]

for this well known procedure. Let zéi) be the corresponding interpolation operator. For

the evaluation of zgi), we require a special structure of the adaptively refined finite element
mesh. This so-called patch-structure is obtained through the refinement of all children of a
refined element, provided that one of these children is actually marked for refinement. This
property is illustrated in Figure 2. For the higher order reconstruction of the Lagrange mul-
tipliers, we use a patchwise linear interpolation i it s illustrated in Figure 3. We define

20>
Al ((vn, pn, H 5 Pt 1)) 2= (igi)vh,igllz,pm]{,iggut,f]) and obtain the error estimators

= p(wy) (A (2) — z1) — C (wp) (Ean) — D (wp) (&en)
n = %p (wh) (.AI (Zh) — Zh) + %p* (wh, Zh) (.AI (wh) — wh)

=C (w) (§n,n) — D (wn) (§e,n) -

To utilize the error estimators 7, and n in an adaptive refinement strategy, we have
to localize the error contributions given by the residuals with respect to the single mesh
elements T' € T, leading to local error indicators nr . Here, the filtering technique developed
in [13] is applied, which implies less implementational effort than the standard approach
using integration by parts outlined for instance in [3|. An alternative localization method was
recently proposed in [45]. The terms connected to C' and D are added to the adjacent volume
cells to the boundary cells.

5 Numerical results

This section is devoted to numerical tests of the presented error estimator. At first, we consider
an example with known analytical solution in order to check the accuracy. Afterwards, a
more complex example is presented, where we apply a model adaptive algorithm. For results
concerning 3D examples from sheet-bulk-metal-forming, we refer to [6, 46].

5.1 First example: Known analytical solution

At first, we consider a 2D Signorini problem with Tresca friction, whose analytical solution is
known. It is a modified version of an example used in [42, 43]. Let 2 := (=3,0)x(—1, 1) be the
domain. We prescribe homogeneous Dirichlet boundary conditions on I'p := {—3} x [-1,1]
and homogeneous Neumann boundary conditions on I'y := (—3,0) x {—1,1}. The possible
contact boundary is denoted by I'c := {0} x [—1,1]. The material law is given by Hooke’s
law with Young’s modulus £ := 10 and Poisson number v := 0.3 using the plain strain
assumption. By L the number of uniform refinements based on a coarse initial triangulation
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(b) )\n,H

von Mises equivalent stress

5
(a) Plot of up in Q and the obstacle
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02
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Fig. 4: Numerical solution of the first example for Mo = 24576 and Mc = 64
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Mg L FErel (Ja,l) Lo (Ja,17 77]7) Teqt (Ja,la 77)
384 0 | 1.28466 - 102 —4.5051 —8.4898
1536 1 | 1.28322-1072 1.25195 1.31199
6144 2 | 3.48578-1073 1.01771 1.02354
24576 3 | 8.89653 - 1074 1.00401 1.00517
98304 4 | 2.22857-1074 1.00120 1.00179
393216 5 | 5.57355-107° 1.00042 1.00068
1572864 6 | 1.39339 - 107 1.00017 1.00029

Tab. 2: Results of the presented error estimators for .J, i

Mo L Erel (Ja,Z) Ieff (Ja,27 77]7) Ieff (Ja,27 77)
384 0| 6.09378-107" 0.48802 0.58637
1536 1 | —6.2106 - 1072 —0.1867 —0.5573
6144 2 | 8.29963 - 1073 0.19384 0.54481
24576 3 | 4.43956 - 1073 0.44977 0.95398
98304 4 | 1.09222-103 0.45098 0.98520
393216 5 | 2.71978 1074 0.45124 0.99497
1572864 6 | 6.79232-107° 0.45128 0.99814

Tab. 3: Results of the presented error estimators for J, »

is denoted. The analytical solution is called u(z, %) := (ui(z,y), uz(z,y)) ", where

ur(z,y) = {O,

UZ(x7y) = 0

2

—(z+3)(y — 5 — )X

2 2
y+ L+ <L +3,

else,

else.

{ Bin (E2) [(y - DAy + D+ - D+, i<

The volume force is then given by f := —div(o(u)) and the obstacle by g(y) := u1(0,y). The
friction law is Tresca with s = 0.1. The discrete solution wy, is illustrated in Figure 4.

We consider the quantities of interest

Ja 1(u) =

)

Jo2 (An) =

| ta)uf? da,

1

1
/ (0.5tanh (20(0.25 — |y — 0.125))) + 0.5) A2(y) dy,

the disc

where w(x) = 0.5 (tanh(20(d — |z — (—0.5,0) |)) + 1) is a cut off function w.r.t.
By ((—0.5,0)). The relative discretization error w.r.t. the quantity of interest is given by

J (u’ )\n) —-J (uha )‘n,H)

Erel (J) = i (u’ )\n) ;

and the effectivity index by

T (u, M) — J (un, A

In Table 2, the results for the quantity of interest J, 1 are listed. We found by analyzing the
data that the effectivity indices seem to converge of order h? to 1 for 1p and 7, which is almost
optimal. When regarding J, 2, see Table 3, we observe an almost constant effectivity index
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Fig. 5: Numerical solution of the second example for Mq = 24576 and Mo = 64

of 0.45 for n,. However, the effectivity index is very good. In contrast to 7,, the effectivity
index for 1 seems to converges to 1 with order h2. From the numerical experiments in [43], we
know that Z%)ﬂ\nH is not of higher order in the integral over I'c. But, in this approach, the
contribution of the terms involving 2&2 is so small that we could not observe this behavior
on the considered meshes. Consequently, we obtain an accurate but not asymptotically exact
error estimator. It is one advantage of this approach that it is sufficient to work with the

higher order reconstruction to obtain reasonable results.

