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Abstrat

The artile fouses on adaptive �nite element methods for fritional ontat problems. The approah

is based on a reformulation of the mixed form of the underlying Signorini problem with frition as

a nonlinear variational equation using nonlinear omplimentarity (NCP) funtions. The usual dual

weighted residual (DWR) framework for a posteriori error estimation is applied. However, we have to

take into aount the nonsmoothness of the problem formulation. Error identities for measuring the

disretization as well as the model error with respet to a model hierarhy of frition laws are derived

and a method for the numerial evaluation of them is proposed. The estimates are utilized in an adap-

tive framework, whih balanes the disretization and the model error. Several numerial examples

substantiate the auray of the proposed estimates and the e�ieny of the adaptive method.

Keywords: Signorini's problem with frition, mixed �nite element method, goal-oriented a posteriori

error estimation, mesh and model adaptivity

1 Introdution

In the modelling of many physial or engineering proesses, ontat problems with frition

frequently our, see, for instane, [20, 32℄. Hene, the development of e�ient and aurate

numerial solution tehniques for fritional ontat problems has been of speial interest in

the last deades. One main ingredient is given by e�ient solution algorithms for the arising

disrete problems. Furthermore, adaptive algorithms lead to an optimal onvergene behavior

of the disretizations, whih annot be ahieved by uniform methods due to the missing regu-

larity of fritional ontat problems. They are based on aurate a posteriori error estimators,

whih should ontrol the error in user-de�ned quantities of interest involving in our ase the

ontat and fritional fores.

In literature, the obstale problem, as model ontat problem, is frequently studied. A

posteriori error estimates in the energy norm are derived, for instane, in [2, 4, 15, 18, 28,

31, 37, 54℄ using di�erent tehniques. Even the onvergene of adaptive algorithms in the

ontext of obstale problems is proven in [17, 16, 50℄. Signorini's problem is studied, e.g.,

in [19, 26, 35, 47, 55℄, where a posteriori error estimates in the energy norm are disussed.

Moreover, multibody ontat problems are in the fous of [33, 57℄. The dual weighted residual

(DWR) method, see, e.g., [3, 5℄ is a popular approah to derive a posteriori error estimates,

whih ontrol the error in user-de�ned quantities of interest. The approah is based on the

representation of the quantity of interest by the solution of a so-alled dual problem. Sim-

ilar arguments are used in [40, 41℄. The DWR framework was applied to ontat problems

in [10, 11℄ for the �rst time. The results are summarized in [53℄. Here, a dual variational

inequality is used to represent linear quantities of interest in the displaement. In [49℄, an
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alternative proedure is used, whih is based on a linear dual problem representing also non-

linear quantities of interest in the displaement. It is extended to fritional ontat problems

and quantities of interest also in the Lagrange multiplier in [43℄. There, a linear mixed dual

problem, whih does not depend on the primal problem, is used to represent the quantities

of interest in the displaement as well as the Lagrange multiplier, whih oinides with the

ontat fores. This approah also leads to an improved loalization of the error estimate.

In both approahes, the (fritional) ontat onditions lead to extra additive terms in the

estimates, whih is some produt of the dual solution and the error of the primal solution.

However, the estimates do not diretly measure the error in the (fritional) ontat onditions

and the aurate numerial approximation of the extra terms inlude several di�ulties, whih

lead to involved and numerially ostly algorithms. In [42℄, an approah is presented, whih

overomes these drawbaks for Signorini's problem. Its starting point is a reformulation of

Signorini's problem in mixed formulation as a nonlinear and nonsmooth variational equality

based on a nonlinear omplementarity (NCP) funtion, see, for instane, [27℄. Here, the dual

problem is also a linear mixed problem. However, it is determined by the ative and ina-

tive set of the primal problem. The usual error identites an be derived based on the DWR

framework. However, the nonsmoothness of the underlying problem leads to remainder terms,

whih are of �rst order in the error of the disrete ative set. Here, we extend this approah

to fritional ontat problems. Sine the NCP funtion for frition inludes ombinations of

nonlinear funtions in ontrast to the one for ontat, the derivation is more omplex and

leads to several remainder terms. The basi idea is to seperate the smooth and nonsmooth

parts using �xed ative sets. The results presented in this artile an be applied on a wide

range of disretization shemes. For mixed disretization shemes like [24, 30℄, the appliation

of the developed framework is straight forward. If semi-smooth Newton methods are used for

solving the disrete ontat problem, the dual problem oinide with the transposed system

of the last Newton step. In displaement based disretization shemes like [8, 34, 58℄, an

approximation to the Lagrange multiplier has to be alulated in a post proessing step, f.

e.g. [15℄. The derived error identities annot be evaluated numerially. Thus, a numerial

approximation sheme depending on the di�erent disretization approahes has to be realized.

We exemplify suh a strategy for the mixed disretization introdued in [24℄.

The performane of the solution algorithm of fritional ontat problems depends on the

hosen frition model. One an save a large amount of omputation time and gain a more

stable algorithm by hoosing a di�erent model. The idea is now to selet the model out

of a prede�ned model hierarhy based on an a posteriori error estimate orresponding to the

desired auray. In literature, one �nds only few ontributions to model adaptive algorithms.

Dimension adaptivity is onsidered in [1, 7, 12, 51, 52℄. In these papers, volume elements are

ombined with shells or plates. The automati seletion of the loal model is one subjet

in [38, 39℄, where heterogeneous linear elasti models and their homogenization are inluded

in the model hierarhy. The underlying a posteriori error estimates inlude the error in

the energy norm as well as in linear quantities of interest. Models for di�erent physial

proesses are adaptively oupled in [36℄ by means of problems from eletroardialogy. The

basi DWR idea is extended to ontrol modelling errors in [13℄. Here, the model error is

basially given by entering the solution to the oarse model into the �ne one weighted by

the dual solution. In [13℄, di�usion-reation-equations with highly osillating oe�ents are

onsidered. Further appliations are given by time dependent problems in [14℄ as well as by

problems from elastiity in [22℄. In this artile, we use the ideas from [13℄ to derive a posteriori

estimates of the model error with respet to di�erent frition laws, where the nonsmoothness

of the underlying problems ompliates the derivation. In the model adaptive algorithm, we

globally balane the model and the disretization error, whih annot be done loally due to

the struture of the problem.
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The artile is strutured as follows: In Setion 2, we introdue the strong and the mixed

formulation of Signorini's problem with frition as well as the reformulation as a nonlinear

variational equation. Furthermore, the assumptions on the model adaptive disretization are

formulated. Setion 3 fouses on the derivation of the error identities involving the model as

well as the disretization error. At �rst, we onsider the model and the disretization error,

seperately. Afterwards, an identity for both is derived. In Setion 4, we outline the ideas for

the numerial approximation of the error identites and exemplify them for a onrete mixed

disretization. Setion 5 is devoted to numerial results, whih substantiate the auray of

the presented error estimates and the e�ieny of the adaptive shemes. We onlude the

artile with a disussion of the results and an outlook on further tasks.

2 Problem formulation

In this setion, we introdue the ontinuous problem formulation and a general model adaptive

disretization.

2.1 Continuous problem formulation

We onsider Signorini's problem with nonlinear frition laws on domains Ω ⊂ Rd
, d = 2, 3 with

su�iently smooth boundary Γ := ∂Ω. Homogeneous Dirihlet boundary onditions are as-

sumend on ΓD ⊂ Γ, where ΓD is losed with positive measure. The possible ontat boundary

is given by ΓC ⊂ Γ\ΓD with ΓC ( Γ\ΓD. Furthermore, we have the part ΓN = Γ\ (ΓD ∪ ΓC),
where Neumann boundary onditions are presribed. The usual Sobolev spaes are denoted

by L2(Ω), H l(Ω) with l ≥ 1, and H1/2(ΓC). We set H1
D(Ω) :=

{

v ∈ H1(Ω) | γ(v) = 0 on ΓD

}

and V :=
(

H1
D (Ω)

)d
with the trae operator γ. The topologial dual spae of H1/2 (ΓC)

is given by H̃−1/2 (ΓC) with the norms ‖ · ‖−1/2,ΓC
and ‖ · ‖1/2,ΓC

, respetively. The L2
-

salar produts on ω ⊂ Ω and Γ′ ⊂ Γ are denoted by (·, ·)0,ω and (·, ·)0,Γ′
. The linear and

bounded mapping γC := γ|ΓC
: H1

D(Ω) → H1/2 (ΓC) is surjetive due to the assumptions on

ΓC , see [32, page 88℄. We de�ne vn := γC(v)n and vt,j := γC(v)tj , where n denotes the

vetor-valued funtion desribing the outer unit normal vetor with respet to Γ and t the
k× (k− 1)-matrix-valued funtion ontaining the tangential vetors. In the following, we use

the inequality symbols ≥ and ≤ for funtions in L2 (ΓC), where the symbols are de�ned as

�almost everywhere�. We set H
1/2
+ (ΓC) :=

{

v ∈ H1/2 (ΓC)
∣

∣ v ≥ 0
}

. The dual one of H
1/2
+ (ΓC)

is Λn :=
{

µ ∈ H̃−1/2 (ΓC)
∣

∣

∣
∀v ∈ H

1/2
+ (ΓC) : 〈µ, v〉 ≥ 0

}

. Furthermore, we set

Λt (λ
r
n) :=

{

µ ∈
(

H̃−1/2 (ΓC)
)d−1

∣

∣

∣

∣

〈µ, vt〉 ≤ 〈sr (λrn) , |vt|〉 , vt ∈
(

H
1/2 (ΓC)

)d−1
}

with the eulidian norm |·|. Here, sr : Λn → Λn denotes the possible nonlinear frition law.

The index r stands for referene frition law, its meaning will be leari�ed in the disussion of

the modell adaptive approah. For a given displaement �eld v ∈ V , the linearized strain ten-

sor is de�ned as ε(v) := 1
2

(

∇v + (∇v)⊤
)

and the stress tensor as σ(v)ij := Cijklε(v)kl desrib-
ing a linear-elasti material law with Cijkl ∈ L∞(Ω), Cijkl = Cjilk = Cklij and Cijklτijτkl ≥ κτ2ij
for τ ∈ L2(Ω)k×k

sym and a κ > 0. We de�ne σn := σn, σnn := n⊤σn, σnt,l := t⊤I σn.
The strong formulation of Signorini's problem with frition is to �nd a displaement �eld

ur ∈ V ∩H2 (Ω) suh that

− div (σ (ur)) = f in Ω, σn (u
r) = b on ΓN , (1)

urn − g ≤ 0, σrnn ≤ 0, σrnn (u
r
n − g) = 0 on ΓC , (2)

|σrnt| ≤ sr (σrnn) with

{

|σrnt| < sr (σrnn) ⇒ urt = 0
|σrnt| = sr (σrnn) ⇒ ∃ζ ∈ R≥0 : u

r
t = −ζσrnt

}

on ΓC . (3)
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Formula Name

s0 (σnn) = 0 Frition less ontat

s1 (σnn) = CT Tresa frition with a onstant CT > 0
s2 (σnn) = −Fσnn Coulomb frition with a onstant F > 0

s3 (σnn) = CT
n

√

tanh
((

−Fσnn

CT

)n)

Frition law of Betten with n ∈ N

Tab. 1: Some examples of frition laws

Tresca

Coulomb

Betten (n = 5)

|σnn|

|σ
n
t|

CT

Fig. 1: Illustration of di�erent frition laws

The equilibrium equation of linear elastiity is noted in (1), where the volume and surfae

loads are spei�ed by f and b. In the following weak formulation, we assume f ∈
(

L2(Ω)
)d
,

b ∈
(

L2 (ΓN )
)d
. The geometrial ontat onditions are desribed in (2). The possible ontat

boundary ΓC is parametrized by a su�iently smooth funtion ϕ : Rd−1 → R suh that,

without loss of generality, the geometrial ontat ondition for a displaement �eld v in the

d-th omponent is given by ϕ(x)+vd(x, ϕ(x)) ≤ ψ(x1+v1(x, ϕ(x)), . . . , xd−1+vd−1(x, ϕ(x)))
with x := (x1, . . . , xd−1) ∈ Rd−1

. The su�iently smooth funtion ψ desribes the surfae

of the rigid obstale. The linearization, presented for instane in [32, Chapter 2℄, of this

ondition results in vn ≤ g in (2) with g(x) := (ψ(x) − ϕ(x))(1 + (∇ϕ(x))⊤∇ϕ(x))−1/2
. In

the weak formulation, we assume g ∈ H1/2(ΓC). The seond ondition, a sign ondition on

the outer normal stress, ensures that only pressure ours. By the omplementary ondition

in (2), we have either pressure or no ontat. The fritional onditions are denoted in (3).

