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Abstra
t

The arti
le fo
uses on adaptive �nite element methods for fri
tional 
onta
t problems. The approa
h

is based on a reformulation of the mixed form of the underlying Signorini problem with fri
tion as

a nonlinear variational equation using nonlinear 
omplimentarity (NCP) fun
tions. The usual dual

weighted residual (DWR) framework for a posteriori error estimation is applied. However, we have to

take into a

ount the nonsmoothness of the problem formulation. Error identities for measuring the

dis
retization as well as the model error with respe
t to a model hierar
hy of fri
tion laws are derived

and a method for the numeri
al evaluation of them is proposed. The estimates are utilized in an adap-

tive framework, whi
h balan
es the dis
retization and the model error. Several numeri
al examples

substantiate the a

ura
y of the proposed estimates and the e�
ien
y of the adaptive method.
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1 Introdu
tion

In the modelling of many physi
al or engineering pro
esses, 
onta
t problems with fri
tion

frequently o

ur, see, for instan
e, [20, 32℄. Hen
e, the development of e�
ient and a

urate

numeri
al solution te
hniques for fri
tional 
onta
t problems has been of spe
ial interest in

the last de
ades. One main ingredient is given by e�
ient solution algorithms for the arising

dis
rete problems. Furthermore, adaptive algorithms lead to an optimal 
onvergen
e behavior

of the dis
retizations, whi
h 
annot be a
hieved by uniform methods due to the missing regu-

larity of fri
tional 
onta
t problems. They are based on a

urate a posteriori error estimators,

whi
h should 
ontrol the error in user-de�ned quantities of interest involving in our 
ase the


onta
t and fri
tional for
es.

In literature, the obsta
le problem, as model 
onta
t problem, is frequently studied. A

posteriori error estimates in the energy norm are derived, for instan
e, in [2, 4, 15, 18, 28,

31, 37, 54℄ using di�erent te
hniques. Even the 
onvergen
e of adaptive algorithms in the


ontext of obsta
le problems is proven in [17, 16, 50℄. Signorini's problem is studied, e.g.,

in [19, 26, 35, 47, 55℄, where a posteriori error estimates in the energy norm are dis
ussed.

Moreover, multibody 
onta
t problems are in the fo
us of [33, 57℄. The dual weighted residual

(DWR) method, see, e.g., [3, 5℄ is a popular approa
h to derive a posteriori error estimates,

whi
h 
ontrol the error in user-de�ned quantities of interest. The approa
h is based on the

representation of the quantity of interest by the solution of a so-
alled dual problem. Sim-

ilar arguments are used in [40, 41℄. The DWR framework was applied to 
onta
t problems

in [10, 11℄ for the �rst time. The results are summarized in [53℄. Here, a dual variational

inequality is used to represent linear quantities of interest in the displa
ement. In [49℄, an
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alternative pro
edure is used, whi
h is based on a linear dual problem representing also non-

linear quantities of interest in the displa
ement. It is extended to fri
tional 
onta
t problems

and quantities of interest also in the Lagrange multiplier in [43℄. There, a linear mixed dual

problem, whi
h does not depend on the primal problem, is used to represent the quantities

of interest in the displa
ement as well as the Lagrange multiplier, whi
h 
oin
ides with the


onta
t for
es. This approa
h also leads to an improved lo
alization of the error estimate.

In both approa
hes, the (fri
tional) 
onta
t 
onditions lead to extra additive terms in the

estimates, whi
h is some produ
t of the dual solution and the error of the primal solution.

However, the estimates do not dire
tly measure the error in the (fri
tional) 
onta
t 
onditions

and the a

urate numeri
al approximation of the extra terms in
lude several di�
ulties, whi
h

lead to involved and numeri
ally 
ostly algorithms. In [42℄, an approa
h is presented, whi
h

over
omes these drawba
ks for Signorini's problem. Its starting point is a reformulation of

Signorini's problem in mixed formulation as a nonlinear and nonsmooth variational equality

based on a nonlinear 
omplementarity (NCP) fun
tion, see, for instan
e, [27℄. Here, the dual

problem is also a linear mixed problem. However, it is determined by the a
tive and ina
-

tive set of the primal problem. The usual error identites 
an be derived based on the DWR

framework. However, the nonsmoothness of the underlying problem leads to remainder terms,

whi
h are of �rst order in the error of the dis
rete a
tive set. Here, we extend this approa
h

to fri
tional 
onta
t problems. Sin
e the NCP fun
tion for fri
tion in
ludes 
ombinations of

nonlinear fun
tions in 
ontrast to the one for 
onta
t, the derivation is more 
omplex and

leads to several remainder terms. The basi
 idea is to seperate the smooth and nonsmooth

parts using �xed a
tive sets. The results presented in this arti
le 
an be applied on a wide

range of dis
retization s
hemes. For mixed dis
retization s
hemes like [24, 30℄, the appli
ation

of the developed framework is straight forward. If semi-smooth Newton methods are used for

solving the dis
rete 
onta
t problem, the dual problem 
oin
ide with the transposed system

of the last Newton step. In displa
ement based dis
retization s
hemes like [8, 34, 58℄, an

approximation to the Lagrange multiplier has to be 
al
ulated in a post pro
essing step, 
f.

e.g. [15℄. The derived error identities 
annot be evaluated numeri
ally. Thus, a numeri
al

approximation s
heme depending on the di�erent dis
retization approa
hes has to be realized.

We exemplify su
h a strategy for the mixed dis
retization introdu
ed in [24℄.

The performan
e of the solution algorithm of fri
tional 
onta
t problems depends on the


hosen fri
tion model. One 
an save a large amount of 
omputation time and gain a more

stable algorithm by 
hoosing a di�erent model. The idea is now to sele
t the model out

of a prede�ned model hierar
hy based on an a posteriori error estimate 
orresponding to the

desired a

ura
y. In literature, one �nds only few 
ontributions to model adaptive algorithms.

Dimension adaptivity is 
onsidered in [1, 7, 12, 51, 52℄. In these papers, volume elements are


ombined with shells or plates. The automati
 sele
tion of the lo
al model is one subje
t

in [38, 39℄, where heterogeneous linear elasti
 models and their homogenization are in
luded

in the model hierar
hy. The underlying a posteriori error estimates in
lude the error in

the energy norm as well as in linear quantities of interest. Models for di�erent physi
al

pro
esses are adaptively 
oupled in [36℄ by means of problems from ele
tro
ardialogy. The

basi
 DWR idea is extended to 
ontrol modelling errors in [13℄. Here, the model error is

basi
ally given by entering the solution to the 
oarse model into the �ne one weighted by

the dual solution. In [13℄, di�usion-rea
tion-equations with highly os
illating 
oe�ents are


onsidered. Further appli
ations are given by time dependent problems in [14℄ as well as by

problems from elasti
ity in [22℄. In this arti
le, we use the ideas from [13℄ to derive a posteriori

estimates of the model error with respe
t to di�erent fri
tion laws, where the nonsmoothness

of the underlying problems 
ompli
ates the derivation. In the model adaptive algorithm, we

globally balan
e the model and the dis
retization error, whi
h 
annot be done lo
ally due to

the stru
ture of the problem.
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The arti
le is stru
tured as follows: In Se
tion 2, we introdu
e the strong and the mixed

formulation of Signorini's problem with fri
tion as well as the reformulation as a nonlinear

variational equation. Furthermore, the assumptions on the model adaptive dis
retization are

formulated. Se
tion 3 fo
uses on the derivation of the error identities involving the model as

well as the dis
retization error. At �rst, we 
onsider the model and the dis
retization error,

seperately. Afterwards, an identity for both is derived. In Se
tion 4, we outline the ideas for

the numeri
al approximation of the error identites and exemplify them for a 
on
rete mixed

dis
retization. Se
tion 5 is devoted to numeri
al results, whi
h substantiate the a

ura
y of

the presented error estimates and the e�
ien
y of the adaptive s
hemes. We 
on
lude the

arti
le with a dis
ussion of the results and an outlook on further tasks.

2 Problem formulation

In this se
tion, we introdu
e the 
ontinuous problem formulation and a general model adaptive

dis
retization.

2.1 Continuous problem formulation

We 
onsider Signorini's problem with nonlinear fri
tion laws on domains Ω ⊂ Rd
, d = 2, 3 with

su�
iently smooth boundary Γ := ∂Ω. Homogeneous Diri
hlet boundary 
onditions are as-

sumend on ΓD ⊂ Γ, where ΓD is 
losed with positive measure. The possible 
onta
t boundary

is given by ΓC ⊂ Γ\ΓD with ΓC ( Γ\ΓD. Furthermore, we have the part ΓN = Γ\ (ΓD ∪ ΓC),
where Neumann boundary 
onditions are pres
ribed. The usual Sobolev spa
es are denoted

by L2(Ω), H l(Ω) with l ≥ 1, and H1/2(ΓC). We set H1
D(Ω) :=

{

v ∈ H1(Ω) | γ(v) = 0 on ΓD

}

and V :=
(

H1
D (Ω)

)d
with the tra
e operator γ. The topologi
al dual spa
e of H1/2 (ΓC)

is given by H̃−1/2 (ΓC) with the norms ‖ · ‖−1/2,ΓC
and ‖ · ‖1/2,ΓC

, respe
tively. The L2
-

s
alar produ
ts on ω ⊂ Ω and Γ′ ⊂ Γ are denoted by (·, ·)0,ω and (·, ·)0,Γ′
. The linear and

bounded mapping γC := γ|ΓC
: H1

D(Ω) → H1/2 (ΓC) is surje
tive due to the assumptions on

ΓC , see [32, page 88℄. We de�ne vn := γC(v)n and vt,j := γC(v)tj , where n denotes the

ve
tor-valued fun
tion des
ribing the outer unit normal ve
tor with respe
t to Γ and t the
k× (k− 1)-matrix-valued fun
tion 
ontaining the tangential ve
tors. In the following, we use

the inequality symbols ≥ and ≤ for fun
tions in L2 (ΓC), where the symbols are de�ned as

�almost everywhere�. We set H
1/2
+ (ΓC) :=

{

v ∈ H1/2 (ΓC)
∣

∣ v ≥ 0
}

. The dual 
one of H
1/2
+ (ΓC)

is Λn :=
{

µ ∈ H̃−1/2 (ΓC)
∣

∣

∣
∀v ∈ H

1/2
+ (ΓC) : 〈µ, v〉 ≥ 0

}

. Furthermore, we set

Λt (λ
r
n) :=

{

µ ∈
(

H̃−1/2 (ΓC)
)d−1

∣

∣

∣

∣

〈µ, vt〉 ≤ 〈sr (λrn) , |vt|〉 , vt ∈
(

H
1/2 (ΓC)

)d−1
}

with the eu
lidian norm |·|. Here, sr : Λn → Λn denotes the possible nonlinear fri
tion law.

