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Abstract

In this article, we consider coupled parabolic hyperbolic problems, as they arise in thermoelasticity.
Starting from a space time finite element discretization, a goal oriented a posteriori error estimated based
on the dual weighted residual (DWR) method is derived, which measures the discretization error in space
and time as well as the numerical error, where the splitting of the spatial and temporal error is based only
on the properties of the used patchwise higher order reconstruction. We present an adaptive strategy,
which balances the spatial and temporal discretization error as well as the numerical error. Finally, some
numerical examples substantiate the efficiency of our approach.

Keywords: coupled parabolic hyperbolic problems, adaptive finite element method, dual weighted resid-
ual method

1 Introduction

In many engineering problems, the interdependency of mechanical quantities like the stresses
and the temperature plays a dominant role. One example is the deep hole drilling process with
minimum quantity lubrication (MQL), where the drilling process on the one hand induces heat
into the workpiece and on the other hand due to the resulting thermal stresses large workpiece
deviations occur, which can lead to the total failure of the process. A detailed description of this
process, of its macroscopic modelling, and of an efficient finite element simulation can be found
in [8]. One key question in designing a solution approach for such coupled models is to rate the
strength of the coupling between the mechanical and the thermal part. For instance in [8], it is
shown that the coupling is very weak such that the solution of the mechanical and the thermal
part can completely be decoupled saving a large amount of computation time. The aim of this
article is to develop a methodology, where the strength of the coupling is automatically measured
and the solution process is adaptively adapted.

The presented approach relies on a posteriori error control especially the dual weighted residual
(DWR) method. For a general overwiev of the DWR method, we refer to |4, 6], where also a first
approach to error control concerning the discretization of the heat as well as the wave equation
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is included. An enhanced method for nonlinear parabolic problems is presented in [31] and
applied on optimal control problems with nonlinear parabolic constraints in [24]. This ansatz
is extended to nonlinear hyperbolic problems of second order in [26]. The adaptive optimal
control of such a type of problem is discussed in [18]. The estimates significantly simplify for
quasi-periodic solution, cf. [10, 12|, where model adaptive algorithms are also considered. A
different linearization is used in 32| to derive the error identity. Beside the DWR approach,
there exist a lot of other methods for a posteriori error estimation in literature. For an overview
concerning parabolic problems, we refer to the textbook [35], where also first convergence results
are discussed. Adaptive methods for hyperbolic problems of second order are rarely studied in
literature. One approach, which is used to estimate the error in global norms, is based on finite
difference discretisations in time. Here, separate error estimators are used for the space and the
time direction [9, 20, 36] or error estimates for the whole problem are derived [1, 7]. The other
approach, which is used here, is based on a space-time Galerkin method. Discontinuous Galerkin
schemes are the basis for the error estimators presented in [2, 15, 19]. There, the norm of the error
in the last time step is controlled, where the dual solution is estimated by analytical arguments
and not solved numerically. The same approach for a continuous space-time Galerkin method
is presented in [14]. Several results concerning goal-oriented adaptive finite element methods for
structural dynamics are published by the group of Schweizerhoff |16, 17, 21, 25|. An important
topic of their work is the reduction of the numerical effort of the error estimation, which is also
considered in |34]|. Coupled parabolic hyperbolic problems are, e. g., considered in |2, 33].

The approach to a posteriori error control of the discretization error used in this article is
an extension of the methods presented [26, 31| to coupled parabolic hyperbolic problems. It is
based on a space-time finite element discretization of the underlying problem. Since we have an
hyperbolic part in our system, we use globally continuous ansatz functions in space and time
while the test functions can be discontinuous in time. This approach ensures energy conservation
under suitable assumptions, see for instance |26, Proposition 1.2.7|. Using apropriate quadrature
rules, it corresponds to a Crank-Nicolson scheme of second order. In every time step, a coupled
problem in the displacement and in the temperature has to be solved, where a staggered solution
sheme is used, i. e. a fixpoint iteration consisting in alternately solving w. r. t. the displacement
and the temperature. We apply the general framework of the DWR method for estimating
the discretization error in some user defined target functional, cf. e. g. [6], on this space-time
setting, which gives rise to a so called dual problem and a special dual time stepping scheme,
which does not coincide with the Crank-Nicolson scheme. As usual in DWR methods, we have to
calculate higher order approximations of the primal and dual solution to approximate the analytic
error identity. Several approaches are known in literature, see [4]| for an overview. Here, we use a
patchwise reconstruction of higher order, since this approach is numerically cheap and allows for a
splitting of the spatial and the temporal error. Measuring the strength of the coupling corresponds
to estimating the error in the staggered solution scheme. To this end, we adopt the techniques
presented in [23, 27, 28] for measuring the numerical error in the DWR method considering static
problems. Roughly speaking, the numerical error correlate to the primal residual tested with the
dual solution. The information of the error estimator is used in an adaptive strategy to balance
the numerical, spatial and temporal error.