They indiate that stiking ours if the magnitude of the tangential fores is below a ritial

value given by the frition law sr. If this ritial value is reahed, we obtain sliding, where the

sliding diretion orresponds to the negative diretion of the tangential fores. Some examples

of frition laws are given in Table 1, see for instane [59℄. They are illustrated in Figure 1.

From a physial point of view, Tresa's frition law �ts well for high ontat pressure, while

Coulomb's law is aurate for low ontat pressure. If low as well as high ontat pressures

our, we need a nonlinear model handling both regions well. An example for suh a type of

frition law is given by Betten's law. For our analysis, we assume that the onsidered frition

laws are two times ontinuously di�erentiable w.r.t. λrn.
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For the a posteriori error analysis, we use a mixed formulation of (1-3). The bilinear form of

linear elastiity is given by a(w, v) := (σ(w), ε(v))0 on V ×V , whih is symmetri, ontinuous

and due to Korn's inequality V -ellipti. The volume and surfae loads are represented by

〈ℓ, v〉 := (f, v)0 + (b, vN )0,ΓN
. A funtion wr := (ur, λrn, λ

r
t ) ∈ V × Λn × Λt (λ

r
n) is a saddle

point of the fritional ontat problem (1-3) if and only if,

a (ur, v) + 〈λrn, vn〉+ 〈λrt , vt〉 = 〈ℓ, v〉, (4)

〈µn − λrn, u
r
n − g〉+ 〈µt − λrt , u

r
t 〉 ≤ 0, (5)

for all v ∈ V , all µn ∈ Λn, and all µt ∈ Λt. If some smoothness assumptions are ful�lled, it

holds λrn = −σrnn and λrt = −σrnt. The existene and uniqueness of the solution wr
depends

on the hosen frition law sr and its parameters. For Tresa's and Coulomb's frition law

with F small enough, there exists a unique weak solution. We refer to [21℄ for an overview

on existene and uniqueness results.

We now reformulate the fritional ontat onditions (5) in terms of two nonlinear equa-

tions. The geometrial ontat onditions are equivalently expresed by

g − urn ∈ H
1/2
+ (ΓC) , λrn ∈ Λn, 〈λrn, u

r
n − g〉 = 0. (6)

Assuming λrn ∈ L2 (ΓC), (6) simpli�es to

g − urn ∈ H
1/2
+ (ΓC) , λrn ≥ 0 a.e. on ΓC , λrn (u

r
n − g) = 0 a.e. on ΓC . (7)

For geometrial ontat problems, we have λrn ∈ L2 (ΓC) for instane, if Cijkl ∈W
1,∞(Ω) and

g ∈ H5/2 (ΓC), see [42℄. The geometrial ontat onditions (7) are equivalently reformulated

as

λrn −max {0, λrn + urn − g} = 0 a.e. on ΓC (8)

by an NCP funtion, f. [29, Chapter 4℄. Multiplying with a test funtion µn ∈ L2 (ΓC) leads
to

C (wr) (µn) := (µn, λ
r
n −max {0, λrn + urn − g})0,ΓC

= 0.

However, the semilinear form C is not Fréhet di�erentiable in general.

If we require λrn ∈ L2 (ΓC) and λrt ∈
(

L2 (ΓC)
)d−1

, we obtain sr ∈ S, where S :=
{

s : L2 (ΓC) → L2
+ (ΓC)

∣

∣ s ontinuously di�erentiable

}

with L2
+ (ΓC) :=

{

v ∈ L2 (ΓC)
∣

∣ v ≥ 0 a.e.
}

.

Furthermore, Λt simpli�es to

Λt (λ
r
n) =

{

µt ∈
(

L2 (ΓC)
)d−1

∣

∣

∣
|µt| ≤ sr (λrn)

}

.

The alulations in [29, Setion 2.1℄ show that we obtain also the fritional onditions (3) a.e.

Rewriting them with the help of a seond NCP funtion, see [29, Chapter 5℄, gives us

max {sr (λrn) , |λ
r
t + urt |}λ

r
t − sr (λrn) (λ

r
t + urt ) = 0 a.e. on ΓC .

The multipliation with a test funtion µt ∈
(

L2 (ΓC)
)d−1

�nally results in

Dr (wr) (µt) := (µt,max {sr (λrn) , |λ
r
t + urt |}λ

r
t − sr (λrn) (λ

r
t + urt ))0,ΓC

= 0.

In general, the semilinear form D is not Fréhet di�erentiable, too.

We de�ne the semilinear form

Ar (wr) (ϕ) := a (ur, v) + (λrn, vn)0,ΓC
+ (λrt , vt)0,ΓC

− 〈ℓ, v〉+ C (wr) (µn) +Dr (wr) (µt)

with ϕ = (v, µn, µt) ∈ W := V × L2 (ΓC) ×
(

L2 (ΓC)
)d−1

. Then Signorini's problem (4-5) is

to �nd wr ∈W with

∀ϕ ∈W : Ar (wr) (ϕ) = 0.
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2.2 Model adaptive disretization

The model adaptive disretization is arried out in two steps. At �rst, we speify a model

adaptive frition law. To this end, we de�ne a frition model hierarhy H := {s0, s1, . . . , sM},
where s0 is the most inexat model and sM := sr the most aurate or referene model. An

example for suh a hierarhy is given in Table 1. Finally, we ompose a loally varying frition

law s ∈ S based on the di�erent models in H. Using the semilinear form

A (w) (ϕ) := a (u, v) + (λn, vn)0,ΓC
+ (λt, vt)0,ΓC

− 〈ℓ, v〉+ C (w) (µn) +D (w) (µt)

with w = (u, λn, λt) ∈W , ϕ = (v, µn, µt) ∈W and

D (w) (µt) := (µt,max {s (λn) , |λt + ut|}λt − s (λn) (λt + ut))0,ΓC
,

w ∈W is a solution of Signorini's problem with a model adaptive frition law, if

∀ϕ ∈W : A (w) (ϕ) = 0.

We diretly obtain a generalized Galerkin orthogonality relation

a (ur − u, v) + (λrn − λn, vn)0,ΓC
+ (λrt − λt, vt)0,ΓC

= 0 (9)

for all v ∈ V .
The seond step onsists in the spei�ation of the general disretization requirements,

whih ensure that the presented a posteriori error analysis applies to a wide range of tehniques

to alulate approximations wh to w. They have to ful�ll the following assumption:

Assumption 1. Let Wh = Vh × Λn,h × Λt,h be a �nite dimensional subspae of W , whih

ontains the disrete solution wh. Moreover, equation (4) has to hold for the disrete solution

wh, i.e.

a (uh, vh) + (λn,h, vh,n)0,ΓC
+ (λt,h, vh,t)0,ΓC

= 〈l, vh〉 (10)

for all vh ∈ Vh.

Remark 2. From (10), a generalized Galerkin orthogonality follows, i.e.

a (u− uh, vh) + (λn − λn,h, vh,n)0,ΓC
+ (λt − λt,h, vh,t)0,ΓC

= 0 (11)

for all vh ∈ Vh.

Remark 3. In Assumption 1, we only presribe Λn,h ⊆ L2 (ΓC) and Λt,h (λn,h) ⊆
(

L2 (ΓC)
)d−1

.

We do not require Λn,h ⊆ Λn and Λt,h (λn,h) ⊆ Λt (λn,h). Thus, we onsider also nononform-

ing approximations of the Lagrange multiplier.

Remark 4. Our analysis applies to di�erent disretization shemes. It inludes method, whih

are only based on the displaement. In this ase, the Lagrange multipliers λn and λt have
to be determined in a post proessing step, f., for instane, [15℄. It also applies to mixed

disretizations like the one presented in [24℄, whih we use in our numerial experiments, or

Mortar methods, see, e.g., [56℄.

3 A posteriori error analysis

This setion fouses on the derivation of an a posteriori error estimate in a user de�ned

quantity of interest, where we employ the DWR method. Spei�ally, the error is estimated

in a possibly nonlinear quantity of interest J : W → R, i.e. J an inlude the displaement

u as well as the Lagrange multipliers λn and λt representing the ontat and the fritional

stress respetively.
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3.1 Model error estimation

Initially, the model error J (wr)−J (w) is treated. The �rst step in the derivation of the error

identities is the de�nition of a suitable dual problem: Find zr = (yr, ξrn, ξ
r
t ) ∈W with

a (v, yr)− bcr (ξ
r
n, v) + bfr (ξ

r
t , v) = J ′

u (w
r) (v) , (12)

(µn, y
r
n)0,ΓC

+ ccr (ξ
r
n, µn) + cfr (ξ

r
t , µn) = J ′

λn
(wr) (µn) , (13)

(µt, y
r
t )0,ΓC

+ dfr (ξ
r
t , µt) = J ′

λt
(wr) (µt) , (14)

for all (v, µn, µt) ∈ W . Here, the bilinear forms bc : L2 (ΓC) × V → R and c : L2 (ΓC) ×
L2 (ΓC) → R are given by

bcr (ωn, v) :=

ˆ

ΓC

ωnχ
c
rvn do,

ccr (ωn, µn) :=

ˆ

ΓC

ωn [1− χc
r]µn do,

with

χc
r (w

r) :=

{

1, if λrn + urn − g > 0,

0, if λrn + urn − g ≤ 0.

We also write χc
r = χc

r (w
r). The bilinear forms bc and cc orrespond to weighted L2

-salar

produts on ΓC , where the weight is given by the indiator funtion of the ative and in-

ative geometrial ontat set, respetively. Furthermore, we onsider the bilinear forms

bfr :
(

L2 (ΓC)
)d−1

× V → R, cfr :
(

L2 (ΓC)
)d−1

× L2 (ΓC) → R, and dfr :
(

L2 (ΓC)
)d−1

×
(

L2 (ΓC)
)d−1

→ R with

bfr (ωt, v) :=

ˆ

ΓC

ωt

[

χf
rλ

r
t

(

n′ (wr)
)⊤

− sr (λrn) I
]

vt do,

cfr (ωt, µn) := −

ˆ

ΓC

ωt (s
r)′ (λrn) (µn)

[

χf
rλ

r
t + ut

]

do,

dfr (ωt, µt) :=

ˆ

ΓC

ωt

[

max {sr (λrn) , n (w
r)} I − s (λrn) I + χf

rλ
r
t

(

n′ (wr)
)⊤

]

µt do.