The index r stands for referen
e fri
tion law, its meaning will be 
leari�ed in the dis
ussion of

the modell adaptive approa
h. For a given displa
ement �eld v ∈ V , the linearized strain ten-

sor is de�ned as ε(v) := 1
2

(

∇v + (∇v)⊤
)

and the stress tensor as σ(v)ij := Cijklε(v)kl des
rib-
ing a linear-elasti
 material law with Cijkl ∈ L∞(Ω), Cijkl = Cjilk = Cklij and Cijklτijτkl ≥ κτ2ij
for τ ∈ L2(Ω)k×k

sym and a κ > 0. We de�ne σn := σn, σnn := n⊤σn, σnt,l := t⊤I σn.
The strong formulation of Signorini's problem with fri
tion is to �nd a displa
ement �eld

ur ∈ V ∩H2 (Ω) su
h that

− div (σ (ur)) = f in Ω, σn (u
r) = b on ΓN , (1)

urn − g ≤ 0, σrnn ≤ 0, σrnn (u
r
n − g) = 0 on ΓC , (2)

|σrnt| ≤ sr (σrnn) with

{

|σrnt| < sr (σrnn) ⇒ urt = 0
|σrnt| = sr (σrnn) ⇒ ∃ζ ∈ R≥0 : u

r
t = −ζσrnt

}

on ΓC . (3)
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Formula Name

s0 (σnn) = 0 Fri
tion less 
onta
t

s1 (σnn) = CT Tres
a fri
tion with a 
onstant CT > 0
s2 (σnn) = −Fσnn Coulomb fri
tion with a 
onstant F > 0

s3 (σnn) = CT
n

√

tanh
((

−Fσnn

CT

)n)

Fri
tion law of Betten with n ∈ N

Tab. 1: Some examples of fri
tion laws

Tresca

Coulomb

Betten (n = 5)

|σnn|

|σ
n
t|

CT

Fig. 1: Illustration of di�erent fri
tion laws

The equilibrium equation of linear elasti
ity is noted in (1), where the volume and surfa
e

loads are spe
i�ed by f and b. In the following weak formulation, we assume f ∈
(

L2(Ω)
)d
,

b ∈
(

L2 (ΓN )
)d
. The geometri
al 
onta
t 
onditions are des
ribed in (2). The possible 
onta
t

boundary ΓC is parametrized by a su�
iently smooth fun
tion ϕ : Rd−1 → R su
h that,

without loss of generality, the geometri
al 
onta
t 
ondition for a displa
ement �eld v in the

d-th 
omponent is given by ϕ(x)+vd(x, ϕ(x)) ≤ ψ(x1+v1(x, ϕ(x)), . . . , xd−1+vd−1(x, ϕ(x)))
with x := (x1, . . . , xd−1) ∈ Rd−1

. The su�
iently smooth fun
tion ψ des
ribes the surfa
e

of the rigid obsta
le. The linearization, presented for instan
e in [32, Chapter 2℄, of this


ondition results in vn ≤ g in (2) with g(x) := (ψ(x) − ϕ(x))(1 + (∇ϕ(x))⊤∇ϕ(x))−1/2
. In

the weak formulation, we assume g ∈ H1/2(ΓC). The se
ond 
ondition, a sign 
ondition on

the outer normal stress, ensures that only pressure o

urs. By the 
omplementary 
ondition

in (2), we have either pressure or no 
onta
t. The fri
tional 
onditions are denoted in (3).

They indi
ate that sti
king o

urs if the magnitude of the tangential for
es is below a 
riti
al

value given by the fri
tion law sr. If this 
riti
al value is rea
hed, we obtain sliding, where the

sliding dire
tion 
orresponds to the negative dire
tion of the tangential for
es. Some examples

of fri
tion laws are given in Table 1, see for instan
e [59℄. They are illustrated in Figure 1.

From a physi
al point of view, Tres
a's fri
tion law �ts well for high 
onta
t pressure, while

Coulomb's law is a

urate for low 
onta
t pressure. If low as well as high 
onta
t pressures

o

ur, we need a nonlinear model handling both regions well. An example for su
h a type of

fri
tion law is given by Betten's law. For our analysis, we assume that the 
onsidered fri
tion

laws are two times 
ontinuously di�erentiable w.r.t. λrn.
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For the a posteriori error analysis, we use a mixed formulation of (1-3). The bilinear form of

linear elasti
ity is given by a(w, v) := (σ(w), ε(v))0 on V ×V , whi
h is symmetri
, 
ontinuous

and due to Korn's inequality V -ellipti
. The volume and surfa
e loads are represented by

〈ℓ, v〉 := (f, v)0 + (b, vN )0,ΓN
. A fun
tion wr := (ur, λrn, λ

r
t ) ∈ V × Λn × Λt (λ

r
n) is a saddle

point of the fri
tional 
onta
t problem (1-3) if and only if,

a (ur, v) + 〈λrn, vn〉+ 〈λrt , vt〉 = 〈ℓ, v〉, (4)

〈µn − λrn, u
r
n − g〉+ 〈µt − λrt , u

r
t 〉 ≤ 0, (5)

for all v ∈ V , all µn ∈ Λn, and all µt ∈ Λt. If some smoothness assumptions are ful�lled, it

holds λrn = −σrnn and λrt = −σrnt. The existen
e and uniqueness of the solution wr
depends

on the 
hosen fri
tion law sr and its parameters. For Tres
a's and Coulomb's fri
tion law

with F small enough, there exists a unique weak solution. We refer to [21℄ for an overview

on existen
e and uniqueness results.

We now reformulate the fri
tional 
onta
t 
onditions (5) in terms of two nonlinear equa-

tions. The geometri
al 
onta
t 
onditions are equivalently expresed by

g − urn ∈ H
1/2
+ (ΓC) , λrn ∈ Λn, 〈λrn, u

r
n − g〉 = 0. (6)

Assuming λrn ∈ L2 (ΓC), (6) simpli�es to

g − urn ∈ H
1/2
+ (ΓC) , λrn ≥ 0 a.e. on ΓC , λrn (u

r
n − g) = 0 a.e. on ΓC . (7)

For geometri
al 
onta
t problems, we have λrn ∈ L2 (ΓC) for instan
e, if Cijkl ∈W
1,∞(Ω) and

g ∈ H5/2 (ΓC), see [42℄. The geometri
al 
onta
t 
onditions (7) are equivalently reformulated

as

λrn −max {0, λrn + urn − g} = 0 a.e. on ΓC (8)

by an NCP fun
tion, 
f. [29, Chapter 4℄. Multiplying with a test fun
tion µn ∈ L2 (ΓC) leads
to

C (wr) (µn) := (µn, λ
r
n −max {0, λrn + urn − g})0,ΓC

= 0.

However, the semilinear form C is not Fré
het di�erentiable in general.

If we require λrn ∈ L2 (ΓC) and λrt ∈
(

L2 (ΓC)
)d−1

, we obtain sr ∈ S, where S :=
{

s : L2 (ΓC) → L2
+ (ΓC)

∣

∣ s 
ontinuously di�erentiable

}

with L2
+ (ΓC) :=

{

v ∈ L2 (ΓC)
∣

∣ v ≥ 0 a.e.
}

.

Furthermore, Λt simpli�es to

Λt (λ
r
n) =

{

µt ∈
(

L2 (ΓC)
)d−1

∣

∣

∣
|µt| ≤ sr (λrn)

}

.

The 
al
ulations in [29, Se
tion 2.1℄ show that we obtain also the fri
tional 
onditions (3) a.e.

Rewriting them with the help of a se
ond NCP fun
tion, see [29, Chapter 5℄, gives us

max {sr (λrn) , |λ
r
t + urt |}λ

r
t − sr (λrn) (λ

r
t + urt ) = 0 a.e. on ΓC .

The multipli
ation with a test fun
tion µt ∈
(

L2 (ΓC)
)d−1

�nally results in

Dr (wr) (µt) := (µt,max {sr (λrn) , |λ
r
t + urt |}λ

r
t − sr (λrn) (λ

r
t + urt ))0,ΓC

= 0.

In general, the semilinear form D is not Fré
het di�erentiable, too.

We de�ne the semilinear form

Ar (wr) (ϕ) := a (ur, v) + (λrn, vn)0,ΓC
+ (λrt , vt)0,ΓC

− 〈ℓ, v〉+ C (wr) (µn) +Dr (wr) (µt)

with ϕ = (v, µn, µt) ∈ W := V × L2 (ΓC) ×
(

L2 (ΓC)
)d−1

. Then Signorini's problem (4-5) is

to �nd wr ∈W with

∀ϕ ∈W : Ar (wr) (ϕ) = 0.
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2.2 Model adaptive dis
retization

The model adaptive dis
retization is 
arried out in two steps. At �rst, we spe
ify a model

adaptive fri
tion law. To this end, we de�ne a fri
tion model hierar
hy H := {s0, s1, . . . , sM},
where s0 is the most inexa
t model and sM := sr the most a

urate or referen
e model. An

example for su
h a hierar
hy is given in Table 1. Finally, we 
ompose a lo
ally varying fri
tion

law s ∈ S based on the di�erent models in H. Using the semilinear form

A (w) (ϕ) := a (u, v) + (λn, vn)0,ΓC
+ (λt, vt)0,ΓC

− 〈ℓ, v〉+ C (w) (µn) +D (w) (µt)

with w = (u, λn, λt) ∈W , ϕ = (v, µn, µt) ∈W and

D (w) (µt) := (µt,max {s (λn) , |λt + ut|}λt − s (λn) (λt + ut))0,ΓC
,

w ∈W is a solution of Signorini's problem with a model adaptive fri
tion law, if

∀ϕ ∈W : A (w) (ϕ) = 0.

We dire
tly obtain a generalized Galerkin orthogonality relation

a (ur − u, v) + (λrn − λn, vn)0,ΓC
+ (λrt − λt, vt)0,ΓC

= 0 (9)

for all v ∈ V .
The se
ond step 
onsists in the spe
i�
ation of the general dis
retization requirements,

whi
h ensure that the presented a posteriori error analysis applies to a wide range of te
hniques

to 
al
ulate approximations wh to w. They have to ful�ll the following assumption:

Assumption 1. Let Wh = Vh × Λn,h × Λt,h be a �nite dimensional subspa
e of W , whi
h


ontains the dis
rete solution wh. Moreover, equation (4) has to hold for the dis
rete solution

wh, i.e.

a (uh, vh) + (λn,h, vh,n)0,ΓC
+ (λt,h, vh,t)0,ΓC

= 〈l, vh〉 (10)

for all vh ∈ Vh.

Remark 2. From (10), a generalized Galerkin orthogonality follows, i.e.

a (u− uh, vh) + (λn − λn,h, vh,n)0,ΓC
+ (λt − λt,h, vh,t)0,ΓC

= 0 (11)

for all vh ∈ Vh.

Remark 3. In Assumption 1, we only pres
ribe Λn,h ⊆ L2 (ΓC) and Λt,h (λn,h) ⊆
(

L2 (ΓC)
)d−1

.

We do not require Λn,h ⊆ Λn and Λt,h (λn,h) ⊆ Λt (λn,h). Thus, we 
onsider also non
onform-

ing approximations of the Lagrange multiplier.

Remark 4. Our analysis applies to di�erent dis
retization s
hemes. It in
ludes method, whi
h

are only based on the displa
ement. In this 
ase, the Lagrange multipliers λn and λt have
to be determined in a post pro
essing step, 
f., for instan
e, [15℄. It also applies to mixed

dis
retizations like the one presented in [24℄, whi
h we use in our numeri
al experiments, or

Mortar methods, see, e.g., [56℄.

3 A posteriori error analysis

This se
tion fo
uses on the derivation of an a posteriori error estimate in a user de�ned

quantity of interest, where we employ the DWR method. Spe
i�
ally, the error is estimated

in a possibly nonlinear quantity of interest J : W → R, i.e. J 
an in
lude the displa
ement

u as well as the Lagrange multipliers λn and λt representing the 
onta
t and the fri
tional

stress respe
tively.
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3.1 Model error estimation

Initially, the model error J (wr)−J (w) is treated. The �rst step in the derivation of the error

identities is the de�nition of a suitable dual problem: Find zr = (yr, ξrn, ξ
r
t ) ∈W with

a (v, yr)− bcr (ξ
r
n, v) + bfr (ξ

r
t , v) = J ′

u (w
r) (v) , (12)

(µn, y
r
n)0,ΓC

+ ccr (ξ
r
n, µn) + cfr (ξ

r
t , µn) = J ′

λn
(wr) (µn) , (13)

(µt, y
r
t )0,ΓC

+ dfr (ξ
r
t , µt) = J ′

λt
(wr) (µt) , (14)

for all (v, µn, µt) ∈ W . Here, the bilinear forms bc : L2 (ΓC) × V → R and c : L2 (ΓC) ×
L2 (ΓC) → R are given by

bcr (ωn, v) :=

ˆ

ΓC

ωnχ
c
rvn do,

ccr (ωn, µn) :=

ˆ

ΓC

ωn [1− χc
r]µn do,

with

χc
r (w

r) :=

{

1, if λrn + urn − g > 0,

0, if λrn + urn − g ≤ 0.