The article is organized as follows: In Section 2, some notation and the underlying analytical
problem setting is introduced. Followed by a description of the space time finite element dis-
cretization in Section 3, where the resulting time stepping scheme is presented in the appendix,
Section A. The main part of the paper is Section 4, where the a posteriori error estimate is
derived in several steps. First of all, the analytic error identity involving the primal and dual



2 Problem setting 3

residual plus a remainder term is proven, see Section 4.1. The error identity involves the analytic
and discrete dual problem, which are discussed in detail in Section 4.2. The corresponding dual
time stepping scheme is outlined in the appendix, Section B. The error identity involves the an-
alytic primal and dual solution. Thus it cannot be evaluated directly. We introduce a numerical
approximation scheme in Section 4.3, which also allows us to split the spatial and temporal error.
Finally, the error estimate is localized to the single mesh cells in Section 4.4, where the concrete
terms are given in the appendix, Section C. The error estimator is utilized in the adaptive al-
gorithm discussed in Section 5 and outlined in detail in the appendix, Section D. To illustrate
the properties of our adaptive ansatz, we discuss several numerical examples considering linear
and nonlinear thermoelasticity in Section 6. In the end, we draw some conclusions and present
an outlook to further open questions.

2 Problem setting

In this section, we present the underlying general problem formulation having in mind ther-
moelastic problems. Some concrete examples are discussed in Section 6. At first, some nota-
tion is introduced. Let © € R? d = 1,2,3, be a bounded domain with a piecewise polygonal
boundary I'. The boundary I' is decomposed in the mutually disjoint parts I'p and I'y. The
basic function spaces are given by L? (), which provided the scalar product (u,v) = Joq uv da

is a Hilbert space, and £2(Q) = (L? (Q))d. Furthermore, we use the Sobolev space H (£2),
which consists of all functions in L? (Q) that possess first weak derivatives also in L? (Q), its
subspace H}, () = {ve H'(Q) ‘U|FD =0}, where vr, denotes the trace of v on I'p, and
Hp (Q) = (H} (Q))d. Dual spaces are generally marked by a * and the dual pairing is de-
noted by (-, -). To study Sobolev spaces involving time, we use the Bochner integral theory. Here,
X is a real Banach space with norm ||-||. The space L? (I; X) consists of all strongly measureable

functions ¢ : I — X with
1/2
2
el = [l dt) <

where I = [0, 7] denotes a time interval. Weak derivatives w.r.t. time are marked by superposed
dots. If X is a Hilbert space, the space-time scalar product is denoted by ((u,v)) := [; (u,v) dt.
In general, an outer parenthesis denotes the integration over I. Finally, we define the basic
function space, which contain our weak solution, by

U 2 .2
- e 1L, )
Vo = {9 e L2 (I; H}, () ‘9’ e L2 <I; (Hb (Q))*) } .

It should be remarked that u € C (I;H}, (Q)) and @ € C (I;£* (Q)) holds for a function u € V3
as well as 6 € C (I; L? () for § € V5.
Now, we are able to define a weak solution of our general problem:

Definition 1. We say the displacement u € V; and the temperature 6 € V5 are a weak solution
of our general coupled parabolic hyperbolic problem, if

by (i, x) + a1 (u;0) (x) = li(x) (1)
b (0,0) + a2 (3) () = 1o () (2)
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holds for all x € H} (), all w € H} (Q) and a. e. t € I as well as if the initial conditions
u(0) =us, u(0)=wvs, 6(0)=0;

are satisfied. Here, b; and by denote weighted dual pairings. In our applications, the weights
are specified by some physical constants like density. The semilinearforms a; and as represent
the differential operators of the elasticity equation and the heat equation respectively. The right
hand sides are given by the linearforms /1 and ls. Finally, we have the initial values us € H} (),
vs € L2(Q), and 05 € HE (Q).

The basis of our discretization is a space-time formulation of the general coupled parabolic
hyperbolic problem. To this end, we rewrite (1) as a system of first order in time by introducing
the velocity v = @ as additional variable, where the equality is only weakly enforced. The
equations (1) and (2) are integrated over the time interval I and the initial conditions are weakly
included. To ease notation, we use

Vo= {ve L (I; (Hp ()") |6 € L* (I; (L2 (2))") }

as the basic function space with n = 1,2,3, which imposes somewhat stronger assumptions on
the solution than V7 and Va. Finally, the space-time formulation reads:

Definition 2. A function w = (u,v,0) € V = V4 x V4 x V! is called a weak solution of our
general coupled parabolic hyperbolic problem in space time form, if

A(w) (p) =0

holds for all ¢ = (x,%,w) € V with

A(w) (p) = (b1 (@ —v,))+ (b1 (D,x)) + (a1 (4;0) (x)) — (1 (X))
+ (bg <9,w>> + (a2 (B;u) (w)) — (l2 (w))
+b1 (u (0) — us, 9 (0)) + b1 (v (0) — vs, X (0)) + b2 (6 (0) — b5, (0)) -

Due to the stronger assumptions in V', b; and by can be seen as weighted L2-scalar products here.