Here, we use the notation n (wr) := |λrt + urt | and

n′ (wr) =

{

λr
t+ur

t

n(wr) , if w 6= 0,

0, if w = 0.

However, the ase w = 0 does not our beause of the multipliation with the indiator

funtion χf
r w.r.t. sliding and stiking, where

χf
r (w

r) :=

{

1, if sr (λrn) < n (wr) ,

0, if sr (λrn) ≥ n (wr) .

The shorter notation χf
r := χf

r (wr) is mostly used. We point out that, if the Fréhet derivative

A′
of A exists, the dual problem (12-14) mathes A′ (wr) (ϕ, zr) = J ′ (wr) (ϕ). Let us learify

the onnetion between max {sr (λrn) , n (w
r)} and the indiator funtion χf

r :

Dr (wr) (µt) = (µt,max {sr (λrn) , n (w
r)}λrt − sr (λrn) (λ

r
t + urt ))0,ΓC

=
(

µt, χ
f
rn (w

r)λrt +
(

1− χf
r

)

sr (λrn)λ
r
t − sr (λrn) (λ

r
t + urt )

)

0,ΓC

=
(

µt, χ
f
r (n (w

r)λrt − sr (λrn)λ
r
t )− sr (λrn) u

r
t

)

0,ΓC

=: D̄r (wr) (µt) .
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If we onsider D̄r
, we see χf

r as a �xed weighting funtion. Thus, the Fréhet di�erentiability

of D̄r
depends only on the smoothness of sr. In the following results, if not otherwise stated,

we assume that (µn, s
r (λrn))0,ΓC

is three times Fréhet di�erentiable w.r.t. λrn. A short

alulation now shows

(

D̄r
)′
(wr) (δw, µt)

=
(

D̄r
)′

u
(wr) (δu, µt) +

(

D̄r
)′

λn
(wr) (δλn, µt) +

(

D̄r
)′

λt
(wr) (δλt, µt)

=
(

µt, χ
f
r

(

λrt
(

n′ (wr)
)⊤
δut

)

− sr (λrn) δut

)

0,ΓC

−
(

µt, χ
f
r (s

r)′ (λrn) (δλn)λ
r
t + (sr)′ (λrn) (δλn) u

r
t

)

0,ΓC

+
(

µt, χ
f
r

(

λrt
(

n′ (wr)
)⊤
δλt + n (wr) δλt − sr (λrn) δλt

))

0,ΓC

= bfr (µt, δu) + cfr (µt, δλn) + dfr (µt, δλt) .

(15)

Analogously, we de�ne the dual solution z = (y, ξn, ξt) ∈ W w.r.t. the model adaptive

frition law s using the bilinear forms bc, cc, bf , cf , and df as well as the indiator funtions

χc
and χf

. Furthermore, we set

D̄ (w) (µt) :=
(

µt, χ
f (n (w)λt − s (λn)λt)− s (λn)ut

)

0,ΓC

= D (w) (µt)

and obtain

D̄′ (w) (δw, µt) = bf (µt, δu) + cf (µt, δλn) + df (µt, δλt) . (16)

We denote the model adaptive error w.r.t. the primal as well as to the dual solution by

erw :=
(

eru, e
r
λn
, erλt

)

:= (ur − u, λrn − λn, λ
r
t − λt) ,

erz :=
(

ery, e
r
ξn , e

r
ξt

)

:= (yr − y, ξrn − ξn, ξ
r
t − ξt) ,

respetively. The error in the geometrial ontat indiator funtion is erχc := χc
r (w

r)−χc (w)

and in the fritional indiator funtion er
χf := χf

r (wr)− χf (w).
In preparation of the main result, we study the bilinear forms in the dual problem on-

erning the ontat onditions:

Lemma 5. We obtain that

ccr
(

ξrn, e
r
λn

)

− bcr (ξ
r
n, e

r
u) + cc

(

ξn, e
r
λn

)

− bc (ξn, e
r
u)

=

ˆ

ΓC

erχc

[

erξn (λn + un − g)− ξn
(

erλn
+ eru,n

)]

do =: 2Rm
c

holds.

Remark 6. The term Rm
c is the produt of the error in the indiator funtion of the ontat

onditions and the model error. Thus it is of higher order.

Proof. By the de�nition of the bilinear forms ccr, c
c
, bcr, and b

c
, we obtain using C (wr) (µn) =
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C (w) (µn) = 0 for all µn ∈ L2 (ΓC)

ccr
(

ξrn, e
r
λn

)

− bcr (ξ
r
n, e

r
u) + cc

(

ξn, e
r
λn

)

− bc (ξn, e
r
u)

=

ˆ

ΓC

ξrn [1− χc
r] e

r
λn
do−

ˆ

ΓC

ξrnχ
c
re

r
u,n do+

ˆ

ΓC

ξn [1− χc] erλn
do−

ˆ

ΓC

ξnχ
ceru,n do

=

ˆ

ΓC

ξrn
[

erλn
− χc

r

(

erλn
+ eru,n

)]

do+

ˆ

ΓC

ξn
[

erλn
− χc

(

erλn
+ eru,n

)]

do

=

ˆ

ΓC

ξrn [λ
r
n − χc

r (λ
r
n + urn − g)] do−

ˆ

ΓC

ξrn [λn − χc
r (λn + un − g)] do

+

ˆ

ΓC

ξn [λ
r
n − χc (λrn + urn − g)] do−

ˆ

ΓC

ξn [λn − χc (λn + un − g)] do

= −

ˆ

ΓC

ξrn [λn − χc
r (λn + un − g)] do+

ˆ

ΓC

ξrn [λn − χc (λn + un − g)] do

−

ˆ

ΓC

ξn [λ
r
n − χc

r (λ
r
n + urn − g)] do+

ˆ

ΓC

ξn [λ
r
n − χc (λrn + urn − g)] do

=

ˆ

ΓC

ξrne
r
χc (λn + un − g) do−

ˆ

ΓC

ξne
r
χc (λrn + urn − g) do

=

ˆ

ΓC

erχc [ξrn (λn + un − g) − ξn (λ
r
n + urn − g)] do

=

ˆ

ΓC

erχc

[

erξn (λn + un − g)− ξn
(

erλn
+ eru,n

)]

do = 2Rm
c .

We de�ne the semilinear form∆(w) (µt) := Dr (w) (µt)−D (w) (µt) and obtain A (w) (ϕ)+
∆ (w) (µt) = Ar (w) (ϕ). Furthermore, we set ∆̄ (ω,ϕ) :=

(

D̄r
)′
(w) (ω,ϕ). The seond step

is now to onsider the bilinear form in the dual problems onerning the fritional onditions:

Lemma 7. With the remainder term

Rm
f = Rm

χ,1 +Rm
χ,2 +Rm

Q

inluding the fritional onditions, where

Rm
χ,1 = −

(

ξrt ,
(

χf
r (w

r)− χf
r (w)

)

(n (w)λt − sr (λn)λt)
)

0,ΓC

,

Rm
χ,2 = −

1

2

[

(

D̄r
)′
(w) (erw, ξt)− D̄′ (w) (erw, ξt)

]

,

Rm
Q =

1

2

ˆ 1

0

(

D̄r
)′′′

(w + serw) (e
r
w, e

r
w, e

r
w, ξ

r
t ) s(s− 1) ds,

it holds

bfr (ξ
r
t , e

r
u) + cfr

(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

+ bf (ξt, e
r
u) + cf

(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

= −2∆ (w) (ξt)− 2∆ (w)
(

erξt
)

− ∆̄
(

erw, e
r
ξt

)

+ 2Rm
f .

Remark 8. The remainder Rm
f is dominated by Rm

χ,1, whih onsists mainly of the error in

the indiator funtion of the stiking and the sliping region. The other parts are of seond

and third order in the error, respetively.
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Proof. At �rst, we notie using the de�nition of D̄r
and D (w) (µt) = 0

D̄r (w) (ξrt )

=
(

ξrt , χ
f
r (n (w)λt − sr (λn)λt)− sr (λn)ut

)

0,ΓC

=
(

ξrt ,
(

χf
r (w

r)− χf
r (w)

)

(n (w)λt − sr (λn)λt)
)

0,ΓC

+
(

ξrt , χ
f
r (w) (n (w)λt − sr (λn)λt)− sr (λn)ut

)

0,ΓC

= −Rm
χ,1 +Dr (w) (ξrt ) = Dr (w) (ξrt − ξt) +Dr (w) (ξt)−Rm

χ,1

= Dr (w) (ξrt − ξt)−D (w) (ξrt − ξt) +Dr (w) (ξt)−D (w) (ξt)−Rm
χ,1

= ∆(w)
(

erξt
)

+∆(w) (ξt)−Rm
χ,1.

The trapezoidal rule with its remainder term together with D̄r (wr) (µt) = Dr (wr) (µt) = 0
and the preeding alulations lead to

−∆(w)
(

erξt
)

−∆(w) (ξt) +Rm
χ,1

= D̄r (wr) (ξrt )− D̄r (w) (ξrt )

=

ˆ 1

0

(

D̄r
)′
(w + serw) (e

r
w, ξ

r
t ) ds

=
1

2

(

D̄r
)′
(w) (erw, ξ

r
t ) +

1

2

(

D̄r
)′
(wr) (erw, ξ

r
t )−Rm

Q .

From (15), (16) and

(

D̄r
)′
(w) (erw, ξ

r
t )

=
(

D̄r
)′
(w)

(

erw, e
r
ξt

)

+
(

D̄r
)′
(w) (erw, ξt)− D̄′ (w) (erw, ξt) + D̄′ (w) (erw, ξt)

= ∆̄
(

erw, e
r
ξt

)

− 2Rm
χ,2 + bf (ξt, e

r
u) + cf

(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

,

we dedue the assertion by rearranging the single terms.

Combining Lemma (5) and (7), we obtain the following Proposition onerning the model

error:

Proposition 9. Let the third Fréhet derivative of J , J ′′′ : W → L(W,L(W,W ∗)), exist.
Then, the error identity

J (wr)− J (w) = −∆(w) (z)−∆(w) (erz)−
1

2
∆̄ (erw, e

r
z) +Rm

J +Rm
c +Rm

f

holds for the model error in the quantity of interest with the remainder terms

Rm
J =

1

2

ˆ 1

0
J ′′′ (w + serw) (e

r
w, e

r
w, e

r
w) s(s− 1) ds

w.r.t. the quantity of interest J , Rm
c from Lemma 5 and Rm

f from Lemma 7.

Remark 10. The remainder Rm
J is of third order in the error. Consequently, the remainder

terms are dominated by Rm
χ,1.