We also write χc
r = χc

r (w
r). The bilinear forms bc and cc 
orrespond to weighted L2

-s
alar

produ
ts on ΓC , where the weight is given by the indi
ator fun
tion of the a
tive and in-

a
tive geometri
al 
onta
t set, respe
tively. Furthermore, we 
onsider the bilinear forms

bfr :
(

L2 (ΓC)
)d−1

× V → R, cfr :
(

L2 (ΓC)
)d−1

× L2 (ΓC) → R, and dfr :
(

L2 (ΓC)
)d−1

×
(

L2 (ΓC)
)d−1

→ R with

bfr (ωt, v) :=

ˆ

ΓC

ωt

[

χf
rλ

r
t

(

n′ (wr)
)⊤

− sr (λrn) I
]

vt do,

cfr (ωt, µn) := −

ˆ

ΓC

ωt (s
r)′ (λrn) (µn)

[

χf
rλ

r
t + ut

]

do,

dfr (ωt, µt) :=

ˆ

ΓC

ωt

[

max {sr (λrn) , n (w
r)} I − s (λrn) I + χf

rλ
r
t

(

n′ (wr)
)⊤

]

µt do.

Here, we use the notation n (wr) := |λrt + urt | and

n′ (wr) =

{

λr
t+ur

t

n(wr) , if w 6= 0,

0, if w = 0.

However, the 
ase w = 0 does not o

ur be
ause of the multipli
ation with the indi
ator

fun
tion χf
r w.r.t. sliding and sti
king, where

χf
r (w

r) :=

{

1, if sr (λrn) < n (wr) ,

0, if sr (λrn) ≥ n (wr) .

The shorter notation χf
r := χf

r (wr) is mostly used. We point out that, if the Fré
het derivative

A′
of A exists, the dual problem (12-14) mat
hes A′ (wr) (ϕ, zr) = J ′ (wr) (ϕ). Let us 
learify

the 
onne
tion between max {sr (λrn) , n (w
r)} and the indi
ator fun
tion χf

r :

Dr (wr) (µt) = (µt,max {sr (λrn) , n (w
r)}λrt − sr (λrn) (λ

r
t + urt ))0,ΓC

=
(

µt, χ
f
rn (w

r)λrt +
(

1− χf
r

)

sr (λrn)λ
r
t − sr (λrn) (λ

r
t + urt )

)

0,ΓC

=
(

µt, χ
f
r (n (w

r)λrt − sr (λrn)λ
r
t )− sr (λrn) u

r
t

)

0,ΓC

=: D̄r (wr) (µt) .
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If we 
onsider D̄r
, we see χf

r as a �xed weighting fun
tion. Thus, the Fré
het di�erentiability

of D̄r
depends only on the smoothness of sr. In the following results, if not otherwise stated,

we assume that (µn, s
r (λrn))0,ΓC

is three times Fré
het di�erentiable w.r.t. λrn. A short


al
ulation now shows

(

D̄r
)′
(wr) (δw, µt)

=
(

D̄r
)′

u
(wr) (δu, µt) +

(

D̄r
)′

λn
(wr) (δλn, µt) +

(

D̄r
)′

λt
(wr) (δλt, µt)

=
(

µt, χ
f
r

(

λrt
(

n′ (wr)
)⊤
δut

)

− sr (λrn) δut

)

0,ΓC

−
(

µt, χ
f
r (s

r)′ (λrn) (δλn)λ
r
t + (sr)′ (λrn) (δλn) u

r
t

)

0,ΓC

+
(

µt, χ
f
r

(

λrt
(

n′ (wr)
)⊤
δλt + n (wr) δλt − sr (λrn) δλt

))

0,ΓC

= bfr (µt, δu) + cfr (µt, δλn) + dfr (µt, δλt) .

(15)

Analogously, we de�ne the dual solution z = (y, ξn, ξt) ∈ W w.r.t. the model adaptive

fri
tion law s using the bilinear forms bc, cc, bf , cf , and df as well as the indi
ator fun
tions

χc
and χf

. Furthermore, we set

D̄ (w) (µt) :=
(

µt, χ
f (n (w)λt − s (λn)λt)− s (λn)ut

)

0,ΓC

= D (w) (µt)

and obtain

D̄′ (w) (δw, µt) = bf (µt, δu) + cf (µt, δλn) + df (µt, δλt) . (16)

We denote the model adaptive error w.r.t. the primal as well as to the dual solution by

erw :=
(

eru, e
r
λn
, erλt

)

:= (ur − u, λrn − λn, λ
r
t − λt) ,

erz :=
(

ery, e
r
ξn , e

r
ξt

)

:= (yr − y, ξrn − ξn, ξ
r
t − ξt) ,

respe
tively. The error in the geometri
al 
onta
t indi
ator fun
tion is erχc := χc
r (w

r)−χc (w)

and in the fri
tional indi
ator fun
tion er
χf := χf

r (wr)− χf (w).
In preparation of the main result, we study the bilinear forms in the dual problem 
on-


erning the 
onta
t 
onditions:

Lemma 5. We obtain that

ccr
(

ξrn, e
r
λn

)

− bcr (ξ
r
n, e

r
u) + cc

(

ξn, e
r
λn

)

− bc (ξn, e
r
u)

=

ˆ

ΓC

erχc

[

erξn (λn + un − g)− ξn
(

erλn
+ eru,n

)]

do =: 2Rm
c

holds.

Remark 6. The term Rm
c is the produ
t of the error in the indi
ator fun
tion of the 
onta
t


onditions and the model error. Thus it is of higher order.

Proof. By the de�nition of the bilinear forms ccr, c
c
, bcr, and b

c
, we obtain using C (wr) (µn) =
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C (w) (µn) = 0 for all µn ∈ L2 (ΓC)

ccr
(

ξrn, e
r
λn

)

− bcr (ξ
r
n, e

r
u) + cc

(

ξn, e
r
λn

)

− bc (ξn, e
r
u)

=

ˆ

ΓC

ξrn [1− χc
r] e

r
λn
do−

ˆ

ΓC

ξrnχ
c
re

r
u,n do+

ˆ

ΓC

ξn [1− χc] erλn
do−

ˆ

ΓC

ξnχ
ceru,n do

=

ˆ

ΓC

ξrn
[

erλn
− χc

r

(

erλn
+ eru,n

)]

do+

ˆ

ΓC

ξn
[

erλn
− χc

(

erλn
+ eru,n

)]

do

=

ˆ

ΓC

ξrn [λ
r
n − χc

r (λ
r
n + urn − g)] do−

ˆ

ΓC

ξrn [λn − χc
r (λn + un − g)] do

+

ˆ

ΓC

ξn [λ
r
n − χc (λrn + urn − g)] do−

ˆ

ΓC

ξn [λn − χc (λn + un − g)] do

= −

ˆ

ΓC

ξrn [λn − χc
r (λn + un − g)] do+

ˆ

ΓC

ξrn [λn − χc (λn + un − g)] do

−

ˆ

ΓC

ξn [λ
r
n − χc

r (λ
r
n + urn − g)] do+

ˆ

ΓC

ξn [λ
r
n − χc (λrn + urn − g)] do

=

ˆ

ΓC

ξrne
r
χc (λn + un − g) do−

ˆ

ΓC

ξne
r
χc (λrn + urn − g) do

=

ˆ

ΓC

erχc [ξrn (λn + un − g) − ξn (λ
r
n + urn − g)] do

=

ˆ

ΓC

erχc

[

erξn (λn + un − g)− ξn
(

erλn
+ eru,n

)]

do = 2Rm
c .

We de�ne the semilinear form∆(w) (µt) := Dr (w) (µt)−D (w) (µt) and obtain A (w) (ϕ)+
∆ (w) (µt) = Ar (w) (ϕ). Furthermore, we set ∆̄ (ω,ϕ) :=

(

D̄r
)′
(w) (ω,ϕ). The se
ond step

is now to 
onsider the bilinear form in the dual problems 
on
erning the fri
tional 
onditions:

Lemma 7. With the remainder term

Rm
f = Rm

χ,1 +Rm
χ,2 +Rm

Q

in
luding the fri
tional 
onditions, where

Rm
χ,1 = −

(

ξrt ,
(

χf
r (w

r)− χf
r (w)

)

(n (w)λt − sr (λn)λt)
)

0,ΓC

,

Rm
χ,2 = −

1

2

[

(

D̄r
)′
(w) (erw, ξt)− D̄′ (w) (erw, ξt)

]

,

Rm
Q =

1

2

ˆ 1

0

(

D̄r
)′′′

(w + serw) (e
r
w, e

r
w, e

r
w, ξ

r
t ) s(s− 1) ds,

it holds

bfr (ξ
r
t , e

r
u) + cfr

(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

+ bf (ξt, e
r
u) + cf

(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

= −2∆ (w) (ξt)− 2∆ (w)
(

erξt
)

− ∆̄
(

erw, e
r
ξt

)

+ 2Rm
f .

Remark 8. The remainder Rm
f is dominated by Rm

χ,1, whi
h 
onsists mainly of the error in

the indi
ator fun
tion of the sti
king and the sliping region. The other parts are of se
ond

and third order in the error, respe
tively.
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Proof. At �rst, we noti
e using the de�nition of D̄r
and D (w) (µt) = 0

D̄r (w) (ξrt )

=
(

ξrt , χ
f
r (n (w)λt − sr (λn)λt)− sr (λn)ut

)

0,ΓC

=
(

ξrt ,
(

χf
r (w

r)− χf
r (w)

)

(n (w)λt − sr (λn)λt)
)

0,ΓC

+
(

ξrt , χ
f
r (w) (n (w)λt − sr (λn)λt)− sr (λn)ut

)

0,ΓC

= −Rm
χ,1 +Dr (w) (ξrt ) = Dr (w) (ξrt − ξt) +Dr (w) (ξt)−Rm

χ,1

= Dr (w) (ξrt − ξt)−D (w) (ξrt − ξt) +Dr (w) (ξt)−D (w) (ξt)−Rm
χ,1

= ∆(w)
(

erξt
)

+∆(w) (ξt)−Rm
χ,1.

The trapezoidal rule with its remainder term together with D̄r (wr) (µt) = Dr (wr) (µt) = 0
and the pre
eding 
al
ulations lead to

−∆(w)
(

erξt
)

−∆(w) (ξt) +Rm
χ,1

= D̄r (wr) (ξrt )− D̄r (w) (ξrt )

=

ˆ 1

0

(

D̄r
)′
(w + serw) (e

r
w, ξ

r
t ) ds

=
1

2

(

D̄r
)′
(w) (erw, ξ

r
t ) +

1

2

(

D̄r
)′
(wr) (erw, ξ

r
t )−Rm

Q .

From (15), (16) and

(

D̄r
)′
(w) (erw, ξ

r
t )

=
(

D̄r
)′
(w)

(

erw, e
r
ξt

)

+
(

D̄r
)′
(w) (erw, ξt)− D̄′ (w) (erw, ξt) + D̄′ (w) (erw, ξt)

= ∆̄
(

erw, e
r
ξt

)

− 2Rm
χ,2 + bf (ξt, e

r
u) + cf

(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

,

we dedu
e the assertion by rearranging the single terms.