In our general setting, the question of existence and uniqueness of the solution w has to be
left open. For our discretization and a posteriori error analysis, we assume that the space time
semilinearform A is three times continuously Fréchet differentiable w. r. t. the first argument,
that an isolated weak solution w € V according to Definition 2 exists, and that the Fréchet
derivative of A leads to a well-posed linear problem in the neighbourhood of w.

3 Discretization

We use a space-time finite element method in this work. Let us start with the temporal part of
the discretization. The time interval I is decomposed into M € N subintervals I, = (ty—1, tm]
with

O=to<ti<...<ty =T and I:{O}Uflu...UIM.
The length of a subinterval I,,, is denoted by k,, = t,, — t;,—1. The time instances t;, ¢ €

{0,1,..., M} correspond to the time steps in a finite difference approach. We also call this
decomposition temporal mesh Ty.
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(a) Mesh with patch structure (b) Corresponding patch mesh

Fig. 1: Illustration of the patch structure of the finite element mesh

The spatial domain €2 is subdivided by meshes T7", which consist of quadrilaterals for d = 2
and of hexahedrons for d = 3. To realize adaptive mesh refinement, we allow for so called (spatial)
hanging nodes in the meshes. Furthermore, for the evaluation of the presented a posteriori error
estimate, we require the meshes to have patch structure, see Figure 1 for an illustration. Here,
we say, roughly speaking, a mesh has patch structure, if one can always merge 2¢ adjacent mesh
elements to one patch element. We refer to [26] for more details. The sequence of meshes in the
single time steps is called My, := (T}") << -

The spatial finite element spaces are based on d-linear basis functions and nodal degrees of
freedom, i. e. we choose

Viti={p e Hp () |VT €T} : o7 € Q1 (T, R) }.

Here, Q1 (7,R) is the set of d-linear basis functions on a mesh element 7. Because of V;* C C (Q),
we have to ensure the continuity of the discrete functions in hanging nodes by imposing the
resulting constraint in the discrete systems.

The test space of the space-time Galerkin method is given by

Wi, = {cp cL? (I; (H}) (Q))n) |cp‘1m € Po(L; (ViM)™), m=1,2,....,M, ¢(0) € (V}?)n} .

Here, P, (w,X) is the linear space of polynomials on w C R with values in X, which have
the maximum degree ¢g. Functions from W}, are piecewise constant in time and are possibly
discontinuous at t;, ¢ = 0,1,..., M. The definition of the trial space V;} is more involved, since
it is difficult to ensure the global continuity, if the spaces V;" vary. Then hanging nodes in time
arise and have to be treated in an appropriate way. A temporal hanging node is a degree of
freedom, which is contained in V;" but not in V,Zn_l or vice versa. We work with the approach
presented in [5, 22, 31] for parabolic problems. A discussion of hanging nodes in time in the
context of the wave equation is given in [3]. We use linear temporal basis functions and choose
the usual Lagrange basis of Py (I;,; R)

_ t—tm—1
= o .

0 (t) = and 71" (t)
We define the set of the local basis functions by
PP = span {7'6’"‘ (v =H" (th)"} .

The space P} coincides with Py (I,; Vi*), if th_l = V™ =V}, holds. The trial space is given
by

Vi, = {gokh € C (I (HE (Q))n) “th\lm e PP, m = 1,2,...,M}.
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Spatial basis functions from V};n_l, which vanish when stepping from t,,_1 to t,,, are only con-
nected to the temporal basis funtion 7y, which is zero at t,,. Spatial basis functions from V™,
which arise when stepping from t,,_1 to t,,, are only coupled with the temporal basis function
71 and 71 vanishes at ¢,,—1. Thus, all functions in Vi, are globally continuous. Using the above
definitions, we state the discrete problem formulation:

Definition 3. A function wg, = (ugh, Vkh, Okn) € Vin = V,fh X Vgh X V,%h is called a discrete
solution of our general coupled parabolic hyperbolic problem, if

A (wgn) (kn) =0 (3)
holds for all Pkh = (th,l/}kh,wkh) S th = Wl?h X Wl?h X Wl%h

The discrete problem (3) can directly be solved leading to a d + 1 dimensional problem.
However, the special structure of the test space Wy, allows for a decoupling of the single time
intervals I,,,. By this, the discrete problem (3) can be reduced to a time stepping scheme. However,
we only compute an approximation wyp to wgp, resulting from the solution of the discrete coupled
system here. For the evaluation of the time integrals, we use the trapezoidal rule. This approach
results in a Crank-Nicolson method for the system of first order. For the hyperbolic part, it
corresponds to Newmark’s method. Furthermore, we can eliminate the velocity from the arising
system in each time step. Thus, we only need to solve an nonlinear equation in the displacement
gy and the temperature Oxn. The complete time stepping scheme is outlined in Algorithm 9
in the appendix in Section A. In the first step, the discrete initial values a determined as L?-
projection of the continuous ones. We use a staggered solution scheme, which is given in the
steps 3 to 7. Firstly, the solutions of the preceding time step are prOJected on the current mesh
by P7*. Here, we solve equatlon (13) w. r. t. the temperature 6’kh for fixed ukh ~! first. Then
the new displacement ukh is determined using 6’kh by solving equation (14). In step 6, we check
the usual stopping criterion for a fixed point iteration. After the convergence of this iteration,
the velocity ©}} is calculated in the post processing step 8, where equation (15) corresponds to a
simple L2-projection, which reduces to a linear combination of vectors, if th_l =V, holds.