Proof. The trapezoidal quadrature rule with its remainder term leads to

J (wr)− J (w) =

ˆ 1

0
J ′ (w + serw) (e

r
w) ds =

1

2
J ′ (w) (erw) +

1

2
J ′ (wr) (erw) +Rm

J .
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From the de�nition of the dual problems together with the generalized Galerkin orthogonality

(9), we dedue

J ′ (wr) (erw) = a (eru, y
r)− bcr (ξ

r
n, e

r
u) + bfr (ξ

r
t , e

r
u) +

(

erλn
, yrn

)

0,ΓC

+ccr
(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+
(

erλt
, yrt

)

0,ΓC
+ dfr

(

ξrt , e
r
λt

)

= −bcr (ξ
r
n, e

r
u) + bfr (ξ

r
t , e

r
u) + ccr

(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

and

J ′ (w) (erw) = a (eru, y)− bc (ξn, e
r
u) + bf (ξt, e

r
u) +

(

erλn
, yn

)

0,ΓC

+cc
(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+
(

erλt
, yt

)

0,ΓC
+ df

(

ξt, e
r
λt

)

= −bc (ξn, e
r
u) + bf (ξt, e

r
u) + cc

(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

.

Lemma 5 and 7 together with the alulations above lead to

J (wr)− J (w)

=
1

2
J ′ (w) (erw) +

1

2
J ′ (wr) (erw) +Rm

J

=
1

2

[

−bcr (ξ
r
n, e

r
u) + bfr (ξ

r
t , e

r
u) + ccr

(

ξrn, e
r
λn

)

+ cfr
(

ξrt , e
r
λn

)

+ dfr
(

ξrt , e
r
λt

)

]

+
1

2

[

−bc (ξn, e
r
u) + bf (ξt, e

r
u) + cc

(

ξn, e
r
λn

)

+ cf
(

ξt, e
r
λn

)

+ df
(

ξt, e
r
λt

)

]

+Rm
J

= −∆(w) (z)−∆(w) (erz)−
1

2

(

D̄r
)′
(w)

(

erw, e
r
ξt

)

+Rm
c +Rm

f +Rm
J ,

the assertion.

3.2 Disretization error estimation

In this setion, we onsider the disretization error J (w)−J (wh) between the model adaptive

solution w and its approximation wh. To this end, we need a disrete approximation zh =
(yh, ξn,h, ξt,h) ∈ Wh to z, whih does not have to ful�ll any further assumptions. We denote

by ew and ez the disretization error, i.e.

ew = (eu, eλn
, eλt

) = (u− uh, λn − λn,h, λt − λt,h) ,

ez = (ey, eξn , eξt) = (y − yh, ξn − ξn,h, ξt − ξt,h) .

Furthermore, we de�ne

D̄h (wh) (µt,h) :=
(

µt,h, χ
f
h (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

= Dh (wh) (µt,h)

and notie

D̄′
h (wh) (δw, µt) = bfh (µt, δu) + cfh (µt, δλn) + dfh (µt, δλt) (17)

with the bilinear forms bfh : Λt,h × Vh → R, cfh : Λt,h × Λn,h → R, and dfh : Λt,h × Λt,h → R

onerning the fritional onditions,

bfh (ωt, v) :=

ˆ

ΓC

ωt

[

χf
hλt,h (n (wh))

⊤ − s (wh) I
]

vt do,

cfh (ωt, µn) := −

ˆ

ΓC

ωts
′ (λn,h) (µn)

[

χf
hλt,h + uh,t

]

do,

dfh (ωt, µt) :=

ˆ

ΓC

ωt

[

max {s (λn,h) , n (wh)} I − s (λn,h) I + χf
hλt,h

(

n′ (wh)
)⊤

]

µt do,
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and

χf
h (wh) :=

{

1, if s (λn,h) < n (wh) ,

0, if s (λn,h) ≥ n (wh) .

The error in the fritional indiator funtion is efχ = χf −χf
h. First, we larify the onnetion

between the fritional part of the dual problem and the fritional onditions:

Lemma 11. Let (µn, s (λn))0,ΓC
for arbitrary µn ∈ L2 (ΓC) be two times Fréhet di�erentiable

w.r.t. λn. Then we have the identity

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) = −D (wh) (eξt)−D (wh) (ξt,h) +R
(2)
f .

The remainder term R
(2)
f = R

(2)
χ +R

(2)
Q onsists of

R(2)
χ := −

(

ξt, e
f
χ (n (wh)λt,h − s (λn,h)λt,h)

)

0,ΓC

and

R
(2)
Q =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) s ds.

Proof. We obtain using the box quadrature rule with its remainder and (16)

D̄ (w) (ξt)− D̄ (wh) (ξt) =

ˆ 1

0
D̄′ (wh + sew) (ew, ξt) ds

= D̄′ (w) (ew, ξt)−R
(2)
Q

= bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

)−R
(2)
Q .

The equation D̄ (w) (ξt) = D (w) (ξt) = 0 leads to

D̄ (w) (ξt)− D̄ (wh) (ξt) = −D̄ (wh) (ξt)

= −D̄ (wh) (ξt)− D̄h (wh) (ξt) + D̄h (wh) (ξt)

= −
(

ξt, χ
f (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

+
(

ξt, χ
f
h (n (wh)λt,h − s (λn,h)λt,h)− s (λn,h) uh,t

)

0,ΓC

−D (wh) (ξt)

= −
(

ξt, e
f
χ (n (wh)λt,h − s (λn,h)λt,h)

)

0,ΓC

−D (wh) (eξt)−D (wh) (ξt,h)

= R(2)
χ −D (wh) (eξt)−D (wh) (ξt,h) .

Rearranging the terms �nishes the proof.

Using only the primal residual, we get the following error identity:

Proposition 12. If the seond Fréhet derivative of J , J ′′ : W → L(W,W ∗), exists as well
as Assumption 1 and the assumptions of Lemma 11 hold, we obtain the error identity

J (w)− J (wh) =ρ (wh) (z − zh)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R
(2)
J +R(2)

c +R
(2)
f ,

(18)

with the primal residual

ρ (wh) (ϕ) := −A (wh) (ϕ) .
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The remainder term w.r.t. the quantity of interest, R
(2)
J , is given by

R
(2)
J = −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) s ds.

For the ontat onditions, we have the remainder

R(2)
c =

ˆ

ΓC

ξne
c
χ [λn,h + uh,n − g] do,

with ecχ = χc − χc
h, and

χc
h :=

{

1, if λn,h + uh,n − g > 0,

0, if λn,h + uh,n − g ≤ 0.

Remark 13. By C (wh) (ξn,h), we measure the violation of the geometrial ontat ondi-

tions (2). The term D (wh) (ξt,h) represents the error of the disrete solution onerning the

fritional onditions (3).

Remark 14. The term R
(2)
J orresponds to the usual remainder term of the DWR method for

linear problems with nonlinear quantities of interest, f. [3, Proposition 6.6℄. It vanishes for

linear quantities of interest J .

Remark 15. The remainder R
(2)
c w.r.t. the geometrial ontat onditions beomes zero, if the

analyti ative set equals the disrete one. The fritional remainder term R
(2)
f has a higher

order part of the same order as R
(2)
J and one in the indiator funtion of frition. The seond

part vanishes, if the sliding and stiking regions are exatly resolved. The remainder terms

will be disussed in more detail in Setion 4.

Proof. We use the box quadrature rule with its remainder term to obtain

J (w)− J (wh) =

ˆ 1

0
J ′ (wh + sew) (ew) ds = J ′ (w) (ew) +R

(2)
J

= J ′
u (w) (eu) + J ′

λn
(w) (eλn

) + J ′
λt
(w) (eλt

) +R
(2)
J .

From the de�nition of the ontinuous dual problem, f. (12-14), we onlude

J ′
u (w) (eu) + J ′

λ (w) (eλn
) + J ′

λt
(w) (eλt

)

= a (eu, y)− bc (ξn, eu) + bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

)

+ (eλt
, yt)0,ΓC

+ df (ξt, eλt
) .

The Galerkin orthogonality (11) leads to

a (eu, y) + (eλn
, yn)0,ΓC

+ (eλt
, yt)0,ΓC

= a (eu, ey) + (eλn
, ey,n)0,ΓC

+ (eλt
, ey,t)0,ΓC

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

.

From the proof of Proposition 4 in [42℄, we know

cc (ξn, eλn
)− bc (ξn, eu) = −C (wh) (ξn − ξn,h)− C (wh) (ξn,h) +R(2)

c

and from Lemma 11

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) = −D (wh) (ξt − ξt,h)−D (wh) (ξt,h) +R
(2)
f .
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In summary, we obtain

J (w)− J (wh)

= a (eu, y)− bc (ξn, eu) + bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

)

+ (eλt
, yt)0,ΓC

+ df (ξt, eλt
) +R

(2)
J

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− C (wh) (ξn − ξn,h)

−D (wh) (ξt − ξt,h)− C (wh) (ξn,h)−D (wh) (ξt,h) +R
(2)
J +R(2)

c +R
(2)
f

= ρ (wh) (z − zh)− C (wh) (ξn,h)−D (wh) (ξt,h) +R
(2)
J +R(2)

c +R
(2)
f ,

whih is the assertion.

Now, we study the error identity involving the dual residual. To this end, we need to

apply the following lemma:

Lemma 16. Under the general assumptions of this setion, we obtain the identity

bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) + bfh (ξt,h, eu) + cfh (ξt,h, eλn
) + dfh (ξt,h, eλt

)

= −D (wh) (eξt)− 2D (wh) (ξt,h) + 2R
(3)
f .

The remainder term R
(3)
f = R

(2)
χ +R

(3)
χ +R

(3)
D +R

(3)
Q is given by a remainder in the fritional

indiator funtion R
(3)
χ = R

(3)
χ,1 +R

(3)
χ,2 with

R
(3)
χ,1 = −

1

2

[

D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h)

]

,

R
(3)
χ,2 =

1

2

[

D̄ (wh) (eξt)− D̄h (wh) (eξt)
]

,

a ubi remainder

R
(3)
D = −

1

2

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds

in ew and eξt, as well as a quadrature remainder

R
(3)
Q =

1

2

ˆ 1

0
D̄′′′ (wh + sew) (ew, ew, ew, ξt) s(s− 1) ds,

whih is of third order in the error ew.

Remark 17. The remainder term R
(3)
f is dominated by the remainder R

(2)
χ , all other parts are

of higher order in the error.

Proof. Using Lemma 11 and the trapezoidal rule with its remainder term, we obtain

−2D (wh) (eξt)− 2D (wh) (ξt,h) + 2R(2)
χ

= 2
[

D̄ (w) (ξt)− D̄ (wh) (ξt)
]

= 2

ˆ 1

0
D̄′ (wh + sew) (ew, ξt) ds

= D̄′ (w) (ew, ξt) + D̄′ (wh) (ew, ξt)− 2R
(3)
Q

= bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) + D̄′ (wh) (ew, ξt)− 2R
(3)
Q .
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Studying D̄′ (wh) (ew, ξt) in more detail lead to

D̄′ (wh) (ew, ξt)

= D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)

= D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) + D̄′

h (wh) (ew, ξt,h)

= D̄′ (wh) (ew, eξt) + 2R
(3)
χ,1 + bfh (ξt,h, eu) + cfh (ξt,h, eλn

) + dfh (ξt,h, eλt
) .