Combining Lemma (5) and (7), we obtain the following Proposition 
on
erning the model

error:

Proposition 9. Let the third Fré
het derivative of J , J ′′′ : W → L(W,L(W,W ∗)), exist.
Then, the error identity

J (wr)− J (w) = −∆(w) (z)−∆(w) (erz)−
1

2
∆̄ (erw, e

r
z) +Rm

J +Rm
c +Rm

f

holds for the model error in the quantity of interest with the remainder terms

Rm
J =

1

2

ˆ 1

0
J ′′′ (w + serw) (e

r
w, e

r
w, e

r
w) s(s− 1) ds

w.r.t. the quantity of interest J , Rm
c from Lemma 5 and Rm

f from Lemma 7.

Remark 10. The remainder Rm
J is of third order in the error. Consequently, the remainder

terms are dominated by Rm
χ,1.

Proof. The trapezoidal quadrature rule with its remainder term leads to

J (wr)− J (w) =

ˆ 1

0
J ′ (w + serw) (e

r
w) ds =

1

2
J ′ (w) (erw) +

1

2
J ′ (wr) (erw) +Rm

J .
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From the de�nition of the dual problems together with the generalized Galerkin orthogonality

(9), we dedu
e

J ′ (wr) (erw) = a (eru, y
r)− bcr (ξ

r
n, e

r
u) + bfr (ξ

r
t , e

r
u) +

(

erλn
, yrn

)

0,ΓC

+ccr
(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+
(

erλt
, yrt

)

0,ΓC
+ dfr

(

ξrt , e
r
λt

)

= −bcr (ξ
r
n, e

r
u) + bfr (ξ

r
t , e

r
u) + ccr

(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

and

J ′ (w) (erw) = a (eru, y)− bc (ξn, e
r
u) + bf (ξt, e

r
u) +

(

erλn
, yn

)

0,ΓC

+cc
(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+
(

erλt
, yt

)

0,ΓC
+ df

(

ξt, e
r
λt

)

= −bc (ξn, e
r
u) + bf (ξt, e

r
u) + cc

(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

.

Lemma 5 and 7 together with the 
al
ulations above lead to

J (wr)− J (w)

=
1

2
J ′ (w) (erw) +

1

2
J ′ (wr) (erw) +Rm

J

=
1

2

[

−bcr (ξ
r
n, e

r
u) + bfr (ξ

r
t , e

r
u) + ccr

(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

]

+
1

2

[

−bc (ξn, e
r
u) + bf (ξt, e

r
u) + cc

(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

]

+Rm
J

= −∆(w) (z)−∆(w) (erz)−
1

2

(

D̄r
)′
(w)

(

erw, e
r
ξt

)

+Rm
c +Rm

f +Rm
J ,

the assertion.

3.2 Dis
retization error estimation

In this se
tion, we 
onsider the dis
retization error J (w)−J (wh) between the model adaptive

solution w and its approximation wh. To this end, we need a dis
rete approximation zh =
(yh, ξn,h, ξt,h) ∈ Wh to z, whi
h does not have to ful�ll any further assumptions. We denote

by ew and ez the dis
retization error, i.e.

ew = (eu, eλn
, eλt

) = (u− uh, λn − λn,h, λt − λt,h) ,

ez = (ey, eξn , eξt) = (y − yh, ξn − ξn,h, ξt − ξt,h) .

Furthermore, we de�ne

D̄h (wh) (µt,h) :=
(

µt,h, χ
f
h (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

= Dh (wh) (µt,h)

and noti
e

D̄′
h (wh) (δw, µt) = bfh (µt, δu) + cfh (µt, δλn) + dfh (µt, δλt) (17)

with the bilinear forms bfh : Λt,h × Vh → R, cfh : Λt,h × Λn,h → R, and dfh : Λt,h × Λt,h → R


on
erning the fri
tional 
onditions,

bfh (ωt, v) :=

ˆ

ΓC

ωt

[

χf
hλt,h (n (wh))

⊤ − s (wh) I
]

vt do,

cfh (ωt, µn) := −

ˆ

ΓC

ωts
′ (λn,h) (µn)

[

χf
hλt,h + uh,t

]

do,

dfh (ωt, µt) :=

ˆ

ΓC

ωt

[

max {s (λn,h) , n (wh)} I − s (λn,h) I + χf
hλt,h

(

n′ (wh)
)⊤

]

µt do,
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and

χf
h (wh) :=

{

1, if s (λn,h) < n (wh) ,

0, if s (λn,h) ≥ n (wh) .

The error in the fri
tional indi
ator fun
tion is efχ = χf −χf
h. First, we 
larify the 
onne
tion

between the fri
tional part of the dual problem and the fri
tional 
onditions:

Lemma 11. Let (µn, s (λn))0,ΓC
for arbitrary µn ∈ L2 (ΓC) be two times Fré
het di�erentiable

w.r.t. λn. Then we have the identity

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) = −D (wh) (eξt)−D (wh) (ξt,h) +R
(2)
f .

The remainder term R
(2)
f = R

(2)
χ +R

(2)
Q 
onsists of

R(2)
χ := −

(

ξt, e
f
χ (n (wh)λt,h − s (λn,h)λt,h)

)

0,ΓC

and

R
(2)
Q =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) s ds.

Proof. We obtain using the box quadrature rule with its remainder and (16)

D̄ (w) (ξt)− D̄ (wh) (ξt) =

ˆ 1

0
D̄′ (wh + sew) (ew, ξt) ds

= D̄′ (w) (ew, ξt)−R
(2)
Q

= bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

)−R
(2)
Q .

The equation D̄ (w) (ξt) = D (w) (ξt) = 0 leads to

D̄ (w) (ξt)− D̄ (wh) (ξt) = −D̄ (wh) (ξt)

= −D̄ (wh) (ξt)− D̄h (wh) (ξt) + D̄h (wh) (ξt)

= −
(

ξt, χ
f (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

+
(

ξt, χ
f
h (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

−D (wh) (ξt)

= −
(

ξt, e
f
χ (n (wh)λt,h − s (λn,h)λt,h)

)

0,ΓC

−D (wh) (eξt)−D (wh) (ξt,h)

= R(2)
χ −D (wh) (eξt)−D (wh) (ξt,h) .

Rearranging the terms �nishes the proof.

Using only the primal residual, we get the following error identity:

Proposition 12. If the se
ond Fré
het derivative of J , J ′′ : W → L(W,W ∗), exists as well
as Assumption 1 and the assumptions of Lemma 11 hold, we obtain the error identity

J (w)− J (wh) =ρ (wh) (z − zh)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R
(2)
J +R(2)

c +R
(2)
f ,

(18)

with the primal residual

ρ (wh) (ϕ) := −A (wh) (ϕ) .
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The remainder term w.r.t. the quantity of interest, R
(2)
J , is given by

R
(2)
J = −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) s ds.

For the 
onta
t 
onditions, we have the remainder

R(2)
c =

ˆ

ΓC

ξne
c
χ [λn,h + uh,n − g] do,

with ecχ = χc − χc
h, and

χc
h :=

{

1, if λn,h + uh,n − g > 0,

0, if λn,h + uh,n − g ≤ 0.

Remark 13. By C (wh) (ξn,h), we measure the violation of the geometri
al 
onta
t 
ondi-

tions (2). The term D (wh) (ξt,h) represents the error of the dis
rete solution 
on
erning the

fri
tional 
onditions (3).

Remark 14. The term R
(2)
J 
orresponds to the usual remainder term of the DWR method for

linear problems with nonlinear quantities of interest, 
f. [3, Proposition 6.6℄. It vanishes for

linear quantities of interest J .

Remark 15. The remainder R
(2)
c w.r.t. the geometri
al 
onta
t 
onditions be
omes zero, if the

analyti
 a
tive set equals the dis
rete one. The fri
tional remainder term R
(2)
f has a higher

order part of the same order as R
(2)
J and one in the indi
ator fun
tion of fri
tion. The se
ond

part vanishes, if the sliding and sti
king regions are exa
tly resolved. The remainder terms

will be dis
ussed in more detail in Se
tion 4.

Proof. We use the box quadrature rule with its remainder term to obtain

J (w)− J (wh) =

ˆ 1

0
J ′ (wh + sew) (ew) ds = J ′ (w) (ew) +R

(2)
J

= J ′
u (w) (eu) + J ′

λn
(w) (eλn

) + J ′
λt
(w) (eλt

) +R
(2)
J .

From the de�nition of the 
ontinuous dual problem, 
f. (12-14), we 
on
lude

J ′
u (w) (eu) + J ′

λ (w) (eλn
) + J ′

λt
(w) (eλt

)

= a (eu, y)− bc (ξn, eu) + bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

)

+ (eλt
, yt)0,ΓC

+ df (ξt, eλt
) .

The Galerkin orthogonality (11) leads to

a (eu, y) + (eλn
, yn)0,ΓC

+ (eλt
, yt)0,ΓC

= a (eu, ey) + (eλn
, ey,n)0,ΓC

+ (eλt
, ey,t)0,ΓC

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

.

From the proof of Proposition 4 in [42℄, we know

cc (ξn, eλn
)− bc (ξn, eu) = −C (wh) (ξn − ξn,h)− C (wh) (ξn,h) +R(2)

c

and from Lemma 11

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) = −D (wh) (ξt − ξt,h)−D (wh) (ξt,h) +R
(2)
f .
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In summary, we obtain

J (w)− J (wh)

= a (eu, y)− bc (ξn, eu) + bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

)

+ (eλt
, yt)0,ΓC

+ df (ξt, eλt
) +R

(2)
J

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− C (wh) (ξn − ξn,h)

−D (wh) (ξt − ξt,h)− C (wh) (ξn,h)−D (wh) (ξt,h) +R
(2)
J +R(2)

c +R
(2)
f

= ρ (wh) (z − zh)− C (wh) (ξn,h)−D (wh) (ξt,h) +R
(2)
J +R(2)

c +R
(2)
f ,

whi
h is the assertion.

Now, we study the error identity involving the dual residual. To this end, we need to

apply the following lemma:

Lemma 16. Under the general assumptions of this se
tion, we obtain the identity

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) + bfh (ξt,h, eu) + cfh (ξt,h, eλn
) + dfh (ξt,h, eλt

)

= −D (wh) (eξt)− 2D (wh) (ξt,h) + 2R
(3)
f .

The remainder term R
(3)
f = R

(2)
χ +R

(3)
χ +R

(3)
D +R

(3)
Q is given by a remainder in the fri
tional

indi
ator fun
tion R
(3)
χ = R

(3)
χ,1 +R

(3)
χ,2 with

R
(3)
χ,1 = −

1

2

[

D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h)

]

,

R
(3)
χ,2 =

1

2

[

D̄ (wh) (eξt)− D̄h (wh) (eξt)
]

,

a 
ubi
 remainder

R
(3)
D = −

1

2

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds

in ew and eξt, as well as a quadrature remainder

R
(3)
Q =

1

2

ˆ 1

0
D̄′′′ (wh + sew) (ew, ew, ew, ξt) s(s− 1) ds,

whi
h is of third order in the error ew.

Remark 17. The remainder term R
(3)
f is dominated by the remainder R

(2)
χ , all other parts are

of higher order in the error.