4 A posteriori error estimation

The aim is to derive an a posteriori error estimate for the discretisation error in a more or less
arbitrary functional, which represents the quantity of interest. We consider functionals of the

type T
J(w) = /0 Jy(w) dt + Ja(w(T)), (4)

where Jy, Jo € V* are three times continuously Fréchet differentiable. The form of J specified in
(4) considers two typical situations: One is interested in the mean value of a quantity over I or
in the value at the end point.

4.1 Derivation of the error identity

The derivation of the error estimate is based on optimization arguments. To embed the error
estimation in the optimization context, we define the Lagrangian

L(w,z) :=J(w) — A(w)(2)



4 A posteriori error estimation 7

for w,z € V. The connection between the Lagrangian and the general coupled parabolic hy-
perbolic problem becomes apparent as soon as we consider the Fréchet derivative of £ w.r.t.
z:

L, (w,z) (dw,§z) = —A(w)(§2). (5)

It corresponds to the weak formulation of the general coupled parabolic hyperbolic problem. In
the discrete case, we recover the space-time Galerkin approximation. The Fréchet derivative
w.r.t. wis

Ly,(w, 2)(0w,02) = J'(w)(w) — A'(w)(6w, 2), (6)
which defines the so called dual problem.

Definition 4. The function z = (a, v, 9) € V is called dual solution if
J (w)(dw) — A'(w)(dw, z) =0 (7)
holds for all dw € W. The discrete dual solution zy, = (ﬁkh, Vkh, ékh) € Wy, is specified by
Vowgn € Vin = J' (wen) (Swen) — A" (win) (Swgn, zxn) = 0. (8)

We call its numerical approximation Zi,. The time stepping scheme for the determination of Zxp
is presented after the derivation of the a posteriori error estimate.

The point (w,z) € V x V is a stationary point of £, i.e.
L' (w, 2) (0w, §z) =0 (9)
for all (dw,dz) € V x V. Analogously, (wip, zxn) € Vin X Wiy, is a stationary point of £, i.e.
L' (wen, zkn) (wgn, dzxn) = 0 (10)

for all (5wkh, 5Zkh) € Win X Vin.
The following a posteriori error analysis is complicated by the facts that on the one hand in
general

L' (Wgh, Zkn) (wkn, 02kn) 7 0
and that on the other hand Wy, g V. We obtain the following result:

Proposition 5. Let A and J be three times continuously Fréchet differentiable, the continuous
stationarity condition (9) and discrete one (10) hold, as well as Wy, € Vi, and Zpp, € Wiy, are
approzimations of win € Vip and zxp € Wipn. Then we have the error identity

J (w) — J (wkh)

Z%/:/ (Wkh, Zen) (W — Wihy 2 — Zkn) + A (Drn) (Zen) + Rin (11)
Z% [0 (Wp) (2 = Zgn) + p* (Wkn, Zkn) (W — Wrp)] + A (W) (Zrn) + Rih-

Here, the primal residual p is given by

p (Wn) () == L (Wrp) (-) = —A (Wgn) (+)
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and the dual residual p* by
p* (Wkhs Zkn) () 1= Loy (Drny Zen) (-) = T (W) (1) = A (Wxn) (-5 Zn) -
The remainder term
Rin = % /0 1 {J" (Wkn + s€) (€,¢,¢) — A" (wyp + s€) (€, €, €, Zpp + s€7)
—3A" (W, + s€) (€,6,€")} s (s — 1) ds
1s of third order in the primal error € := w — Wgp, and the dual error €* := z — Zyy,.

Proof. Introducing the notation = := (u, 2), Zgp := (Wkh, Zkh), and L (z) := L (u, z), we obtain

1
L(x) — L () = /0 LG+ s (@ — ) (@ — Bun) ds.

For the trapezoidal rule, we have the error representation

1 1
| r@as=500+ 5+ [ e
for f € C?((0,1)). Bringing these two things together leads to
J(w) = J (wpn) = L(x)+ A(w) (2) = L (Zxn) + A (0rn) (Zkn)

1
_ /0 L (& + 5 (v — Fx) (& — Ep) ds + A (ign) ()

1 B B 5 5 1 - -
= §ﬁ' (Wihs Zin) (W — Wi,y 2 — Zin) + 5/3/ (w,2) (W — Wkp, 2 — Zip)
+A (Wgn) (Zrn) + Rich-

By a density argument, cf. [22, Theorem 6.2] for the parabolic and [26, Proposition 1.3.2] for the
hyperbolic case, we can finally show that £ (w,z) (w — Wgp, 2z — Zkp) = 0 and therewith finish
the proof. 0O

4.2 Dual problem

The error identity (11) involves the quantities z and Zyp, which are defined by the stationarity
conditions (9) and (10) as solutions of the variational problems (7) and (8), respectively. These
problems are called the continuous and the discrete dual problem, respectively. Let us now take
a closer look at the continuous dual problem. The Fréchet derivative of A w.r.t. w is given by

A () (bw, ) = (bl (5'u ~ v, @)) + (b1 (&u, u)) + (dh. (u0) (Bu, @) + (a) o (u; 60) (56, 7))
+ (b2 (96,0) ) + (abp (65u) (56,0)) + (ab, (65u) (3u,0))
+b1 (3w (0), v (0)) + by (v (0), % (0)) + ba (66 (0),6(0)) .