To �nish the proof, we use the box quadrature rule and obtain

D̄′ (wh) (ew, eξt)

=

ˆ 1

0
D̄′ (wh + sew) (ew, eξt) ds+ 2R

(2)
D

= D̄ (w) (eξt)− D̄ (wh) (eξt) + 2R
(2)
D

= −D̄ (wh) (eξt) + D̄h (wh) (eξt)− D̄h (wh) (eξt) + 2R
(2)
D

= −D (wh) (eξt) + 2R
(3)
χ,2 + 2R

(3)
D ,

the assertion.

The bilinear forms bch : Λn,h × Vh → R and cch : Λn,h × Λn,h → R w.r.t. the geometrial

ontat onditions are given by

bch (ωn, v) :=

ˆ

ΓC

ωnχ
c
hvn do,

cch (ωn, µn) :=

ˆ

ΓC

ωn [1− χc
h]µn do.

Using the presented lemma above, we obtain the error representation:

Proposition 18. We assume that the third Fréhet derivative of J , J ′′′ : W → L(W,L(W,W ∗))
exists and that Assumption 1 hold. Then the error representation

J (w)− J (wh) =
1

2
ρ (wh) (ez) +

1

2
ρ∗ (wh, zh) (ew)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R
(3)
J +R(3)

c +R
(3)
f

(19)

is valid. Here, the dual residual ρ∗ is de�ned as

ρ∗ (wh, zh) (ϕ) := J ′ (wh) (ϕ)− a (v, yh) + bch (ξn,h, v)− bfh (ξt,h, v)− (µn, yh,n)0,ΓC

−cch (ξn,h, µn)− cfh (ξt,h, µn)− (µt, yh,t)0,ΓC
− dfh (ξt,h, µt) .

For the remainder R
(3)
J w.r.t. the quantity of interest, it holds

R
(3)
J =

1

2

ˆ 1

0
J ′′′ (wh + sew) (ew, ew, ew) s(s− 1) ds

and for the remainder R
(3)
c onerning the geometrial ontat onditions

R(3)
c =

1

2

ˆ

ΓC

ecχ {ξn [λn,h + uh,n − g] + ξn,h [λ+ un − g]} do.

Remark 19. The remainder R
(3)
J is also obtained, if the DWR method is applied on other

types of problems, see [3, Proposition 6.2℄ and ompare Remark 14. It vanishes, if J is linear

or quadrati in w.
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Remark 20. The remainder terms R
(3)
c and R

(3)
f are of the same order in the error ecχ and efχ

as R
(2)
c and R

(2)
f beause of the nonsmoothness of C and D.

Proof. By applying the Trapezoidal quadrature rule with its remainder term, we obtain

J (w)− J (wh) =

ˆ 1

0
J ′ (wh + sew) (ew) ds =

1

2
J ′ (wh) (ew) +

1

2
J ′ (w) (ew) +R

(3)
J

=
1

2
J ′
u (w) (eu) +

1

2
J ′
λn

(w) (eλn
) +

1

2
J ′
λt
(w) (eλt

) +
1

2
J ′
u (wh) (eu)

+
1

2
J ′
λn

(wh) (eλn
) +

1

2
J ′
λt
(wh) (eλt

) +R
(3)
J .

We know from the proofs of Proposition 4 and 8 in [42℄ that

cc (ξn, eλn
)− bc (ξn, eu) + cch (ξn,h, eλn

)− bch (ξn,h, eu)

= −C (wh) (ξn − ξn,h)− 2C (wh) (ξn,h) + 2R(3)
c .

From the proof of Proposition 12 together with Lemma 16 and the preeding equations, we

dedue

J ′
u (w) (eu) + J ′

λ (w) (eλn
) + J ′

λt
(w) (eλt

)

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− bc (ξn, eu) + bf (ξt, eu)

+cc (ξn, eλn
) + cf (ξt, eλn

) + df (ξt, eλt
)

= 〈l, ey〉 − a (uh, ey)− (λn,h, ey,n)0,ΓC
− (λt,h, ey,t)0,ΓC

− cch (ξn,h, eλn
) + bch (ξn,h, eu)

−C (wh) (ξn − ξn,h)− 2C (wh) (ξn,h) + 2R(3)
c − bfh (ξt,h, eu)− cfh (ξt,h, eλn

)− dfh (ξt,h, eλt
)

−D (wh) (ξt − ξt,h)− 2D (wh) (ξt,h) + 2R
(3)
f

= ρ (wh) (z − zh)− cch (ξn,h, eλn
) + bch (ξn,h, eu)− bfh (ξt,h, eu)− cfh (ξt,h, eλn

)− dfh (ξt,h, eλt
)

−2C (wh) (ξn,h)− 2D (wh) (ξt,h) + 2R(3)
c + 2R

(3)
f .

Inserting the Galerkin orthogonality (11) and the de�nition of the dual residual ρ∗ leads to

J (w) − J (wh)

=
1

2
ρ (wh) (z − zh) +

1

2
J ′
u (wh) (eu) +

1

2
J ′
λn

(wh) (eλn
) +

1

2
J ′
λt
(wh) (eλt

)

−
1

2
a (eu, yh)−

1

2
(eλn

, yh,n)0,ΓC
−

1

2
(eλt

, yh,t)0,ΓC
−

1

2
cch (ξn,h, eλn

)

+
1

2
bch (ξn,h, eu)−

1

2
bfh (ξt,h, eu)−

1

2
cfh (ξt,h, eλn

)−
1

2
dfh (ξt,h, eλt

)

−C (wh) (ξn,h)−D (wh) (ξt,h) +R(3)
c +R

(3)
f +R

(3)
J

=
1

2
ρ (wh) (z − zh) +

1

2
ρ∗ (wh, zh) (w − wh)− C (wh) (ξn,h)−D (wh) (ξt,h)

+R(3)
c +R

(3)
f +R

(3)
J .

The omparison of primal and dual residual leads to

Proposition 21. If the seond Fréhet derivative of J , J ′′ : W → L(W,W ∗), exists and

Assumption 1 holds, we obtain for the di�erene between the primal residual ρ and the dual

residual ρ⋆

ρ⋆ (wh, zh) (w − wh) = ρ (wh) (z − zh) + ∆J +∆C +∆D,
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where

∆J = −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) ds,

∆C =

ˆ

ΓC

ecχ {eξn [λn + un − g]− ξn [eλn
+ eu,n]} do,

∆D =

4
∑

i=1

∆Di,

∆D1 =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) ds,

∆D2 =

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds,

∆D3 = D (wh) (eξt)− D̄ (wh) (eξt) ,

∆D4 = D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) .

Remark 22. From Proposition 21 we learn that the di�erene between the primal and the dual

residual is of higher order in the error than the remainder terms R
(2)
c , R

(2)
f , R

(3)
c , and R

(3)
f .

Thus, the di�erene between the primal and dual residual is no estimate for the remainders

R
(2)
c and R

(2)
f in ontrast to smooth nonlinear problems, f. [3, Proposition 6.6 and Remark

6.7℄.

Remark 23. The term ∆J equals zero, if the quantity of interest J is linear in w.

Proof. The de�nition of the dual residual ρ∗, the ontinuous dual problem, and the de�nition

of the primal residual lead to

ρ⋆ (wh, zh) (ew)

= J ′ (wh) (ew)− a (eu, yh) + bch (ξn,h, eu)− bfh (ξt,h, eu)− (eλn
, yh,n)0,ΓC

− cch (ξn,h, eλn
)

−cfh (ξt,h, eλn
)− (eλt

, yh,t)0,ΓC
− dfh (ξt,h, eλt

)

= J ′ (wh) (ew)− a (eu, yh) + bch (ξn,h, eu)− bfh (ξt,h, eu)− (eλn
, yh,n)0,ΓC

− cch (ξn,h, eλn
)

−cfh (ξt,h, eλn
)− (eλt

, yh,t)0,ΓC
− dfh (ξt,h, eλt

)− J ′ (w) (ew) + a (eu, y)− bc (ξn, eu)

+bf (ξt, eu) + (eλn
, yn)0,ΓC

+ cc (ξn, eλn
) + cf (ξt, eλn

) + (eλt
, yt)0,ΓC

+ df (ξt, eλt
)

= −

ˆ 1

0
J ′′ (wh + sew) (ew, ew) ds+ a (eu, ey) + (eλn

, ey,n)0,ΓC
+ (eλt

, ey,t)0,ΓC

+bch (ξn,h, eu)− bc (ξn, eu)− cch (ξn,h, eλn
) + cc (ξn, eλn

)− bfh (ξt,h, eu) + bf (ξt, eu)

−cfh (ξt,h, eλn
) + cf (ξt, eλn

)− dfh (ξt,h, eλt
) + df (ξt, eλt

)

= ∆J + ρ (wh) (z − zh) + C (wh) (eξn) +D (wh) (eξt)− [cch (ξn,h, eλn
)− bch (ξn,h, eu)]

+cc (ξn, eλn
)− bc (ξn, eu)−

[

bfh (ξt,h, eu) + cfh (ξt,h, eλt
) + dfh (ξt,h, eλt

)
]

+bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

) .

From Proposition 11 in [42℄ we know

C (wh) (eξn)− [cch (ξn,h, eλn
)− bch (ξn,h, eu)] + cc (ξn, eλn

)− bc (ξn, eu) = ∆C.
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The equations (16) and (17) imply

D (wh) (eξt) + bf (ξt, eu) + cf (ξt, eλn
) + df (ξt, eλt

)

−
[

bfh (ξt,h, eu) + cfh (ξt,h, eλt
) + dfh (ξt,h, eλt

)
]

= D (wh) (eξt) + D̄′ (w) (ew, ξt)− D̄′
h (wh) (ew, ξt,h)

= D (wh) (eξt) + D̄′ (w) (ew, ξt)− D̄′ (wh) (ew, ξt) + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h)

= D (wh) (eξt) +

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, ξt) ds+ D̄′ (wh) (ew, ξt)− D̄′

h (wh) (ew, ξt,h)

= D (wh) (eξt) + ∆D1 + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h) .

Furthermore, we �nd using D (w) (eξt) = D̄ (w) (eξt) = 0 and the box quadrature rule with

its remainder that

D (wh) (eξt) + D̄′ (wh) (ew, ξt)− D̄′
h (wh) (ew, ξt,h) + ∆D1

= D (wh) (eξt) + D̄′ (wh) (ew, eξt) + D̄′ (wh) (ew, ξt,h)− D̄′
h (wh) (ew, ξt,h) + ∆D1

= D̄ (wh) (eξt)− D̄ (w) (eξt) + D̄′ (wh) (ew, eξt)− D̄ (wh) (eξt) +D (wh) (eξt)

+∆D1 +∆D4

= −

ˆ 1

0
D̄′ (wh + sew) (ew, eξt) ds+ D̄′ (wh) (ew, eξt) + ∆D1 +∆D3 +∆D4

=

ˆ 1

0
D̄′′ (wh + sew) (ew, ew, eξt) s ds+∆D1 +∆D3 +∆D4

= ∆D1 +∆D2 +∆D3 +∆D4.

Combining the di�erent parts, we get the assertion with ∆D = ∆D1+∆D2+∆D3+∆D4.