Proof. Using Lemma 11 and the trapezoidal rule with its remainder term, we obtain

−2D (wh) (eξt)− 2D (wh) (ξt,h) + 2R(2)
χ

= 2
[

D̄ (w) (ξt)− D̄ (wh) (ξt)
]

= 2

ˆ 1

0
D̄′ (wh + sew) (ew, ξt) ds

= D̄′ (w) (ew, ξt) + D̄′ (wh) (ew, ξt)− 2R
(3)
Q

= bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) + D̄′ (wh) (ew, ξt)− 2R
(3)
Q .
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Studying D̄′ (wh) (ew, ξt) in more detail lead to

D̄′ (wh) (ew, ξt)

= D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)

= D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) + D̄′

h (wh) (ew, ξt,h)

= D̄′ (wh) (ew, eξt) + 2R
(3)
χ,1 + bfh (ξt,h, eu) + cfh (ξt,h, eλn

) + dfh (ξt,h, eλt
) .

To �nish the proof, we use the box quadrature rule and obtain

D̄′ (wh) (ew, eξt)

=

ˆ 1

0
D̄′ (wh + sew) (ew, eξt) ds+ 2R

(2)
D

= D̄ (w) (eξt)− D̄ (wh) (eξt) + 2R
(2)
D

= −D̄ (wh) (eξt) + D̄h (wh) (eξt)− D̄h (wh) (eξt) + 2R
(2)
D

= −D (wh) (eξt) + 2R
(3)
χ,2 + 2R

(3)
D ,

the assertion.

The bilinear forms bch : Λn,h × Vh → R and cch : Λn,h × Λn,h → R w.r.t. the geometri
al


onta
t 
onditions are given by

bch (ωn, v) :=

ˆ

ΓC

ωnχ
c
hvn do,

cch (ωn, µn) :=

ˆ

ΓC

ωn [1− χc
h]µn do.

Using the presented lemma above, we obtain the error representation:

Proposition 18. We assume that the third Fré
het derivative of J , J ′′′ : W → L(W,L(W,W ∗))
exists and that Assumption 1 hold. Then the error representation

J (w)− J (wh) =
1

2
ρ (wh) (ez) +

1

2
ρ∗ (wh, zh) (ew)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R
(3)
J +R(3)

c +R
(3)
f

(19)

is valid. Here, the dual residual ρ∗ is de�ned as

ρ∗ (wh, zh) (ϕ) := J ′ (wh) (ϕ)− a (v, yh) + bch (ξn,h, v)− bfh (ξt,h, v)− (µn, yh,n)0,ΓC

−cch (ξn,h, µn)− cfh (ξt,h, µn)− (µt, yh,t)0,ΓC
− dfh (ξt,h, µt) .

For the remainder R
(3)
J w.r.t. the quantity of interest, it holds

R
(3)
J =

1

2

ˆ 1

0
J ′′′ (wh + sew) (ew, ew, ew) s(s− 1) ds

and for the remainder R
(3)
c 
on
erning the geometri
al 
onta
t 
onditions

R(3)
c =

1

2

ˆ

ΓC

ecχ {ξn [λn,h + uh,n − g] + ξn,h [λ+ un − g]} do.

Remark 19. The remainder R
(3)
J is also obtained, if the DWR method is applied on other

types of problems, see [3, Proposition 6.2℄ and 
ompare Remark 14. It vanishes, if J is linear

or quadrati
 in w.
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Remark 20. The remainder terms R
(3)
c and R

(3)
f are of the same order in the error ecχ and efχ

as R
(2)
c and R

(2)
f be
ause of the nonsmoothness of C and D.

Proof. By applying the Trapezoidal quadrature rule with its remainder term, we obtain

J (w)− J (wh) =

ˆ 1

0
J ′ (wh + sew) (ew) ds =

1

2
J ′ (wh) (ew) +

1

2
J ′ (w) (ew) +R

(3)
J

=
1

2
J ′
u (w) (eu) +

1

2
J ′
λn

(w) (eλn
) +

1

2
J ′
λt
(w) (eλt

) +
1

2
J ′
u (wh) (eu)

+
1

2
J ′
λn

(wh) (eλn
) +

1

2
J ′
λt
(wh) (eλt

) +R
(3)
J .

We know from the proofs of Proposition 4 and 8 in [42℄ that

cc (ξn, eλn
)− bc (ξn, eu) + cch (ξn,h, eλn

)− bch (ξn,h, eu)

= −C (wh) (ξn − ξn,h)− 2C (wh) (ξn,h) + 2R(3)
c .

From the proof of Proposition 12 together with Lemma 16 and the pre
eding equations, we

dedu
e

J ′
u (w) (eu) + J ′

λ (w) (eλn
) + J ′

λt
(w) (eλt

)

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− bc (ξn, eu) + bf (ξt, eu)

+cc (ξn, eλn
) + cf (ξt, eλn

) + df (ξt, eλt
)

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− cch (ξn,h, eλn
) + bch (ξn,h, eu)

−C (wh) (ξn − ξn,h)− 2C (wh) (ξn,h) + 2R(3)
c − bfh (ξt,h, eu)− cfh (ξt,h, eλn

)− dfh (ξt,h, eλt
)

−D (wh) (ξt − ξt,h)− 2D (wh) (ξt,h) + 2R
(3)
f

= ρ (wh) (z − zh)− cch (ξn,h, eλn
) + bch (ξn,h, eu)− bfh (ξt,h, eu)− cfh (ξt,h, eλn

)− dfh (ξt,h, eλt
)

−2C (wh) (ξn,h)− 2D (wh) (ξt,h) + 2R(3)
c + 2R

(3)
f .

Inserting the Galerkin orthogonality (11) and the de�nition of the dual residual ρ∗ leads to

J (w) − J (wh)

=
1

2
ρ (wh) (z − zh) +

1

2
J ′
u (wh) (eu) +

1

2
J ′
λn

(wh) (eλn
) +

1

2
J ′
λt
(wh) (eλt

)

−
1

2
a (eu, yh)−

1

2
(eλn

, yh,n)0,ΓC
−

1

2
(eλt

, yh,t)0,ΓC
−

1

2
cch (ξn,h, eλn

)

+
1

2
bch (ξn,h, eu)−

1

2
bfh (ξt,h, eu)−

1

2
cfh (ξt,h, eλn

)−
1

2
dfh (ξt,h, eλt

)

−C (wh) (ξn,h)−D (wh) (ξt,h) +R(3)
c +R

(3)
f +R

(3)
J

=
1

2
ρ (wh) (z − zh) +

1

2
ρ∗ (wh, zh) (w − wh)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R(3)
c +R

(3)
f +R

(3)
J .

The 
omparison of primal and dual residual leads to

Proposition 21. If the se
ond Fré
het derivative of J , J ′′ : W → L(W,W ∗), exists and

Assumption 1 holds, we obtain for the di�eren
e between the primal residual ρ and the dual

residual ρ⋆

ρ⋆ (wh, zh) (w − wh) = ρ (wh) (z − zh) + ∆J +∆C +∆D,
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where

∆J = −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) ds,

∆C =

ˆ

ΓC

ecχ {eξn [λn + un − g]− ξn [eλn
+ eu,n]} do,

∆D =

4
∑

i=1

∆Di,

∆D1 =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) ds,

∆D2 =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds,

∆D3 = D (wh) (eξt)− D̄ (wh) (eξt) ,

∆D4 = D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) .

Remark 22. From Proposition 21 we learn that the di�eren
e between the primal and the dual

residual is of higher order in the error than the remainder terms R
(2)
c , R

(2)
f , R

(3)
c , and R

(3)
f .

Thus, the di�eren
e between the primal and dual residual is no estimate for the remainders

R
(2)
c and R

(2)
f in 
ontrast to smooth nonlinear problems, 
f. [3, Proposition 6.6 and Remark

6.7℄.

Remark 23. The term ∆J equals zero, if the quantity of interest J is linear in w.

Proof. The de�nition of the dual residual ρ∗, the 
ontinuous dual problem, and the de�nition

of the primal residual lead to

ρ⋆ (wh, zh) (ew)

= J ′ (wh) (ew)− a (eu, yh) + bch (ξn,h, eu)− bfh (ξt,h, eu)− (eλn
, yh,n)0,ΓC

− cch (ξn,h, eλn
)

−cfh (ξt,h, eλn
)− (eλt

, yh,t)0,ΓC
− dfh (ξt,h, eλt

)

= J ′ (wh) (ew)− a (eu, yh) + bch (ξn,h, eu)− bfh (ξt,h, eu)− (eλn
, yh,n)0,ΓC

− cch (ξn,h, eλn
)

−cfh (ξt,h, eλn
)− (eλt

, yh,t)0,ΓC
− dfh (ξt,h, eλt

)− J ′ (w) (ew) + a (eu, y)− bc (ξn, eu)

+bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

) + (eλt
, yt)0,ΓC

+ df (ξt, eλt
)

= −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) ds+ a (eu, ey) + (eλn

, ey,n)0,ΓC
+ (eλt

, ey,t)0,ΓC

+bch (ξn,h, eu)− bc (ξn, eu)− cch (ξn,h, eλn
) + cc (ξn, eλn

)− bfh (ξt,h, eu) + bf (ξt, eu)

−cfh (ξt,h, eλn
) + cf (ξt, eλn

)− dfh (ξt,h, eλt
) + df (ξt, eλt

)

= ∆J + ρ (wh) (z − zh) + C (wh) (eξn) +D (wh) (eξt)− [cch (ξn,h, eλn
)− bch (ξn,h, eu)]

+cc (ξn, eλn
)− bc (ξn, eu)−

[

bfh (ξt,h, eu) + cfh (ξt,h, eλt
) + dfh (ξt,h, eλt

)
]

+bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) .

From Proposition 11 in [42℄ we know

C (wh) (eξn)− [cch (ξn,h, eλn
)− bch (ξn,h, eu)] + cc (ξn, eλn

)− bc (ξn, eu) = ∆C.
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The equations (16) and (17) imply

D (wh) (eξt) + bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

)

−
[

bfh (ξt,h, eu) + cfh (ξt,h, eλt
) + dfh (ξt,h, eλt

)
]

= D (wh) (eξt) + D̄′ (w) (ew, ξt)− D̄′
h (wh) (ew, ξt,h)

= D (wh) (eξt) + D̄′ (w) (ew, ξt)− D̄′ (wh) (ew, ξt) + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h)

= D (wh) (eξt) +

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) ds+ D̄′ (wh) (ew, ξt)− D̄′

h (wh) (ew, ξt,h)

= D (wh) (eξt) + ∆D1 + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h) .

Furthermore, we �nd using D (w) (eξt) = D̄ (w) (eξt) = 0 and the box quadrature rule with

its remainder that

D (wh) (eξt) + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h) + ∆D1

= D (wh) (eξt) + D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) + ∆D1

= D̄ (wh) (eξt)− D̄ (w) (eξt) + D̄′ (wh) (ew, eξt)− D̄ (wh) (eξt) +D (wh) (eξt)

+∆D1 +∆D4

= −

ˆ 1

0
D̄′ (wh + sew) (ew, eξt) ds+ D̄′ (wh) (ew, eξt) + ∆D1 +∆D3 +∆D4

=

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds+∆D1 +∆D3 +∆D4

= ∆D1 +∆D2 +∆D3 +∆D4.

Combining the di�erent parts, we get the assertion with ∆D = ∆D1+∆D2+∆D3+∆D4.

3.3 Estimation of model and dis
retization error

As last result in this se
tion, we estimate the error J (wr)− J (wh) in
luding the modeling as

well as the dis
retization error in the quantity of interest. We de�ne

er,hw =
(

er,hu , er,hλn
, er,hλt

)

= (ur − uh, λ
r
n − λn,h, λ

r
t − λt,h) ,

er,hz =
(

er,hy , er,hξn
, er,hξt

)

= (yr − yh, ξ
r
n − ξn,h, ξ

r
t − ξt,h) .