We use integration by parts to shift the time derivative from the test functions to the solution
variables and obtain

A (w) (bw,z) = — (b1 (6v, 9 + 1)) — (b1 (6u, D)) + (a'l u (13 0) (Ou, ﬂ)) + (a'lﬂ (u; 0) (46, ﬂ))
)

+b1 (6u (T), 0 (T)) + by (6v (T),a (T)) + bz (06 (T),0(T)).
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The Fréchet derivative of J is
J'(w)(0w) = Jp(w)(0u) + J,(w)(dv) + Jo(w)(50)

T
_ /0 T (w) () dt + J5,, (w(T)) (5u(T))
T
+/0 J{’U(w)(év) dt + Jé,v(w(T))(‘SU(T))
T
+ /0 T o(w)(60) dt + Jb (w(T))(56(T)).

Testing equation (7) with 1 = (du,0,0), @2 = (0,6v,0), and @3 = (0,0, 66) for arbitrary ou € V¢,
dv € V¢ and 66 € V!, we obtain the system

— (b1 (6, 8)) + () (w3 0) (O, @)) + (ayy (65 0) (3, 0)) + by (u (T),5(T)) = Ji(w)(ou),
— (by (60, 0+ @) + by (@(T),60(T)) = J,(w)(dv),

- <bg (59,@)) + (abg (0;u) (60,0)) + (d} g (us 0) (56, )) + by (36 (T),6(T)) = Jj(w)(66).

This formulation provides more insight into the structure of the dual problem. The first important
observation is that the dual problem starts at 7" and runs backward in time to 0. Consequently,
the initial values are specified for T'. Furthermore, the dual problem is linear. The homogeneous
Dirichlet boundary conditions of the primal problem are transferred to the dual problem. The
nonhomogeneous Neumann boundary conditions are transformed into homogeneous ones. The
descriptive interpretation of the dual solution is that it represents the influence of a certain
space-time point (x,t) onto the error measured in the functional J.

Let us now take a closer look at the discrete dual problem specified in equation (8). We
observe that the discrete solution Zp is contained in the test space Wy of the primal problem,
i.e. Zp is a piecewise constant function in time. Thus, the approximation of the dual problem is
globally of maximum order k. However, we are not interested in an accurate numerical solution
of the dual problem but in an accurate a posteriori error estimate. The time stepping scheme
resulting from (8) differs from the primal time stepping scheme described in Algorithm 10 in the
appendix in Section B. For the derivation of the dual time stepping scheme from (8), we rewrite
the Fréchet derivative by means of elementwise integration by parts and using 2, =0 as

A’ (W) (Owgp, Zgp) = i‘/f: {— (b1 (0Vkh, Vkh)),y, + (a'm <ﬂkh;§kh) (5ukh,akh)>m}

m=1

+ ﬁ/[: {(a'l,e (akm ékh) <56’kh, ékh))m = b1 ([th] 757)127;1)}

m=1

+ f: {—bl (O] s > S ) + (a/gﬁ <0~kh§akh> <50kha§kh>)m}
m=1

+ f: {—52 <[§kh] . ,592};1> + <a'2,u (ékh;ﬂkh) (5ukh,§kh))m}
m=1

b1 (8ol ) + br (oulh, 5 ) + ba (96, 600)
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Fig. 2: Tllustration of the interpolation operators z',(gl) and zéi)

Here, the jump of a possibly discontinuous function w at a time instance t,, is defined by

m,+ . m,— m,+ _ wm,—

w = limw(t), ,w™ =lmw(), W], =w

tltm tm
Using special test functions, we can now deduce the dual time stepping scheme. It is outlined
in Algorithm 10 in the appendix in Section B and consists of solving two coupled Helmholtz
equations and a simple L2-projection.

4.3 Numerical approximation of the error identity and error splitting

We have discussed the numerical solution of the dual problem, which is needed to evaluate the
error identity (11). However, the identity (11) contains the weights w — Wy, and z — Zgp. The
weights measure the approximation or interpolation error of the spaces Vi and Wiy w.r.t. the
continuous solutions w and z. We are not able to evaluate these terms exactly. In literature,
many approaches to approximate these terms are proposed, see, e.g., [4] for an overview. The
idea to use a higher order reconstruction of the discrete solutions wgp and Zgp has turned out to
be an accurate and efficient approximation. Thus, we also use this idea here. Furthermore, it
allows us to split the spatial and the temporal part of the error, see Lemma, 6.