5.2 Second example: Adaptivity

In the last section, we have examined the accuracy of the error estimator. Now, we address
the adaptive techniques. We use the same domain, subdivision of the boundary, and material
law as above. The volume force is set to zero. The gap function is given by 0.1 (y — 1) (y + 1).
We choose the friction law of Betten s3 with the paramters Cp = 0.1, F = 0.4, and n = 3,
cf. Table 1. The solution is illustrated in Figure 5, where we show the von Mises equivalent
stress

2 2 2
o4, + o055+ 30
o 72(0’06): \/ 11 22 21

Oe
with o, = 1. The regularity of the problem is distorted by three different sources: We observe
stress peaks in the left corners of the domain, where the Dirichlet boundary conditions change
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Fig. 7: Adaptive mesh in the 7" iteration for the quantity of interest J;

MQ L Erel Ieff
384 1 | 1.51570-10"1 —0.4748
456 2 | —2.5789-10"2 0.10037
564 3 | —1.6315-102  0.11956
720 4 | 5.16983-1072 —1.2446
1224 5 | 2.29215-1072 —4.3496
1800 6 | 2.26209-10"2  7.17555
3624 7 | 9.97274-1072% 3.98811
7224 8 | 5.02568 -1073  1.50262
15432 9 | 2.31588-10~2% 1.72271
20016 10 | 1.25329-10"2  1.49387
59868 11 | 6.02395-10~* 1.63777
102840 12 | 3.46647 -10~%  1.44213
205392 13 | 1.78526-10~*  1.44686
401856 14 | 8.86439-107°  1.48696
699960 15 | 5.36923-107°  1.46484

Tab. 4: Detailed results of the adaptive algorithm for the second example
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L FEral I Model
1| 1.00000 - 10° 31.8617

7I\/Iodel

w
I

2 | —=9.4015-10"Y —0.7837 [P —

3 | 1.51606 - 1071 0.691113 - 2

4 | 4507571071 —0.0350  ee——— | —

5| 6.50010-1072  —0.5200  m—— — ]

6 | 8.74934-1072 —0.6447  o—mmw= — I
7| 7.10923-107%  —1.5836 = o= —— 0

Tab. 5: Results of the model adaptive algorithm for Mq = 98304

to Neumann boundary conditions. Furhtermore, the transition zones between contact to non-
contact as well as between sticking and sliding are problematic.
In the first step, we test the mesh adaptive algorithm. We consider the quantity of interest

Jl (u’ >‘t) = )‘tut dO,
le

which corresponds to the dissipated energy in this example. We solve this problem based
on a uniform mesh refinement and obtain a reference value Ji ;or = 3.9999331493 - 10~° by
extrapolation over all calculated values of J;. We use Jj e to determine the relative error K
and the effectivity index I.g approximately. The error on the different meshes is plotted in
Figure 6, where we observe a change of the sign of the error between the 4™ and 5% iteration.
We compare the uniform refinement with an adaptive algorithm based on n and an optimal
mesh strategy, see [44]. We find a better convergence behavior of the adaptive algorithm. The
adaptive mesh is outlined in Figure 7, where the left corners of the domain and the transition
zones between contact to non-contact as well as between sticking and sliding are well resolved
as expected. The efficiency indices of the error estimator are listed in Table 4 and are around
1.4.

5.3 Model adaptivity

We consider a model adaptive algorithm in this section. We test it with the example of
the last section for a uniform mesh of Mg = 98304 elements. In the initial configuration,
we assume no friction on the complete contact boundary, i.e. s = sg on I'c. We solve the
problem and estimate the model error by the estimator 7,,. Afterwars, we choose in the cells
with the largest error a better model, i.e. increase the model index by 1. Here, a fraction of
25% is used. The results are outlined in detail in Table 5. We obtain in the middle of the
contact zone Tresca friction and on the boundary of the contact zone the model of Betten.
This correponds to the expactations, since A, is large in the middle of the contact zone and
small at the boundary.