Furthermore, we set er,hχc := χc
r − χc

h and er,h
χf := χf

r − χf
h. In addition, we need an analogous

result to Lemma 7:

Lemma 24. It holds

bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+bfr

(

ξrt , e
r,h
u

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

+D (wh)
(

er,hξt

)

= −2D (wh) (ξt,h)− 2∆ (wh) (ξt,h)− 2∆ (wh)
(

er,hz

)

− ∆̄
(

er,hw , er,hz

)

+ 2Rm,h
f

with the remainder term Rm,h
f = Rm,h

χ,1 +Rm,h
χ,2 +Rm,h

Q ,

Rm,h
χ,1 = −

(

ξrt ,
(

χf
r (w

r)− χf
r (wh)

)

(n (wh)λt,h − sr (λn,h)λt,h)
)

0,ΓC

,

Rm,h
χ,2 = −

1

2

[

(

D̄r
)′
(wh)

(

er,hw , ξt,h

)

− D̄′
h (wh)

(

er,hw , ξt,h

)]

Rm,h
Q =

1

2

ˆ 1

0

(

D̄r
)′′′

(

w + ser,hw

)(

er,hw , er,hw , er,hw , ξrt

)

s(s− 1) ds,
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Proof. The de�nition of D̄r
leads to

D̄r (wh) (ξ
r
t )

=
(

ξrt , χ
f
r (n (wh)λt,h − sr (λn,h)λt,h)− sr (λn,h) uh,t

)

0,ΓC

=
(

ξrt ,
(

χf
r (w

r)− χf
r (wh)

)

(n (wh)λt,h − sr (λn,h)λt,h)
)

0,ΓC

+
(

ξrt , χ
f
r (wh) (n (wh)λt,h − sr (λn,h)λt,h)− sr (λn,h) uh,t

)

0,ΓC

= −Rm,h
χ,1 +Dr (wh) (ξ

r
t ) = Dr (wh)

(

er,hξt

)

+Dr (wh) (ξt,h)−Rm,h
χ,1

= Dr (wh)
(

er,hξt

)

−D (wh)
(

er,hξt

)

+Dr (wh) (ξt,h)−D (wh) (ξt,h) +D (wh)
(

er,hξt

)

+D (wh) (ξt,h)−Rm,h
χ,1

= ∆(wh)
(

er,hξt

)

+∆(wh) (ξt,h) +D (wh)
(

er,hξt

)

+D (wh) (ξt,h)−Rm,h
χ,1 .

The trapezoidal rule with its remainder term together with D̄r (wr) (µt) = Dr (wr) (µt) = 0
and the pre
eding 
al
ulations lead to

−∆(wh)
(

er,hξt

)

−∆(wh) (ξt,h)−D (wh)
(

er,hξt

)

−D (wh) (ξt,h) +Rm,h
χ,1

= D̄r (wr) (ξrt )− D̄r (wh) (ξ
r
t )

=

ˆ 1

0

(

D̄r
)′
(

wh + ser,hw

)(

er,hw , ξrt

)

ds

=
1

2

(

D̄r
)′
(wh)

(

er,hw , ξrt

)

+
1

2

(

D̄r
)′
(wr)

(

er,hw , ξrt

)

−Rm,h
Q .

We use equation (15) and

(

D̄r
)′
(wh)

(

er,hw , ξrt

)

=
(

D̄r
)′
(wh)

(

er,hw , er,hξt

)

+
(

D̄r
)′
(wh)

(

er,hw , ξt,h

)

− D̄′
h (wh)

(

er,hw , ξt,h

)

+D̄′
h (wh)

(

er,hw , ξt,h

)

= ∆̄
(

er,hw , er,hξt

)

− 2Rm,h
χ,2 + bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

,

apply (17) to dedu
e the assertion by 
ombining the single terms.

Applying the above presented lemma, we obtain the following error identity for the error

w.r.t. modeling and dis
retization:

Proposition 25. We assume that the third Fré
het derivative of J , J ′′′ : W → L(W,L(W,W ∗)),
exist and that Assumption 1 holds. Then, the error identity

J (wr)− J (wh)

=−∆(wh) (zh) +
1

2
ρ (wh) (ez) +

1

2
ρ∗ (wh, zh) (ew)− C (wh) (ξn,h)−D (wh) (ξt,h)

−∆(wh)
(

er,hz

)

−
1

2
∆̄

(

er,hw , er,hz

)

+Rm,h
J +Rm,h

c +Rm,h
f

(20)

holds for the model and dis
retization error in the quantity of interest. Here, the remainder

terms are given by

Rm,h
J =

1

2

ˆ 1

0
J ′′′

(

wh + ser,hw

)(

er,hw , er,hw , er,hw

)

s(s− 1) ds



3 A posteriori error analysis 20

w.r.t. the quantity of interest J ,

Rm,h
c =

1

2

ˆ

ΓC

ξrne
c,r
χ [λn,h + uh,n − g] + ξn,he

c,r
χ [λrn + urh − g] do

and Rm
f from Lemma 7.

Remark 26. The remainder Rm,h
J is of third order in the error er,hw and equals mainly the

remainders Rm
J from Propositon 9 and R

(3)
J from Proposition 18. The remainder Rm,h

c is of

the same stru
ture as R
(3)
c in Proposition 18.

Proof. The starting point is again the appli
ation of the trapezoidal rule with its remainder

leading to

J (wr)− J (wh) =

ˆ 1

0
J ′

(

wh + ser,hw

)(

er,hw

)

ds

=
1

2
J ′ (wh)

(

er,hw

)

+
1

2
J ′ (wr)

(

er,hw

)

+Rm,h
J .

We now pro
eed as in the proof of Proposition 9. However, we have to take into a

ount that

(11) holds instead of (9). Thus, we obtain by (11)

a
(

er,hu , yr
)

+
(

er,hλn
, yrn

)

0,ΓC

+
(

er,hλt
, yrt

)

0,ΓC

= a
(

er,hu , er,hy

)

+
(

er,hλn
, er,hy,n

)

0,ΓC

+
(

er,hλt
, er,hy,t

)

0,ΓC

= ρ (wh)
(

er,hz

)

+ C (wh)
(

erξn
)

+D (wh)
(

erξt
)

.

The de�ntions of the 
ontinuous dual problem (12-14) and the pre
eding 
al
ulation imply

J ′ (wr)
(

er,hw

)

= a
(

er,hu , yr
)

− bcr

(

ξrn, e
r,h
u

)

+ bfr

(

ξrt , e
r,h
u

)

+
(

er,hλn
, yrn

)

0,ΓC

+ccr

(

ξrn, e
r,h
λn

)

+ cfr

(

ξrt , e
r,h
λn

)

+
(

er,hλt
, yrt

)

0,ΓC

+ dfr

(

ξrt , e
r,h
λt

)

= ρ (wh)
(

er,hz

)

+ C (wh)
(

er,hξn

)

+D (wh)
(

er,hξt

)

−bcr

(

ξrn, e
r,h
u

)

+ bfr

(

ξrt , e
r,h
u

)

+ ccr

(

ξrn, e
r,h
λn

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

.

By (11) and the de�nition of the dual residual ρ∗, we dedu
e

J ′ (wr)
(

er,hw

)

= J ′ (wr)
(

er,hw

)

− a
(

er,hu , yh

)

−
(

er,hλn
, yh,n

)

0,ΓC

−
(

er,hλt
, yh,t

)

0,ΓC

+bch

(

ξn,h, e
r,h
u

)

− bfh

(

ξt,h, e
r,h
u

)

− cch

(

ξn,h, e
r,h
λn

)

− cfh

(

ξt,h, e
r,h
λn

)

− dfh

(

ξt,h, e
r,h
λt

)

−bch

(

ξn,h, e
r,h
u

)

+ bfh

(

ξt,h, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

= −bch

(

ξn,h, e
r,h
u

)

+ bfh

(

ξt,h, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+ρ∗ (wh, zh)
(

er,hw

)
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By the same te
hnique as in the proofs of Proposition 4 and 8 in [42℄, we obtain

ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh)
(

er,hξn

)

= ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ C (wh) (ξ
r
n)

+cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh) (ξn,h)− 2C (wh) (ξn,h)

=

ˆ

ΓC

ξrne
r,h
χc [λn,h + uh,n − g] + ξn,he

r,h
χc [λrn + urh − g] do− 2C (wh) (ξn,h)

= 2Rm,h
c − 2C (wh) (ξn,h) .

All in all, we dedu
e applying Lemma 24

2 (J (wr)− J (wh))

= J ′ (wh)
(

er,hw

)

+ J ′ (wr)
(

er,hw

)

+ 2Rm,h
J

= ρ (wh)
(

er,hz

)

+ ρ∗ (wh, zh)
(

er,hw

)

+ 2Rm,h
J

+ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh)
(

er,hξn

)

+bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+bfr

(

ξrt , e
r,h
u

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

+D (wh)
(

er,hξt

)

= ρ (wh)
(

er,hz

)

+ ρ∗ (wh, zh)
(

er,hw

)

+ 2Rm,h
J + 2Rm,h

c − 2C (wh) (ξn,h)

−2D (wh) (ξt,h)− 2∆ (wh) (ξt,h)− 2∆ (wh)
(

er,hz

)

− ∆̄
(

er,hw , er,hz

)

+ 2Rm,h
f .

Division by 2 then gives the assertion.

4 Numeri
al evaluation of the error identities

The error identities (18), (19), and (20) from Proposition 12, 18 and 25 
annot be evaluated

numeri
ally, be
ause they involve the analyti
 solutions w and z as well as the unknown

remainder terms. The remainder terms R
(2)
J , R

(3)
J , and Rm,h

J are of se
ond and third order

in the error, respe
tively, whi
h implies that they are of higher order and negligible. The

remainder terms with respe
t to the geometri
al 
onta
t 
onditions, R
(2)
c , R

(3)
c and Rm,h

c ,

are of �rst order in the error of the a
tive set. Numeri
al examples substantiate that they

are de
reasing fast. However, a stri
t analysis of there 
onvergen
e properties is missing and

strongly depends on the 
hosen dis
retization. The remainder terms R
(2)
f , R

(3)
f and Rm,h

f
with respe
t to the fri
tion 
onditions 
onsist of terms whi
h are of �rst order in the error

of the fri
tional a
tive set and ones whi
h are of higher order in the error. While it is 
lear

that the se
ond ones 
an be negle
ted, the same is not true for the �rst ones. However,

the remarks for the remainder terms R
(2)
c , R

(3)
c and Rm,h

c also hold here. The remaining

terms ∆(wh)
(

er,hz

)

and

1
2∆̄

(

er,hw , er,hz

)

, whi
h arise in the estimation of the model error,

are of se
ond as well as third order in the error and are negle
ted. The numeri
al results in

Se
tion 5 substantiate that negle
ting the remainder terms is feasible. Beside the remainder

terms, the error identities also in
lude the analyti
 primal and dual solution, whi
h have to be

numeri
ally approximated. The 
orresponding dis
retization dependent operator is denoted

by A. We refer to [3, Se
tion 4.1 and Se
tion 5.2℄ for an overview of possible 
hoi
es and their

mathemati
al justi�
ation under strong smoothness assumptions.
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All in all, we obtain the primal error estimator

J (w)− J (wh) ≈ ηp := ρ (wh) (A (zh)− zh)− C (wh) (ξn,h)−D (wh) (ξt,h) ,

the primal dual one

J (w)− J (wh) ≈ η :=
1

2
ρ (wh) (A (zh)− zh) +

1

2
ρ∗ (wh, zh) (A (wh)− wh)

−C (wh) (ξn,h)−D (wh) (ξt,h) ,

and the model as well as dis
retization error estimator

J (wr)− J (wh) ≈ −∆(wh) (zh) + η = ηm + η.