3.3 Estimation of model and disretization error

As last result in this setion, we estimate the error J (wr)− J (wh) inluding the modeling as

well as the disretization error in the quantity of interest. We de�ne

er,hw =
(

er,hu , er,hλn
, er,hλt

)

= (ur − uh, λ
r
n − λn,h, λ

r
t − λt,h) ,

er,hz =
(

er,hy , er,hξn
, er,hξt

)

= (yr − yh, ξ
r
n − ξn,h, ξ

r
t − ξt,h) .

Furthermore, we set er,hχc := χc
r − χc

h and er,h
χf := χf

r − χf
h. In addition, we need an analogous

result to Lemma 7:

Lemma 24. It holds

bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+bfr

(

ξrt , e
r,h
u

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

+D (wh)
(

er,hξt

)

= −2D (wh) (ξt,h)− 2∆ (wh) (ξt,h)− 2∆ (wh)
(

er,hz

)

− ∆̄
(

er,hw , er,hz

)

+ 2Rm,h
f

with the remainder term Rm,h
f = Rm,h

χ,1 +Rm,h
χ,2 +Rm,h

Q ,

Rm,h
χ,1 = −

(

ξrt ,
(

χf
r (w

r)− χf
r (wh)

)

(n (wh)λt,h − sr (λn,h)λt,h)
)

0,ΓC

,

Rm,h
χ,2 = −

1

2

[

(

D̄r
)′
(wh)

(

er,hw , ξt,h

)

− D̄′
h (wh)

(

er,hw , ξt,h

)]

Rm,h
Q =

1

2

ˆ 1

0

(

D̄r
)′′′

(

w + ser,hw

)(

er,hw , er,hw , er,hw , ξrt

)

s(s− 1) ds,
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Proof. The de�nition of D̄r
leads to

D̄r (wh) (ξ
r
t )

=
(

ξrt , χ
f
r (n (wh)λt,h − sr (λn,h)λt,h)− sr (λn,h) uh,t

)

0,ΓC

=
(

ξrt ,
(

χf
r (w

r)− χf
r (wh)

)

(n (wh)λt,h − sr (λn,h)λt,h)
)

0,ΓC

+
(

ξrt , χ
f
r (wh) (n (wh)λt,h − sr (λn,h)λt,h)− sr (λn,h) uh,t

)

0,ΓC

= −Rm,h
χ,1 +Dr (wh) (ξ

r
t ) = Dr (wh)

(

er,hξt

)

+Dr (wh) (ξt,h)−Rm,h
χ,1

= Dr (wh)
(

er,hξt

)

−D (wh)
(

er,hξt

)

+Dr (wh) (ξt,h)−D (wh) (ξt,h) +D (wh)
(

er,hξt

)

+D (wh) (ξt,h)−Rm,h
χ,1

= ∆(wh)
(

er,hξt

)

+∆(wh) (ξt,h) +D (wh)
(

er,hξt

)

+D (wh) (ξt,h)−Rm,h
χ,1 .

The trapezoidal rule with its remainder term together with D̄r (wr) (µt) = Dr (wr) (µt) = 0
and the preeding alulations lead to

−∆(wh)
(

er,hξt

)

−∆(wh) (ξt,h)−D (wh)
(

er,hξt

)

−D (wh) (ξt,h) +Rm,h
χ,1

= D̄r (wr) (ξrt )− D̄r (wh) (ξ
r
t )

=

ˆ 1

0

(

D̄r
)′
(

wh + ser,hw

)(

er,hw , ξrt

)

ds

=
1

2

(

D̄r
)′
(wh)

(

er,hw , ξrt

)

+
1

2

(

D̄r
)′
(wr)

(

er,hw , ξrt

)

−Rm,h
Q .

We use equation (15) and

(

D̄r
)′
(wh)

(

er,hw , ξrt

)

=
(

D̄r
)′
(wh)

(

er,hw , er,hξt

)

+
(

D̄r
)′
(wh)

(

er,hw , ξt,h

)

− D̄′
h (wh)

(

er,hw , ξt,h

)

+D̄′
h (wh)

(

er,hw , ξt,h

)

= ∆̄
(

er,hw , er,hξt

)

− 2Rm,h
χ,2 + bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

,

apply (17) to dedue the assertion by ombining the single terms.

Applying the above presented lemma, we obtain the following error identity for the error

w.r.t. modeling and disretization:

Proposition 25. We assume that the third Fréhet derivative of J , J ′′′ : W → L(W,L(W,W ∗)),
exist and that Assumption 1 holds. Then, the error identity

J (wr)− J (wh)

=−∆(wh) (zh) +
1

2
ρ (wh) (ez) +

1

2
ρ∗ (wh, zh) (ew)− C (wh) (ξn,h)−D (wh) (ξt,h)

−∆(wh)
(

er,hz

)

−
1

2
∆̄

(

er,hw , er,hz

)

+Rm,h
J +Rm,h

c +Rm,h
f

(20)

holds for the model and disretization error in the quantity of interest. Here, the remainder

terms are given by

Rm,h
J =

1

2

ˆ 1

0
J ′′′

(

wh + ser,hw

)(

er,hw , er,hw , er,hw

)

s(s− 1) ds
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w.r.t. the quantity of interest J ,

Rm,h
c =

1

2

ˆ

ΓC

ξrne
c,r
χ [λn,h + uh,n − g] + ξn,he

c,r
χ [λrn + urh − g] do

and Rm
f from Lemma 7.

Remark 26. The remainder Rm,h
J is of third order in the error er,hw and equals mainly the

remainders Rm
J from Propositon 9 and R

(3)
J from Proposition 18. The remainder Rm,h

c is of

the same struture as R
(3)
c in Proposition 18.

Proof. The starting point is again the appliation of the trapezoidal rule with its remainder

leading to

J (wr)− J (wh) =

ˆ 1

0
J ′

(

wh + ser,hw

)(

er,hw

)

ds

=
1

2
J ′ (wh)

(

er,hw

)

+
1

2
J ′ (wr)

(

er,hw

)

+Rm,h
J .

We now proeed as in the proof of Proposition 9. However, we have to take into aount that

(11) holds instead of (9). Thus, we obtain by (11)

a
(

er,hu , yr
)

+
(

er,hλn
, yrn

)

0,ΓC

+
(

er,hλt
, yrt

)

0,ΓC

= a
(

er,hu , er,hy

)

+
(

er,hλn
, er,hy,n

)

0,ΓC

+
(

er,hλt
, er,hy,t

)

0,ΓC

= ρ (wh)
(

er,hz

)

+ C (wh)
(

erξn
)

+D (wh)
(

erξt
)

.

The de�ntions of the ontinuous dual problem (12-14) and the preeding alulation imply

J ′ (wr)
(

er,hw

)

= a
(

er,hu , yr
)

− bcr

(

ξrn, e
r,h
u

)

+ bfr

(

ξrt , e
r,h
u

)

+
(

er,hλn
, yrn

)

0,ΓC

+ccr

(

ξrn, e
r,h
λn

)

+ cfr

(

ξrt , e
r,h
λn

)

+
(

er,hλt
, yrt

)

0,ΓC

+ dfr

(

ξrt , e
r,h
λt

)

= ρ (wh)
(

er,hz

)

+ C (wh)
(

er,hξn

)

+D (wh)
(

er,hξt

)

−bcr

(

ξrn, e
r,h
u

)

+ bfr

(

ξrt , e
r,h
u

)

+ ccr

(

ξrn, e
r,h
λn

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

.

By (11) and the de�nition of the dual residual ρ∗, we dedue

J ′ (wr)
(

er,hw

)

= J ′ (wr)
(

er,hw

)

− a
(

er,hu , yh

)

−
(

er,hλn
, yh,n

)

0,ΓC

−
(

er,hλt
, yh,t

)

0,ΓC

+bch

(

ξn,h, e
r,h
u

)

− bfh

(

ξt,h, e
r,h
u

)

− cch

(

ξn,h, e
r,h
λn

)

− cfh

(

ξt,h, e
r,h
λn

)

− dfh

(

ξt,h, e
r,h
λt

)

−bch

(

ξn,h, e
r,h
u

)

+ bfh

(

ξt,h, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

= −bch

(

ξn,h, e
r,h
u

)

+ bfh

(

ξt,h, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+ρ∗ (wh, zh)
(

er,hw

)
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By the same tehnique as in the proofs of Proposition 4 and 8 in [42℄, we obtain

ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh)
(

er,hξn

)

= ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ C (wh) (ξ
r
n)

+cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh) (ξn,h)− 2C (wh) (ξn,h)

=

ˆ

ΓC

ξrne
r,h
χc [λn,h + uh,n − g] + ξn,he

r,h
χc [λrn + urh − g] do− 2C (wh) (ξn,h)

= 2Rm,h
c − 2C (wh) (ξn,h) .

All in all, we dedue applying Lemma 24

2 (J (wr)− J (wh))

= J ′ (wh)
(

er,hw

)

+ J ′ (wr)
(

er,hw

)

+ 2Rm,h
J

= ρ (wh)
(

er,hz

)

+ ρ∗ (wh, zh)
(

er,hw

)

+ 2Rm,h
J

+ccr

(

ξrn, e
r,h
λn

)

− bcr

(

ξrn, e
r,h
u

)

+ cch

(

ξn,h, e
r,h
λn

)

− bch

(

ξn,h, e
r,h
u

)

+ C (wh)
(

er,hξn

)

+bfh

(

ξt,h, e
r,h
u

)

+ cfh

(

ξt,h, e
r,h
λn

)

+ dfh

(

ξt,h, e
r,h
λt

)

+bfr

(

ξrt , e
r,h
u

)

+ cfr

(

ξrt , e
r,h
λn

)

+ dfr

(

ξrt , e
r,h
λt

)

+D (wh)
(

er,hξt

)

= ρ (wh)
(

er,hz

)

+ ρ∗ (wh, zh)
(

er,hw

)

+ 2Rm,h
J + 2Rm,h

c − 2C (wh) (ξn,h)

−2D (wh) (ξt,h)− 2∆ (wh) (ξt,h)− 2∆ (wh)
(

er,hz

)

− ∆̄
(

er,hw , er,hz

)

+ 2Rm,h
f .

Division by 2 then gives the assertion.

4 Numerial evaluation of the error identities

The error identities (18), (19), and (20) from Proposition 12, 18 and 25 annot be evaluated

numerially, beause they involve the analyti solutions w and z as well as the unknown

remainder terms. The remainder terms R
(2)
J , R

(3)
J , and Rm,h

J are of seond and third order

in the error, respetively, whih implies that they are of higher order and negligible. The

remainder terms with respet to the geometrial ontat onditions, R
(2)
c , R

(3)
c and Rm,h

c ,

are of �rst order in the error of the ative set. Numerial examples substantiate that they

are dereasing fast. However, a strit analysis of there onvergene properties is missing and

strongly depends on the hosen disretization. The remainder terms R
(2)
f , R

(3)
f and Rm,h

f
with respet to the frition onditions onsist of terms whih are of �rst order in the error

of the fritional ative set and ones whih are of higher order in the error. While it is lear

that the seond ones an be negleted, the same is not true for the �rst ones. However,

the remarks for the remainder terms R
(2)
c , R

(3)
c and Rm,h

c also hold here. The remaining

terms ∆(wh)
(

er,hz

)

and

1
2∆̄

(

er,hw , er,hz

)

, whih arise in the estimation of the model error,

are of seond as well as third order in the error and are negleted. The numerial results in

Setion 5 substantiate that negleting the remainder terms is feasible. Beside the remainder

terms, the error identities also inlude the analyti primal and dual solution, whih have to be

numerially approximated. The orresponding disretization dependent operator is denoted

by A. We refer to [3, Setion 4.1 and Setion 5.2℄ for an overview of possible hoies and their

mathematial justi�ation under strong smoothness assumptions.
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All in all, we obtain the primal error estimator

J (w)− J (wh) ≈ ηp := ρ (wh) (A (zh)− zh)− C (wh) (ξn,h)−D (wh) (ξt,h) ,

the primal dual one

J (w)− J (wh) ≈ η :=
1

2
ρ (wh) (A (zh)− zh) +

1

2
ρ∗ (wh, zh) (A (wh)− wh)

−C (wh) (ξn,h)−D (wh) (ξt,h) ,

and the model as well as disretization error estimator

J (wr)− J (wh) ≈ −∆(wh) (zh) + η = ηm + η.