In a second step, we combine the model adaptive algorithm with the mesh adaptive one.
Here, we use an equilibration strategy. If |n,,| > C. |n| with an equilibration constant C, > 1,
we conduct a model adaptive step with a refinement fraction of 50%. If |n| > C¢ ||, the mesh
is adaptively refined. If C.|n| > |nm| > C. 1 |n|, we improve the model first and adaptively
refine the mesh afterwards. The detailed results of the algorithm for the example of the
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L Mg Erel Log Model

1 384 1.00000 -10°  —12.334 T
2 384 | 1.51579-107' 0.54735 .
3 480 | —3.1565-10"2 —0.2684 | .
4 660 | —4.0661-10"2 —3.4936 | .
5 876 | —1.0422-1072 —0.2474 .
6 876 6.9472-1071  —0.0742 . I
7 876 | 4.01757-107%2 -5.3661 EEEEE BEE
8 876 | 4.00031-1072 —5.7265 EEEEEE W
9 1308 | 2.82515-1072 —31.910 NN
10 1908 | 1.97301-1072 247728 pEEEEEE R
11 4116 | 8.48886-107% 2.62066 PN S
12 7116 | 4.80574-107% 1.08973 OSSN S
13 14112 | 2.27704-107%  1.05157 SN T
14 26736 | 9.95986-10"* 0.83356 EEEEEE S
15 61104 | 2.32142-107* 047734 SN TS
16 61104 | 4.50727-1073 1.01859 EEEEEE RN
17 94260 | 4.32043-107%  0.97587 DS RS
18 94260 | 3.83807-107* 1.18358 EEEEEE RN
19 230868 | 1.52591-107* 1.24280 NS N
20 433512 | 8.27891-107° 1.17654 EEEEEE R
21 943560 | 3.80197-107° 1.25396 NN TR

7I\/Iodel

Tab. 6: Results of the mesh and model adaptive algorithm for the quantity of interest J;



5 Numerical results 31

SR S AL B AL B L B
100? LR —o—  uniform
= ) . ‘ -&-  adaptive
SRS a--model & mesh
— - PN —
Si02f o !
o | |
o -3 L |
= 10751
D . i
& L i
10_4 § E
:\ Ll Lol Lol Lol L \:

103 104 10° 106
number of cells Mq

Fig. 8: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform refinement
for the quantity of interest Jy
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Fig. 9: Adaptive mesh in the 12" iteration of the model and mesh adaptive algorithm
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L MQ Erel Ieff Model
1 384 | —6.5283-107% 0.05562
2 480 | 4.15588-107% 3.88737 S
3 552 | 1.10060-1073 —1.4788 S Model
4 1032 | 3.80930-107% 4.00148 IS 3'
5 3432 | —1.4927-107* 3.91706 I

2
6 3432 | —9.5859-107% 328939 NN 1 BE 1 BEE
7 8160 | —9.8240-10"* 34258 pEEE 1 BE B WEE :
8 8160 | —1.6305-10"% 0.72628 NN o
9 30936 | —1.4366-10"% 0.79535 . OI
10 30936 | —2.8915-107° —0.0136 NN T
11 30936 | 6.27223-1075 —1.0887 NN .
12 119520 | 1.81614-10"% 0.67998  EEEEE I

Tab. 7: Results of the mesh and model adaptive algorithm for the quantity of interest .Jy

last section are given in Table 6. We observe the same model distribution as for the model
adaptive algorithm. In the first iterations, the model is roughly chosen and afterwards only
small corrections at the boundary of the contact zone are conducted. We compare the mesh
adaptive, the mesh and model adaptive, and the uniform approach in Figure 8. We see that
the mesh as well as the mesh and model adaptive algorithm lead finally to similar results
with a better accuracy than the uniform approach. This observation is substantiate by the
comparison of the generated adaptive meshes, cf. Figure 7 and 9. They only show small
deviations.

The quantity of interest Ji is focused on the frictional forces and the tangential dis-
placement on the contact boundary. Thus it is located on the contact boundary. To test a
completely different setting, we consider the quantity of interest

J(u) = /Q () [uf? de,

where w(xz) = 0.5 (tanh(20(d — |z — (—2.5,0)|)) + 1). Here, Js is located at the left end of
Q. In Table 7, the results of the model and mesh adpative algorithm are listed. In contrast
to the results concerning Ji, the model is changed later and Coulomb’s model is used more
frequently. The adaptive mesh in the 9*" iteration is depicted in Figure 11. Here, more
refinements in the middle and in the left corners of the domain are found. The results of
the three different refinements approaches are compared in Figure 10. The mesh and model
adaptive algorithm performs best.
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Fig. 10: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform refine-
ment for the quantity of interest Jo

Fig. 11: Adaptive mesh in the 9*" iteration of the model and mesh adaptive algorithm for the
quantity of interest Jo
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6 Conclusions and outlook

We have derived goal oriented a posteriori error estimates with respect to the discretization
as well as model error for discretizations of frictional contact problems in this article. The
presented approach leads to an accurate estimates even using higher order reconstruction,
although it is not asymptotically exact. Furthermore, it is based on a linear dual problem
and directly measures the error in the frictional contact conditions, which is necessary for
the estimation of the model error. However, it is not clear, whether the remainder terms
are of higher order or not. Numerical results substantiate the assumption that they are of
higher order. However, a precise analysis is a topic of further research. A further content is
the extension to dynamic contact problems. Especially here, the precise consideration of the
error in the contact conditions is needed to accurately resolve impact phenomena.
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