Up to this point, we have not spe
i�ed any further assumptions on the dis
retization.

Hen
eforth, we 
arry out further steps to obtain 
on
rete error estimators for a mixed dis-


retization. It was �rst proposed for geometri
al 
onta
t problems in [23℄ and extended to

fri
tional 
onta
t problems in [24, 25℄ as well as higher order methods in [48℄. In the aforemen-

tioned referen
es, a S
hur-
omplement ansatz is used to solve the dis
rete problems. Here,

we use a primal-dual-a
tive-set-strategy, whi
h was developed for this dis
retization approa
h

in [9℄. We outline the dis
retization in more detail here: Let Th be a �nite element mesh

of Ω with mesh size h and let EC be a �nite element mesh of ΓC with mesh size H, respe
-

tively. The number of mesh elements in Th is denoted by MΩ and in EC by MC . We use

line segments, quadrangles or hexahedrons to de�ne Th or EC . But this is not a restri
tion,

triangles and tetrahedrons are also possible. Furthermore, let ΨT : [−1, 1]d → T ∈ Th and

ΦE : [−1, 1]d−1 → E ∈ EC be a�ne and d-linear transformations. We de�ne

Vh :=
{

v ∈ V
∣

∣ ∀T ∈ Th : vi|T ◦ΨT ∈ Q1

}

,

ΛH :=
{

µ ∈ L2 (ΓC)
∣

∣ ∀E ∈ EC : µ|E ◦ΦE ∈ P0

}

,

Λn,H :=
{

µn ∈ ΛH | ∀E ∈ EC : µn|E ≥ 0
}

,

Λt,H (λn,H) :=

{

µt ∈ Λd−1
H

∣

∣

∣
∀E ∈ EC : µt|E ≤

1

|E|

ˆ

E
s (λn,H) do

}

,

where Q1 is the set of d-linear fun
tions on [−1, 1]d and P0 the set of pie
ewise 
onstant basis

fun
tions for the Lagrange Multiplier on [−1, 1]d−1
. The dis
rete saddle point problem is to

�nd (uh, λn,H , λt,H) ∈ Vh × Λn,H × Λt,H su
h that

a (uh, vh) + (λn,H , vh,n)0,ΓC
+ (λt,H , vh,t)0,ΓC

= 〈l, vh〉 , (21)

(µn,H − λn,H , uh,n − g)0,ΓC
+ (µt,H − λt,H , uh,t)0,ΓC

≤ 0, (22)

holds for all vh ∈ Vh, all µn,H ∈ Λn,H , and all µt,H ∈ Λt,H . It is well-known that we

obtain a stable dis
retization if a dis
rete inf-sup 
ondition is ful�lled. In the 
ase of quasi-

uniform meshes the dis
rete inf-sup 
ondition holds if the quotient of the mesh sizes h/H
is su�
iently small, 
f., for instan
e, [48℄. If di�erent mesh sizes h and H are used, the

Lagrange multiplier has to be de�ned on a 
oarser mesh leading to a higher implementational


omplexity than using a surfa
e mesh EC inherited from the interior mesh Th. In our numeri
al

experiments, we observe os
illating Lagrange multipliers for h = H and stable s
hmes for

H = 2h, whi
h 
orresponds to the results in the mentioned referen
e. Consequently, the

numeri
al experiments in Se
tion 5 are based on meshes with H = 2h.
Our de�nition of the dis
rete dual solution is motivated by the primal-dual-a
tive-set-

strategy to solve the dis
rete problem (21-22) outlined in [9, Se
tion 5.4℄. There, the a
tive
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and ina
tive sets are based on the surfa
e mesh EC . Consequently, we de�ne the following

dis
rete indi
ator fun
tions for E ∈ EC :

χc
E (wh) :=

{

1, if

´

E λn,H + uh,n − g do > 0,

0, if

´

E λn,H + uh,n − g do ≤ 0,

χf
E (wh) :=

{

1, if

´

E s (λn,H)− ||E|λt,H + uh,t| do < 0,

0, if

´

E s (λn,H)− ||E|λt,H + uh,t| do ≥ 0.

The dis
rete bilinear forms are then given by

b̄ch (ωn, v) :=
∑

E∈EC

ˆ

E
ωnχ

c
Evn do,

c̄ch (ωn, µn) :=
∑

E∈EC

ˆ

ΓC

ωn [1− χc
E ]µn do,

b̄fh (ωt, v) :=
∑

E∈EC

ˆ

E
ωt

[

χf
Eλt,H

(

n′ (wh)
)⊤

− s (λn,H) I
]

vt do,

c̄fh (ωt, µn) := −
∑

E∈EC

ˆ

E
ωt (s)

′ (λn,H) (µn)
[

χf
Eλt,h + uh,t

]

do,

d̄fh (ωt, µt) :=
∑

E∈EC

ˆ

E
ωt [max {s (λn,H) , n (wh)} I − s (λn,H) I]µt do

+
∑

E∈EC

ˆ

E
ωtχ

f
Eλt,H

(

n′ (wh)
)⊤
µt do.

The dis
rete dual problem is to �nd a dual solution zh = (yh, ξn,H , ξt,H) ∈ Vh × ΛH × Λd−1
H

with

a (vh, yh)− b̄ch (ξn,H , vh) + b̄fh (ξt,H , vh) = J ′
u (wh) (vh) ,

(µn,H , yh,n)0,ΓC
+ c̄ch (ξn,H , µn,H) + c̄fh (ξt,H , µn,H) = J ′

λn
(wh) (µn,H) ,

(µt,H , yh,t)0,ΓC
+ d̄fh (ξt,H , µt,H) = J ′

λt
(wh) (µt,H) ,

for all (yh, µn,H , µt,H) ∈ Vh × ΛH × Λd−1
H . We should remark that we use the bilinear forms

b̄ch, b̄
f
h, c̄

c
h, c̄

f
h, and d̄

h
h instead of bch, b

f
h, c

c
h, c

f
h, and d

h
h, sin
e the dual problem using bch, b

f
h, c

c
h,

cfh, and d
h
h is not ne
essaryly well posed.

(a) Mesh with pat
h stru
ture (b) Corresponding pat
h mesh

Fig. 2: Illustration of the pat
h stru
ture of the �nite element mesh

In this arti
le, we use higher order re
onstru
tions of the dis
rete solutions for the approx-

imation of w and z, be
ause this pro
edure is 
omputationally 
heaper than the 
al
ulation
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b

b

b
b

b

b

b

b

b

b

ξH

I
(1)
H

(ξH)

Fig. 3: Illustration of i
(1)
2H

of higher order solutions or extrapolation te
hniques. The primal and dual displa
ement u
and y is approximated using pat
hwise d-quadrati
 re
onstru
tion, 
f., e.g., [3, Se
tion 4.1℄

for this well known pro
edure. Let i
(2)
2h be the 
orresponding interpolation operator. For

the evaluation of i
(2)
2h , we require a spe
ial stru
ture of the adaptively re�ned �nite element

mesh. This so-
alled pat
h-stru
ture is obtained through the re�nement of all 
hildren of a

re�ned element, provided that one of these 
hildren is a
tually marked for re�nement. This

property is illustrated in Figure 2. For the higher order re
onstru
tion of the Lagrange mul-

tipliers, we use a pat
hwise linear interpolation i
(1)
2H , it is illustrated in Figure 3. We de�ne

AI ((vh, µn,H , µt,H)) :=
(

i
(2)
2h vh, i

(1)
2Hµn,H , i

(1)
2Hµt,H

)

and obtain the error estimators

ηp := ρ (wh)
(

AI (zh)− zh
)

− C (wh) (ξn,h)−D (wh) (ξt,h) ,

η :=
1

2
ρ (wh)

(

AI (zh)− zh
)

+
1

2
ρ∗ (wh, zh)

(

AI (wh)− wh

)

−C (wh) (ξn,h)−D (wh) (ξt,h) .

To utilize the error estimators ηp and η in an adaptive re�nement strategy, we have

to lo
alize the error 
ontributions given by the residuals with respe
t to the single mesh

elements T ∈ Th leading to lo
al error indi
ators ηT . Here, the �ltering te
hnique developed

in [13℄ is applied, whi
h implies less implementational e�ort than the standard approa
h

using integration by parts outlined for instan
e in [3℄. An alternative lo
alization method was

re
ently proposed in [45℄. The terms 
onne
ted to C and D are added to the adja
ent volume


ells to the boundary 
ells.

5 Numeri
al results

This se
tion is devoted to numeri
al tests of the presented error estimator. At �rst, we 
onsider

an example with known analyti
al solution in order to 
he
k the a

ura
y. Afterwards, a

more 
omplex example is presented, where we apply a model adaptive algorithm. For results


on
erning 3D examples from sheet-bulk-metal-forming, we refer to [6, 46℄.

5.1 First example: Known analyti
al solution

At �rst, we 
onsider a 2D Signorini problem with Tres
a fri
tion, whose analyti
al solution is

known. It is a modi�ed version of an example used in [42, 43℄. Let Ω := (−3, 0)×(−1, 1) be the
domain. We pres
ribe homogeneous Diri
hlet boundary 
onditions on ΓD := {−3} × [−1, 1]
and homogeneous Neumann boundary 
onditions on ΓN := (−3, 0) × {−1, 1}. The possible


onta
t boundary is denoted by ΓC := {0} × [−1, 1]. The material law is given by Hooke's

law with Young's modulus E := 10 and Poisson number ν := 0.3 using the plain strain

assumption. By L the number of uniform re�nements based on a 
oarse initial triangulation
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(a) Plot of uh in Ω and the obsta
le

(b) λn,H (
) λt,H

Fig. 4: Numeri
al solution of the �rst example for MΩ = 24576 and MC = 64
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MΩ L Erel (Ja,1) Ieff (Ja,1, ηp) Ieff (Ja,1, η)

384 0 1.28466 · 10−2 −4.5051 −8.4898
1536 1 1.28322 · 10−2 1.25195 1.31199
6144 2 3.48578 · 10−3 1.01771 1.02354

24576 3 8.89653 · 10−4 1.00401 1.00517
98304 4 2.22857 · 10−4 1.00120 1.00179
393216 5 5.57355 · 10−5 1.00042 1.00068

1572864 6 1.39339 · 10−5 1.00017 1.00029

Tab. 2: Results of the presented error estimators for Ja,1

MΩ L Erel (Ja,2) Ieff (Ja,2, ηp) Ieff (Ja,2, η)

384 0 6.09378 · 10−1 0.48802 0.58637
1536 1 −6.2106 · 10−2 −0.1867 −0.5573
6144 2 8.29963 · 10−3 0.19384 0.54481

24576 3 4.43956 · 10−3 0.44977 0.95398
98304 4 1.09222 · 10−3 0.45098 0.98520
393216 5 2.71978 · 10−4 0.45124 0.99497
1572864 6 6.79232 · 10−5 0.45128 0.99814

Tab. 3: Results of the presented error estimators for Ja,2

is denoted. The analyti
al solution is 
alled u(x, y) := (u1(x, y), u2(x, y))
⊤
, where

u1(x, y) :=

{

−(x+ 3)2(y − x2

18 − 1
2)

4(y + x2

18 + 1
2 )

4, |y| < x2

18 + 1
2 ,

0, else,

u2(x, y) :=

{

24
π sin

(

4π(x+3)
3

)

[

(y − 1
2)

3(y + 1
2 )

4 + (y − 1
2)

4(y + 1
2)

3
]

, |y| < 1
2 ,

0, else.