Up to this point, we have not spei�ed any further assumptions on the disretization.

Heneforth, we arry out further steps to obtain onrete error estimators for a mixed dis-

retization. It was �rst proposed for geometrial ontat problems in [23℄ and extended to

fritional ontat problems in [24, 25℄ as well as higher order methods in [48℄. In the aforemen-

tioned referenes, a Shur-omplement ansatz is used to solve the disrete problems. Here,

we use a primal-dual-ative-set-strategy, whih was developed for this disretization approah

in [9℄. We outline the disretization in more detail here: Let Th be a �nite element mesh

of Ω with mesh size h and let EC be a �nite element mesh of ΓC with mesh size H, respe-

tively. The number of mesh elements in Th is denoted by MΩ and in EC by MC . We use

line segments, quadrangles or hexahedrons to de�ne Th or EC . But this is not a restrition,

triangles and tetrahedrons are also possible. Furthermore, let ΨT : [−1, 1]d → T ∈ Th and

ΦE : [−1, 1]d−1 → E ∈ EC be a�ne and d-linear transformations. We de�ne

Vh :=
{

v ∈ V
∣

∣ ∀T ∈ Th : vi|T ◦ΨT ∈ Q1

}

,

ΛH :=
{

µ ∈ L2 (ΓC)
∣

∣ ∀E ∈ EC : µ|E ◦ΦE ∈ P0

}

,

Λn,H :=
{

µn ∈ ΛH | ∀E ∈ EC : µn|E ≥ 0
}

,

Λt,H (λn,H) :=

{

µt ∈ Λd−1
H

∣

∣

∣
∀E ∈ EC : µt|E ≤

1

|E|

ˆ

E
s (λn,H) do

}

,

where Q1 is the set of d-linear funtions on [−1, 1]d and P0 the set of pieewise onstant basis

funtions for the Lagrange Multiplier on [−1, 1]d−1
. The disrete saddle point problem is to

�nd (uh, λn,H , λt,H) ∈ Vh × Λn,H × Λt,H suh that

a (uh, vh) + (λn,H , vh,n)0,ΓC
+ (λt,H , vh,t)0,ΓC

= 〈l, vh〉 , (21)

(µn,H − λn,H , uh,n − g)0,ΓC
+ (µt,H − λt,H , uh,t)0,ΓC

≤ 0, (22)

holds for all vh ∈ Vh, all µn,H ∈ Λn,H , and all µt,H ∈ Λt,H . It is well-known that we

obtain a stable disretization if a disrete inf-sup ondition is ful�lled. In the ase of quasi-

uniform meshes the disrete inf-sup ondition holds if the quotient of the mesh sizes h/H
is su�iently small, f., for instane, [48℄. If di�erent mesh sizes h and H are used, the

Lagrange multiplier has to be de�ned on a oarser mesh leading to a higher implementational

omplexity than using a surfae mesh EC inherited from the interior mesh Th. In our numerial

experiments, we observe osillating Lagrange multipliers for h = H and stable shmes for

H = 2h, whih orresponds to the results in the mentioned referene. Consequently, the

numerial experiments in Setion 5 are based on meshes with H = 2h.
Our de�nition of the disrete dual solution is motivated by the primal-dual-ative-set-

strategy to solve the disrete problem (21-22) outlined in [9, Setion 5.4℄. There, the ative
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and inative sets are based on the surfae mesh EC . Consequently, we de�ne the following

disrete indiator funtions for E ∈ EC :

χc
E (wh) :=

{

1, if

´

E λn,H + uh,n − g do > 0,

0, if

´

E λn,H + uh,n − g do ≤ 0,

χf
E (wh) :=

{

1, if

´

E s (λn,H)− ||E|λt,H + uh,t| do < 0,

0, if

´

E s (λn,H)− ||E|λt,H + uh,t| do ≥ 0.

The disrete bilinear forms are then given by

b̄ch (ωn, v) :=
∑

E∈EC

ˆ

E
ωnχ

c
Evn do,

c̄ch (ωn, µn) :=
∑

E∈EC

ˆ

ΓC

ωn [1− χc
E ]µn do,

b̄fh (ωt, v) :=
∑

E∈EC

ˆ

E
ωt

[

χf
Eλt,H

(

n′ (wh)
)⊤

− s (λn,H) I
]

vt do,

c̄fh (ωt, µn) := −
∑

E∈EC

ˆ

E
ωt (s)

′ (λn,H) (µn)
[

χf
Eλt,h + uh,t

]

do,

d̄fh (ωt, µt) :=
∑

E∈EC

ˆ

E
ωt [max {s (λn,H) , n (wh)} I − s (λn,H) I]µt do

+
∑

E∈EC

ˆ

E
ωtχ

f
Eλt,H

(

n′ (wh)
)⊤
µt do.

The disrete dual problem is to �nd a dual solution zh = (yh, ξn,H , ξt,H) ∈ Vh × ΛH × Λd−1
H

with

a (vh, yh)− b̄ch (ξn,H , vh) + b̄fh (ξt,H , vh) = J ′
u (wh) (vh) ,

(µn,H , yh,n)0,ΓC
+ c̄ch (ξn,H , µn,H) + c̄fh (ξt,H , µn,H) = J ′

λn
(wh) (µn,H) ,

(µt,H , yh,t)0,ΓC
+ d̄fh (ξt,H , µt,H) = J ′

λt
(wh) (µt,H) ,

for all (yh, µn,H , µt,H) ∈ Vh × ΛH × Λd−1
H . We should remark that we use the bilinear forms

b̄ch, b̄
f
h, c̄

c
h, c̄

f
h, and d̄

h
h instead of bch, b

f
h, c

c
h, c

f
h, and d

h
h, sine the dual problem using bch, b

f
h, c

c
h,

cfh, and d
h
h is not neessaryly well posed.

(a) Mesh with path struture (b) Corresponding path mesh

Fig. 2: Illustration of the path struture of the �nite element mesh

In this artile, we use higher order reonstrutions of the disrete solutions for the approx-

imation of w and z, beause this proedure is omputationally heaper than the alulation
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(1)
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(ξH)

Fig. 3: Illustration of i
(1)
2H

of higher order solutions or extrapolation tehniques. The primal and dual displaement u
and y is approximated using pathwise d-quadrati reonstrution, f., e.g., [3, Setion 4.1℄

for this well known proedure. Let i
(2)
2h be the orresponding interpolation operator. For

the evaluation of i
(2)
2h , we require a speial struture of the adaptively re�ned �nite element

mesh. This so-alled path-struture is obtained through the re�nement of all hildren of a

re�ned element, provided that one of these hildren is atually marked for re�nement. This

property is illustrated in Figure 2. For the higher order reonstrution of the Lagrange mul-

tipliers, we use a pathwise linear interpolation i
(1)
2H , it is illustrated in Figure 3. We de�ne

AI ((vh, µn,H , µt,H)) :=
(

i
(2)
2h vh, i

(1)
2Hµn,H , i

(1)
2Hµt,H

)

and obtain the error estimators

ηp := ρ (wh)
(

AI (zh)− zh
)

− C (wh) (ξn,h)−D (wh) (ξt,h) ,

η :=
1

2
ρ (wh)

(

AI (zh)− zh
)

+
1

2
ρ∗ (wh, zh)

(

AI (wh)− wh

)

−C (wh) (ξn,h)−D (wh) (ξt,h) .

To utilize the error estimators ηp and η in an adaptive re�nement strategy, we have

to loalize the error ontributions given by the residuals with respet to the single mesh

elements T ∈ Th leading to loal error indiators ηT . Here, the �ltering tehnique developed

in [13℄ is applied, whih implies less implementational e�ort than the standard approah

using integration by parts outlined for instane in [3℄. An alternative loalization method was

reently proposed in [45℄. The terms onneted to C and D are added to the adjaent volume

ells to the boundary ells.

5 Numerial results

This setion is devoted to numerial tests of the presented error estimator. At �rst, we onsider

an example with known analytial solution in order to hek the auray. Afterwards, a

more omplex example is presented, where we apply a model adaptive algorithm. For results

onerning 3D examples from sheet-bulk-metal-forming, we refer to [6, 46℄.

5.1 First example: Known analytial solution

At �rst, we onsider a 2D Signorini problem with Tresa frition, whose analytial solution is

known. It is a modi�ed version of an example used in [42, 43℄. Let Ω := (−3, 0)×(−1, 1) be the
domain. We presribe homogeneous Dirihlet boundary onditions on ΓD := {−3} × [−1, 1]
and homogeneous Neumann boundary onditions on ΓN := (−3, 0) × {−1, 1}. The possible

ontat boundary is denoted by ΓC := {0} × [−1, 1]. The material law is given by Hooke's

law with Young's modulus E := 10 and Poisson number ν := 0.3 using the plain strain

assumption. By L the number of uniform re�nements based on a oarse initial triangulation
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(a) Plot of uh in Ω and the obstale

(b) λn,H () λt,H

Fig. 4: Numerial solution of the �rst example for MΩ = 24576 and MC = 64
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MΩ L Erel (Ja,1) Ieff (Ja,1, ηp) Ieff (Ja,1, η)

384 0 1.28466 · 10−2 −4.5051 −8.4898
1536 1 1.28322 · 10−2 1.25195 1.31199
6144 2 3.48578 · 10−3 1.01771 1.02354

24576 3 8.89653 · 10−4 1.00401 1.00517
98304 4 2.22857 · 10−4 1.00120 1.00179
393216 5 5.57355 · 10−5 1.00042 1.00068

1572864 6 1.39339 · 10−5 1.00017 1.00029

Tab. 2: Results of the presented error estimators for Ja,1

MΩ L Erel (Ja,2) Ieff (Ja,2, ηp) Ieff (Ja,2, η)

384 0 6.09378 · 10−1 0.48802 0.58637
1536 1 −6.2106 · 10−2 −0.1867 −0.5573
6144 2 8.29963 · 10−3 0.19384 0.54481

24576 3 4.43956 · 10−3 0.44977 0.95398
98304 4 1.09222 · 10−3 0.45098 0.98520
393216 5 2.71978 · 10−4 0.45124 0.99497
1572864 6 6.79232 · 10−5 0.45128 0.99814

Tab. 3: Results of the presented error estimators for Ja,2

is denoted. The analytial solution is alled u(x, y) := (u1(x, y), u2(x, y))
⊤
, where

u1(x, y) :=

{

−(x+ 3)2(y − x2

18 − 1
2)

4(y + x2

18 + 1
2 )

4, |y| < x2

18 + 1
2 ,

0, else,

u2(x, y) :=

{

24
π sin

(

4π(x+3)
3

)

[

(y − 1
2)

3(y + 1
2 )

4 + (y − 1
2)

4(y + 1
2)

3
]

, |y| < 1
2 ,

0, else.