In space, we need a higher order reconstruction of the d-linear basis functions. Consequently,
we work with d-quadratic basis functions to define the reconstruction. For d-quadratic basis
functions, which shall be based on nodal values, 3¢ nodal values are needed to determine the
basis coefficients. We use the patch structure of the spatial meshes to obtain these nodal values,
see Figure 1 for an illustration. The function space, which contains the interpolating functions,
is

VD™ = {p € L (Q) VT € Th : o1 € Q2 (TiR) }, (12)
where T3} is the mesh of the patch elements in the m'-time step and Qs (7;R) is the space of the
d-quadratic basis functions. Eventually, we obtain the operator zéi) V= V;,?’m, which maps
a finite element function from V)™ into the space VQ(}?’m. Furthermore, we define the projection
) = i) —id.

For the definition of the space time interpolations of higher order, we set Vlgl’l) = Vin,
V;ﬁ%” = Wih,

kh|Ln. € Po (Im; Vg(}?)’m) ; } ‘

02) ,_ 2(r1-H:
=1,..., M, 2h
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We set Tél) = 79 and 7'1(1) := 71 the linear temporal basis functions on I,,. The quadratic
temporal basis functions on I, U I, are given by
tm — 1) (T —1
7_(52)(15) — (tm — 1) (tm+1 )’
km (km + km-‘,—l)
t—tm—1) (¢ —1
7'1(2)(15) — ( m—1) (tm+1 )’
kmkm—i—l
t—tm—1)(t—1
7’2(2)(15) o ( m—1) ( m)

(km + km—i—l) km—i—l ’

Furthermore, we define

75?"’2 = {Ti(l)cpi ©0; € VQ(E)’m_Hi, 1=0,1 },
Py = {Poleie vt i=01,2],
7557,12 = {7'@(2)%' i € ‘/2(2)’”1_1”, i=0,1,2 }
Finally, we denote
Yo {Qﬁkh € C (I HS () ‘gpkhum P, m=1,2,... ,M}
(2

for 4,7 = 1,2. In time, we use the spatial interpolation operator of higher order i, transferred
to the one dimensional case for the interpolation of piecewise linear and continuous functions.

The approach is illustrated in Figure 2(b). The interpolation is named zéi) For the piecewise

constant temporal basis functions, we specify a linear interpolant z',(gl). The idea is exemplified in

Figure 2(a). We define the projections
" =il —id and 1) = i) —id

for the temporal interpolants.
Now, we are able to define our space-time reconstruction of higher order. For ¢ = 0,1,2 and
j=1,2let ¢ € sz,;] ). The function ¢ can be represented by the temporal basis functions 7)™

in the form
M

olet) = 3 7M@) - o (x)
m=0
with ¢™(x) € V;™. We define three different space-time interpolation operators: The first one
only interpolates the spatial part and is given by

B v
0, t) = Y M) il (@),
m=0
for j =0,1,2. Let
i](€j+1,z') . V}gl,i)_)VIEJ}'l—i—l,i)7

M
i o) = ST o a),
m=0
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for j = 0,1 and ¢ = 1,2 be the interpolation operator, which only interpolates the temporal part.
The operator interpolating in space and time is

;leJrl 12) : V(j7)_>v(]+1 2),

1,2 1) _(j (2) m
i 0 Zz” Dm(t) i) o™ (@),

for 7 = 0,1. We are now able to define the space time projections. They are given by

2 ol pli2), n§? =% —id, j=0,1,2,
v v oy, m =) i, =12,
) Y, i, H@m i) _iq, j=12,
e il Sl ovge, e e

H(k Ve v, Hgéé)h = l(czh2) —id.

We have stated the higher order reconstruction for the scalar case to ease the notation here. They
can directly be extended to vector valued functions. Now, we can state the approximation of the
error identity (11):

(w) — J (k)
[p (Wkn) (2 = Zkn) + p* (D, Zkn) (W — Dn)] + A (Wrn) (Zkn) + Rin

[,0 (k) (H;(:,’gz;zikh) + p* (Wkhs Zn) (H%?Q)hmkh)] + A (i) (Zen)
=t N+ Nt

N RN~

Beside the approximation of the weights by the specified projections, we have neglected the
remainder term Rygp. It is of third order w.r.t. the error e, thus of higher order. Therewith, we
are able to define the error estimator 7. It should be remarked that the approximation sign “~”
only occurs here in the derivation of the error estimate. In every other step, only real “=" signs
occur. Furthermore, no other “higher order arguments” are involved. In [31], the derivation is
based on the semi- and the full-discrete problem formulation to split the spatial and the temporal
error estimator part. There, the unknown semi-discrete solution has to be approximated by the
full-discrete one, which involves a higher order argument. In contrast to this, we use the following
lemma to split the spatial and the temporal part of the a posteriori error estimate:

Lemma 6. The following identities hold:

ngl7,22h) _ Z.](€172)H(0,2) H(Ll)
_ Ay | o),
02y = i@2nld 4y

o (2,2)7(2,1) (1,2)
=y Uy TG

(L,1)

Proof. Let ogp, be an arbitrary function from V,,””. Since @y is a tensor product function in
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space and time, we obtain