The volume for
e is then given by f := −div(σ(u)) and the obsta
le by g(y) := u1(0, y). The
fri
tion law is Tres
a with s = 0.1. The dis
rete solution wh is illustrated in Figure 4.

We 
onsider the quantities of interest

Ja,1(u) :=

ˆ

Ω
ω(x) |u|2 dx,

Ja,2 (λn) :=

ˆ 1

−1
(0.5 tanh (20(0.25 − |y − 0.125|)) + 0.5) λ2t (y) dy,

where ω(x) = 0.5 (tanh(20(d − |x− (−0.5, 0) |)) + 1) is a 
ut o� fun
tion w.r.t. the dis


B0.5 ((−0.5, 0)). The relative dis
retization error w.r.t. the quantity of interest is given by

Erel (J) :=
J (u, λn)− J (uh, λn,H)

J (u, λn)
,

and the e�e
tivity index by

Ieff(J, η̃) :=
J (u, λn)− J (uh, λn,H)

η̃
.

In Table 2, the results for the quantity of interest Ja,1 are listed. We found by analyzing the

data that the e�e
tivity indi
es seem to 
onverge of order h2 to 1 for ηp and η, whi
h is almost

optimal. When regarding Ja,2, see Table 3, we observe an almost 
onstant e�e
tivity index
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(a) Plot of uh in Ω and the obsta
le

(b) λn,H (
) λt,H

Fig. 5: Numeri
al solution of the se
ond example for MΩ = 24576 and MC = 64

of 0.45 for ηp. However, the e�e
tivity index is very good. In 
ontrast to ηp, the e�e
tivity

index for η seems to 
onverges to 1 with order h2. From the numeri
al experiments in [43℄, we

know that i
(1)
2Hλn,H is not of higher order in the integral over ΓC . But, in this approa
h, the


ontribution of the terms involving i
(1)
2H is so small that we 
ould not observe this behavior

on the 
onsidered meshes. Consequently, we obtain an a

urate but not asymptoti
ally exa
t

error estimator. It is one advantage of this approa
h that it is su�
ient to work with the

higher order re
onstru
tion to obtain reasonable results.

5.2 Se
ond example: Adaptivity

In the last se
tion, we have examined the a

ura
y of the error estimator. Now, we address

the adaptive te
hniques. We use the same domain, subdivision of the boundary, and material

law as above. The volume for
e is set to zero. The gap fun
tion is given by 0.1 (y − 1) (y + 1).
We 
hoose the fri
tion law of Betten s3 with the paramters CT = 0.1, F = 0.4, and n = 3,

f. Table 1. The solution is illustrated in Figure 5, where we show the von Mises equivalent

stress

σM,2(σ, σe) :=

√

σ211 + σ222 + 3σ221
σe

with σe = 1. The regularity of the problem is distorted by three di�erent sour
es: We observe

stress peaks in the left 
orners of the domain, where the Diri
hlet boundary 
onditions 
hange
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Fig. 6: Comparison of adaptive and uniform re�nement for the quantity of interest J1

Fig. 7: Adaptive mesh in the 7th iteration for the quantity of interest J1

MΩ L Erel Ieff
384 1 1.51570 · 10−1 −0.4748
456 2 −2.5789 · 10−2 0.10037
564 3 −1.6315 · 10−2 0.11956
720 4 5.16983 · 10−2 −1.2446
1224 5 2.29215 · 10−2 −4.3496
1800 6 2.26209 · 10−2 7.17555
3624 7 9.97274 · 10−3 3.98811
7224 8 5.02568 · 10−3 1.50262

15432 9 2.31588 · 10−3 1.72271
29016 10 1.25329 · 10−3 1.49387
59868 11 6.02395 · 10−4 1.63777
102840 12 3.46647 · 10−4 1.44213
205392 13 1.78526 · 10−4 1.44686
401856 14 8.86439 · 10−5 1.48696
699960 15 5.36923 · 10−5 1.46484

Tab. 4: Detailed results of the adaptive algorithm for the se
ond example
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L Erel Ieff Model

1 1.00000 · 100 31.8617

2 −9.4015 · 10−1 −0.7837

3 1.51606 · 10−1 0.691113

4 4.50757 · 10−1 −0.0350

5 6.50010 · 10−2 −0.5200

6 8.74934 · 10−2 −0.6447

7 7.10923 · 10−8 −1.5836

Tab. 5: Results of the model adaptive algorithm for MΩ = 98304

to Neumann boundary 
onditions. Furhtermore, the transition zones between 
onta
t to non-


onta
t as well as between sti
king and sliding are problemati
.

In the �rst step, we test the mesh adaptive algorithm. We 
onsider the quantity of interest

J1 (u, λt) =

ˆ

ΓC

λtut do,

whi
h 
orresponds to the dissipated energy in this example. We solve this problem based

on a uniform mesh re�nement and obtain a referen
e value J1,ref = 3.9999331493 · 10−5
by

extrapolation over all 
al
ulated values of J1. We use J1,ref to determine the relative error Erel

and the e�e
tivity index Ieff approximately. The error on the di�erent meshes is plotted in

Figure 6, where we observe a 
hange of the sign of the error between the 4th and 5th iteration.

We 
ompare the uniform re�nement with an adaptive algorithm based on η and an optimal

mesh strategy, see [44℄. We �nd a better 
onvergen
e behavior of the adaptive algorithm. The

adaptive mesh is outlined in Figure 7, where the left 
orners of the domain and the transition

zones between 
onta
t to non-
onta
t as well as between sti
king and sliding are well resolved

as expe
ted. The e�
ien
y indi
es of the error estimator are listed in Table 4 and are around

1.4.

5.3 Model adaptivity

We 
onsider a model adaptive algorithm in this se
tion. We test it with the example of

the last se
tion for a uniform mesh of MΩ = 98304 elements. In the initial 
on�guration,

we assume no fri
tion on the 
omplete 
onta
t boundary, i.e. s ≡ s0 on ΓC . We solve the

problem and estimate the model error by the estimator ηm. Afterwars, we 
hoose in the 
ells

with the largest error a better model, i.e. in
rease the model index by 1. Here, a fra
tion of

25% is used. The results are outlined in detail in Table 5. We obtain in the middle of the


onta
t zone Tres
a fri
tion and on the boundary of the 
onta
t zone the model of Betten.

This 
orreponds to the expa
tations, sin
e λn is large in the middle of the 
onta
t zone and

small at the boundary.

In a se
ond step, we 
ombine the model adaptive algorithm with the mesh adaptive one.

Here, we use an equilibration strategy. If |ηm| ≥ Ce |η| with an equilibration 
onstant Ce ≥ 1,
we 
ondu
t a model adaptive step with a re�nement fra
tion of 50%. If |η| ≥ Ce |ηm|, the mesh

is adaptively re�ned. If Ce |η| ≥ |ηm| ≥ C−1
e |η|, we improve the model �rst and adaptively

re�ne the mesh afterwards. The detailed results of the algorithm for the example of the
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L MΩ Erel Ieff Model

1 384 1.00000 · 100 −12.334

2 384 1.51579 · 10−1 0.54735

3 480 −3.1565 · 10−2 −0.2684

4 660 −4.0661 · 10−2 −3.4936

5 876 −1.0422 · 10−2 −0.2474

6 876 6.9472 · 10−1 −0.0742

7 876 4.01757 · 10−2 −5.3661

8 876 4.00031 · 10−2 −5.7265

9 1308 2.82515 · 10−2 −31.910

10 1908 1.97301 · 10−2 2.47728

11 4116 8.48886 · 10−3 2.62066

12 7116 4.80574 · 10−3 1.08973

13 14112 2.27704 · 10−3 1.05157

14 26736 9.95986 · 10−4 0.83356

15 61104 2.32142 · 10−4 0.47734

16 61104 4.50727 · 10−3 1.01859

17 94260 4.32043 · 10−3 0.97587

18 94260 3.83807 · 10−4 1.18358

19 230868 1.52591 · 10−4 1.24280

20 433512 8.27891 · 10−5 1.17654

21 943560 3.80197 · 10−5 1.25396

Tab. 6: Results of the mesh and model adaptive algorithm for the quantity of interest J1
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Fig. 8: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform re�nement

for the quantity of interest J1

Fig. 9: Adaptive mesh in the 12th iteration of the model and mesh adaptive algorithm
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L MΩ Erel Ieff Model

1 384 −6.5283 · 10−4 0.05562

2 480 4.15588 · 10−3 3.88737

3 552 1.10060 · 10−3 −1.4788

4 1032 3.80930 · 10−4 4.00148

5 3432 −1.4927 · 10−4 3.91706

6 3432 −9.5859 · 10−4 3.28939

7 8160 −9.8240 · 10−4 3.42586

8 8160 −1.6305 · 10−4 0.72628

9 30936 −1.4366 · 10−4 0.79535

10 30936 −2.8915 · 10−5 −0.0136

11 30936 6.27223 · 10−6 −1.0887

12 119520 1.81614 · 10−6 0.67998

Tab. 7: Results of the mesh and model adaptive algorithm for the quantity of interest J2

last se
tion are given in Table 6. We observe the same model distribution as for the model

adaptive algorithm. In the �rst iterations, the model is roughly 
hosen and afterwards only

small 
orre
tions at the boundary of the 
onta
t zone are 
ondu
ted. We 
ompare the mesh

adaptive, the mesh and model adaptive, and the uniform approa
h in Figure 8. We see that

the mesh as well as the mesh and model adaptive algorithm lead �nally to similar results

with a better a

ura
y than the uniform approa
h. This observation is substantiate by the


omparison of the generated adaptive meshes, 
f. Figure 7 and 9. They only show small

deviations.

The quantity of interest J1 is fo
used on the fri
tional for
es and the tangential dis-

pla
ement on the 
onta
t boundary. Thus it is lo
ated on the 
onta
t boundary. To test a


ompletely di�erent setting, we 
onsider the quantity of interest

J2(u) :=

ˆ

Ω
ω̄(x) |u|2 dx,

where ω̄(x) = 0.5 (tanh(20(d − |x− (−2.5, 0) |)) + 1). Here, J2 is lo
ated at the left end of

Ω. In Table 7, the results of the model and mesh adpative algorithm are listed. In 
ontrast

to the results 
on
erning J1, the model is 
hanged later and Coulomb's model is used more

frequently. The adaptive mesh in the 9th iteration is depi
ted in Figure 11. Here, more

re�nements in the middle and in the left 
orners of the domain are found. The results of

the three di�erent re�nements approa
hes are 
ompared in Figure 10. The mesh and model

adaptive algorithm performs best.
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Fig. 10: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform re�ne-

ment for the quantity of interest J2

Fig. 11: Adaptive mesh in the 9th iteration of the model and mesh adaptive algorithm for the

quantity of interest J2



6 Con
lusions and outlook 34

6 Con
lusions and outlook

We have derived goal oriented a posteriori error estimates with respe
t to the dis
retization

as well as model error for dis
retizations of fri
tional 
onta
t problems in this arti
le. The

presented approa
h leads to an a

urate estimates even using higher order re
onstru
tion,

although it is not asymptoti
ally exa
t. Furthermore, it is based on a linear dual problem

and dire
tly measures the error in the fri
tional 
onta
t 
onditions, whi
h is ne
essary for

the estimation of the model error. However, it is not 
lear, whether the remainder terms

are of higher order or not. Numeri
al results substantiate the assumption that they are of

higher order. However, a pre
ise analysis is a topi
 of further resear
h. A further 
ontent is

the extension to dynami
 
onta
t problems. Espe
ially here, the pre
ise 
onsideration of the

error in the 
onta
t 
onditions is needed to a

urately resolve impa
t phenomena.
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