The volume fore is then given by f := −div(σ(u)) and the obstale by g(y) := u1(0, y). The
frition law is Tresa with s = 0.1. The disrete solution wh is illustrated in Figure 4.

We onsider the quantities of interest

Ja,1(u) :=

ˆ

Ω
ω(x) |u|2 dx,

Ja,2 (λn) :=

ˆ 1

−1
(0.5 tanh (20(0.25 − |y − 0.125|)) + 0.5) λ2t (y) dy,

where ω(x) = 0.5 (tanh(20(d − |x− (−0.5, 0) |)) + 1) is a ut o� funtion w.r.t. the dis

B0.5 ((−0.5, 0)). The relative disretization error w.r.t. the quantity of interest is given by

Erel (J) :=
J (u, λn)− J (uh, λn,H)

J (u, λn)
,

and the e�etivity index by

Ieff(J, η̃) :=
J (u, λn)− J (uh, λn,H)

η̃
.

In Table 2, the results for the quantity of interest Ja,1 are listed. We found by analyzing the

data that the e�etivity indies seem to onverge of order h2 to 1 for ηp and η, whih is almost

optimal. When regarding Ja,2, see Table 3, we observe an almost onstant e�etivity index
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(a) Plot of uh in Ω and the obstale

(b) λn,H () λt,H

Fig. 5: Numerial solution of the seond example for MΩ = 24576 and MC = 64

of 0.45 for ηp. However, the e�etivity index is very good. In ontrast to ηp, the e�etivity

index for η seems to onverges to 1 with order h2. From the numerial experiments in [43℄, we

know that i
(1)
2Hλn,H is not of higher order in the integral over ΓC . But, in this approah, the

ontribution of the terms involving i
(1)
2H is so small that we ould not observe this behavior

on the onsidered meshes. Consequently, we obtain an aurate but not asymptotially exat

error estimator. It is one advantage of this approah that it is su�ient to work with the

higher order reonstrution to obtain reasonable results.

5.2 Seond example: Adaptivity

In the last setion, we have examined the auray of the error estimator. Now, we address

the adaptive tehniques. We use the same domain, subdivision of the boundary, and material

law as above. The volume fore is set to zero. The gap funtion is given by 0.1 (y − 1) (y + 1).
We hoose the frition law of Betten s3 with the paramters CT = 0.1, F = 0.4, and n = 3,
f. Table 1. The solution is illustrated in Figure 5, where we show the von Mises equivalent

stress

σM,2(σ, σe) :=

√

σ211 + σ222 + 3σ221
σe

with σe = 1. The regularity of the problem is distorted by three di�erent soures: We observe

stress peaks in the left orners of the domain, where the Dirihlet boundary onditions hange
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Fig. 6: Comparison of adaptive and uniform re�nement for the quantity of interest J1

Fig. 7: Adaptive mesh in the 7th iteration for the quantity of interest J1

MΩ L Erel Ieff
384 1 1.51570 · 10−1 −0.4748
456 2 −2.5789 · 10−2 0.10037
564 3 −1.6315 · 10−2 0.11956
720 4 5.16983 · 10−2 −1.2446
1224 5 2.29215 · 10−2 −4.3496
1800 6 2.26209 · 10−2 7.17555
3624 7 9.97274 · 10−3 3.98811
7224 8 5.02568 · 10−3 1.50262

15432 9 2.31588 · 10−3 1.72271
29016 10 1.25329 · 10−3 1.49387
59868 11 6.02395 · 10−4 1.63777
102840 12 3.46647 · 10−4 1.44213
205392 13 1.78526 · 10−4 1.44686
401856 14 8.86439 · 10−5 1.48696
699960 15 5.36923 · 10−5 1.46484

Tab. 4: Detailed results of the adaptive algorithm for the seond example
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L Erel Ieff Model

1 1.00000 · 100 31.8617

2 −9.4015 · 10−1 −0.7837

3 1.51606 · 10−1 0.691113

4 4.50757 · 10−1 −0.0350

5 6.50010 · 10−2 −0.5200

6 8.74934 · 10−2 −0.6447

7 7.10923 · 10−8 −1.5836

Tab. 5: Results of the model adaptive algorithm for MΩ = 98304

to Neumann boundary onditions. Furhtermore, the transition zones between ontat to non-

ontat as well as between stiking and sliding are problemati.

In the �rst step, we test the mesh adaptive algorithm. We onsider the quantity of interest

J1 (u, λt) =

ˆ

ΓC

λtut do,

whih orresponds to the dissipated energy in this example. We solve this problem based

on a uniform mesh re�nement and obtain a referene value J1,ref = 3.9999331493 · 10−5
by

extrapolation over all alulated values of J1. We use J1,ref to determine the relative error Erel

and the e�etivity index Ieff approximately. The error on the di�erent meshes is plotted in

Figure 6, where we observe a hange of the sign of the error between the 4th and 5th iteration.

We ompare the uniform re�nement with an adaptive algorithm based on η and an optimal

mesh strategy, see [44℄. We �nd a better onvergene behavior of the adaptive algorithm. The

adaptive mesh is outlined in Figure 7, where the left orners of the domain and the transition

zones between ontat to non-ontat as well as between stiking and sliding are well resolved

as expeted. The e�ieny indies of the error estimator are listed in Table 4 and are around

1.4.

5.3 Model adaptivity

We onsider a model adaptive algorithm in this setion. We test it with the example of

the last setion for a uniform mesh of MΩ = 98304 elements. In the initial on�guration,

we assume no frition on the omplete ontat boundary, i.e. s ≡ s0 on ΓC . We solve the

problem and estimate the model error by the estimator ηm. Afterwars, we hoose in the ells

with the largest error a better model, i.e. inrease the model index by 1. Here, a fration of

25% is used. The results are outlined in detail in Table 5. We obtain in the middle of the

ontat zone Tresa frition and on the boundary of the ontat zone the model of Betten.

This orreponds to the expatations, sine λn is large in the middle of the ontat zone and

small at the boundary.

In a seond step, we ombine the model adaptive algorithm with the mesh adaptive one.

Here, we use an equilibration strategy. If |ηm| ≥ Ce |η| with an equilibration onstant Ce ≥ 1,
we ondut a model adaptive step with a re�nement fration of 50%. If |η| ≥ Ce |ηm|, the mesh

is adaptively re�ned. If Ce |η| ≥ |ηm| ≥ C−1
e |η|, we improve the model �rst and adaptively

re�ne the mesh afterwards. The detailed results of the algorithm for the example of the
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L MΩ Erel Ieff Model

1 384 1.00000 · 100 −12.334

2 384 1.51579 · 10−1 0.54735

3 480 −3.1565 · 10−2 −0.2684

4 660 −4.0661 · 10−2 −3.4936

5 876 −1.0422 · 10−2 −0.2474

6 876 6.9472 · 10−1 −0.0742

7 876 4.01757 · 10−2 −5.3661

8 876 4.00031 · 10−2 −5.7265

9 1308 2.82515 · 10−2 −31.910

10 1908 1.97301 · 10−2 2.47728

11 4116 8.48886 · 10−3 2.62066

12 7116 4.80574 · 10−3 1.08973

13 14112 2.27704 · 10−3 1.05157

14 26736 9.95986 · 10−4 0.83356

15 61104 2.32142 · 10−4 0.47734

16 61104 4.50727 · 10−3 1.01859

17 94260 4.32043 · 10−3 0.97587

18 94260 3.83807 · 10−4 1.18358

19 230868 1.52591 · 10−4 1.24280

20 433512 8.27891 · 10−5 1.17654

21 943560 3.80197 · 10−5 1.25396

Tab. 6: Results of the mesh and model adaptive algorithm for the quantity of interest J1
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Fig. 8: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform re�nement

for the quantity of interest J1

Fig. 9: Adaptive mesh in the 12th iteration of the model and mesh adaptive algorithm
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L MΩ Erel Ieff Model

1 384 −6.5283 · 10−4 0.05562

2 480 4.15588 · 10−3 3.88737

3 552 1.10060 · 10−3 −1.4788

4 1032 3.80930 · 10−4 4.00148

5 3432 −1.4927 · 10−4 3.91706

6 3432 −9.5859 · 10−4 3.28939

7 8160 −9.8240 · 10−4 3.42586

8 8160 −1.6305 · 10−4 0.72628

9 30936 −1.4366 · 10−4 0.79535

10 30936 −2.8915 · 10−5 −0.0136

11 30936 6.27223 · 10−6 −1.0887

12 119520 1.81614 · 10−6 0.67998

Tab. 7: Results of the mesh and model adaptive algorithm for the quantity of interest J2

last setion are given in Table 6. We observe the same model distribution as for the model

adaptive algorithm. In the �rst iterations, the model is roughly hosen and afterwards only

small orretions at the boundary of the ontat zone are onduted. We ompare the mesh

adaptive, the mesh and model adaptive, and the uniform approah in Figure 8. We see that

the mesh as well as the mesh and model adaptive algorithm lead �nally to similar results

with a better auray than the uniform approah. This observation is substantiate by the

omparison of the generated adaptive meshes, f. Figure 7 and 9. They only show small

deviations.

The quantity of interest J1 is foused on the fritional fores and the tangential dis-

plaement on the ontat boundary. Thus it is loated on the ontat boundary. To test a

ompletely di�erent setting, we onsider the quantity of interest

J2(u) :=

ˆ

Ω
ω̄(x) |u|2 dx,

where ω̄(x) = 0.5 (tanh(20(d − |x− (−2.5, 0) |)) + 1). Here, J2 is loated at the left end of

Ω. In Table 7, the results of the model and mesh adpative algorithm are listed. In ontrast

to the results onerning J1, the model is hanged later and Coulomb's model is used more

frequently. The adaptive mesh in the 9th iteration is depited in Figure 11. Here, more

re�nements in the middle and in the left orners of the domain are found. The results of

the three di�erent re�nements approahes are ompared in Figure 10. The mesh and model

adaptive algorithm performs best.
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Fig. 10: Comparison of mesh adaptive, model and mesh adaptive, as well as uniform re�ne-

ment for the quantity of interest J2

Fig. 11: Adaptive mesh in the 9th iteration of the model and mesh adaptive algorithm for the

quantity of interest J2
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6 Conlusions and outlook

We have derived goal oriented a posteriori error estimates with respet to the disretization

as well as model error for disretizations of fritional ontat problems in this artile. The

presented approah leads to an aurate estimates even using higher order reonstrution,

although it is not asymptotially exat. Furthermore, it is based on a linear dual problem

and diretly measures the error in the fritional ontat onditions, whih is neessary for

the estimation of the model error. However, it is not lear, whether the remainder terms

are of higher order or not. Numerial results substantiate the assumption that they are of

higher order. However, a preise analysis is a topi of further researh. A further ontent is

the extension to dynami ontat problems. Espeially here, the preise onsideration of the

error in the ontat onditions is needed to aurately resolve impat phenomena.
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