2,2 (2,2 (2,1 (2,1
Hgk,z)h‘ﬂkh = Z/(fh )sﬁkh — i )sﬁkh + Z;(C )s%h — Pkh
(2,2) (.(1,2 2,1
= Zz(f ) <Z§L )sﬁkh - sﬁkh) + Hék )sﬁkh

(2,2) (1,2 2,1
= Z;(C )th )SthJngk ) onn

Furthermore, we have

Hgié)h‘:pkh = il(g2};2)90kh — Pkh
= Z'/(f;{z)sﬁkh - i(l’z)sﬁkh + ig’z)sﬁkh — Pkh
= i? <i;(g2’1)90kh - @kh) + 1157 o
= i Y o + 1157 g
The indentities for H,(€122h) are derived analogously. O

Definition 7. Let us now define the spatial error estimator terms

n Lr o 0,2) - (= s 1,2) -
T = 5 |P (Wgn) <H;h )zkh) + 0" (W, Zrn) <H§h )wkh)] ;

; 17 ) - .- (2, 2) .
Ny = 3 p (Wgn) <Z£1’2)H§(;{2)Zkh) + 0" (W, Zkn) (Z;(f 2)H§22)wkh)} ,

and the temporal error estimator terms

N = % :,0 (Wrn) <H](€171)2kh) + p* (Wrn, Zkn) <H§%1)U~)kh)] )
ny = % :,0 (Wkh) <i§Ll’2)H;(€l’1)§kh> + p* (Wih, Zin) (ifz)ﬂi’l)@khﬂ .
Furthermore, we set
i =g+ s
Min = 1+ 7

Lemma 6 directly implies the following Corollary:
Corollary 8. It holds
= Nni = Nin-

Here, we focus on 7,; as the experiences in |26, Section 1.4] show no differences between the
approaches. The numerical results substantiate that both n; and 772 measure the spatial error
and that 7; as well as 7, represent the temporal error.

4.4 Localization of the error estimate

The localization in temporal direction is conducted as follows: We split the integral over I into
the sum over all subintervals I,,, 0 < m < M and the error estimate in the initial values. For
this purpose, we define

M M ‘ M
M= =Y ng™, and = Y nip
m=1

m=0 m=1
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The detailed form of n,i’m is presented in Section C.1 and of ;"™ in Section C.2 in the appendix.

Up to now, we have localized the error estimate to single temporal subintervals. This local-
ization is sufficient for the adaptive temporal refinement. We have to localize the spatial error
estimator nZ’m to the single mesh cells in every time step for the spatial mesh refinement. In
literature, three different techniques to realize the spatial localization of DWR, type error estima-
tors are known: We have cellwise integration by parts of the differential operator, which leads to
very complex algorithms, see for instance [4], partition of the unity, cf. [30], and nodal filtering.
We apply the third approach, which goes back to [11]. Let

{a;.” . ) — R+ (j —1,2,...,N™ := dim (V™) 2! }
be the nodal Lagrange basis of (V,:n)QdH and

{6}”:9—>R2d+1 |j:1,2,...,Nm}

2d+1 _
the basis of (V(2) ) . Furthermore, wi* € R, j = 1,2,..., N™, are the coefficients of wy},
i.e.
Nm
Wy, = Zw?’a;ﬁ and th Wiy, = Zwmﬁ] .
j=1

Nm)T. In the same way, we define the coefficients 2" of Z;. The value
. n,m
of the error estimator 7, can then be expressed by

We set w™ = (w{”’,...,wm

Nm Nmfl
nm __ Pm m Dm_ m Dm_ m—1
" —Z(‘I’J +¥; ])+ZAJ Wi
Jj=1 J=1

where \I/f’m, \I']D’m, and AjD’m represent the assembling of the error estimator w.r.t. the difference
of the d-quadratic basis {f3;} and the d-linear one {«;}. The space

Vo o= {gp e L?(Q) ‘VT € Ty}, : i1 € Q1 (T; R)}

consists of bilinear basis functions on patches. Because of the patch structure of the meshes, we
have V;; € V™. The operator zgh) Vi — Vi interpolates a function from V™ in V53!, We

define the operator m := id — ZSL) and call 7 filtering operator. The nodal vector w™™ denotes
the coefficients of the filtered function 7w} w.r.t. the basis oy, i.e.
Nm
Ty, = Y w; " ay.
j=1

The interpolation operator zgl) is the identity on V5. Thus, we obtain

+(2)

(2
iy —may = ig)a; — a; = B; — ay,
The linearity of the second argument leads to

Nm Nm 1

nva:Z<\I[fm ;rm+\I[Dm 7rm) Z ADm T, m— 1
j=1
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see [11] for the detailed calculation. We end up with the nodal values \I/f’mz;r’m, \I']D’mw;r’m
j , which provide a sufficient localisation, cf. [11]. Finally, the nodal values have to
be shifted from the nodes to the cells. We use the method presented in [11], i. e. we simply take

the mean value of the values of all nodes, which are the vertices of the mesh cell.

, and
AD,mwﬁ,m—l

5 Adaptive algorithm

We work with two different approaches to the spatial adaptivity. In the first approach, we set
Vit = V) for all m = 0,1,...,M, i. e. the meshes do not change from time step to time step.
However, the underlying mesh T}, is adaptively refined. This method is called constant mesh
approach (CM). The alternative is that the meshes can change from time step to time step. We
call this the dynamic mesh approach (DM). Using the presented localization methods, we obtain
error indicators n?r’m for all 7 € T} and all m = 0,1,..., M. The sets

O = {\ni’m\‘mzl,Q,...,M}
M
oFt = {n?:Z!n?’m! TeTh},
m=0
DM ]% n,m m
Gl = {k_‘n’f ‘ TeT ,sz,l,...,M}

are the basis for the adaptive refinement, where the scaling factor #/k,, with k= T/M compensates
the linear dependence on k,, of n?r’m in order to obtain globally comparable indicators. In some
cases, additional modifications of the spatial indicators may become necessary, cf. [26, Section
2.1]. The numerical error due to the staggered solution scheme is measure by 7" := A (Wgn) (Zxn)-

The adaptive solution algorithm for the dynamic mesh approach is outlined in detail in Al-
gorithm 11 in Section D and illustrated in Figure 3. We ommit the detials for the constant mesh
approach, since it involves only obvious simplifications of the presented algorithm. Let us com-
ment here on the essential parts of the algorithm, where [ denotes the current iteration number.
We have to specify in advance an initial spatial and temporal mesh as well as the parameters of
the staggered solution scheme. Furthermore, a safety factor ¢y € (0,1), which ensures that the
numerical error is some orders smaller than the discretization error, and a equilibration constant
ce > 1 for the weighting of spatial and temporal error have to be given. We usually work with
cr = 1073 and ¢, = 5. The first step is the determination of the solution wf,gh of the primal prob-
lem (3). For this purpose, we use the time stepping scheme outlined in Algorithm 9 in Section A
in the appendix. Since we need wg, during the solution of the dual problem and the evaluation
of the error estimator, we have to save it on the harddisc. These operations are referred to as
“primal” in Figure 3. The backward or dual problem (8) is solved in the next step (“dual” in
Figure 3), where we use the time stepping scheme outlined in Algorithm 10 in the appendix
in Section B. The dual solution z,ih is also saved on the harddisc, because we need it in the
evaluation of the error estimate. The evaluation of the error estimate and the calculation of the
refinement indicators is performed next (“estimate” in Figure 3). On one hand, we evaluate the
error estimate specified in Definition 7. For this purpose, we evaluate the terms given in Section
C.1, C.2, and C.3. On the other hand, we calculate the refinement indicators on each cell, i. e. we
have to evaluate the localized form of the error estimator. The refinement indicators are saved on
the harddisc for their use in the refinement strategies. After the evaluation of the error estimate,
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time step 0 time step 1 time step M
------- > primal \_>\ primal |[—> - |—>[ primal |
dual dual |<—| -+ |<—| dual |

C\ estimate \—>\ estimate |—>| -+ |—>| estimate \j

y

—ye—% STOP

no

J yes

(>‘ refine ‘—)‘ refine ‘—)‘ ‘—)‘ refine ‘j

(>‘ forward ‘—)‘ forward ‘—)‘ ‘—)‘ forward ‘

C‘backward‘(—‘backward‘(—‘ e ‘(—‘backward‘

T T T T T T T T T T T T TN

J yes

(>‘ temporal ‘—)‘ temporal ‘—)‘ e ‘—)‘ temporal‘ . Y

OO et teration | <Geseeeesesseesnesnen <.

Fig. 3: Tllustration of the adaptive solution algorithm based on the dynamic mesh approach
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we check the stopping criterion (“stopping?” in Figure 3), for instance if the estimated error is
smaller than a given tolerance. If it is fulfilled, we stop the iteration with the desired solution
wy;,- If it is not, we test whether the estimated numerical error is small enough, |1
or not. When the numerical error is dominant, we directly start a new iteration of the adaptive
solution algorithm. Otherwise, we reduce the discretization error by adaptive refinement. The
first step of the adaptive refinement procedure is to decide, whether the temporal mesh ']I‘f,C , if

n,l
nh )
the spatial mesh sequence M. | if
il
s
or both, if
n,l -1
Ce Tlh e )

should be refined. In Figure 3, we illustrate this step by “spatial?” and “temporal?”. A similar

strategy can be found in [31]. If no spatial refinement is needed, we set ML = MlH and skip the

spatial refinement. We begin the spatial refinement with the determination of the set @DTMI It

contains all mesh cells, which are chosen for refinement by the optimal mesh strategy, of. [29].
For the determination of @DMl all refinement indicators of the mesh sequence Mh are compared.
This should lead to a maximum efficient discretisation, since all available information is used in
the refinement strategy and it is not restricted to a single time step. For the spatial adaptive
refinement, we use the algorithms presented in [26, Chapter 2|. We conduct three single steps
here. In the first one, all marked cells are refined. Then, the spatial meshes in each time step are
regularized such that they have patch structure and contain only single hanging nodes in space.
These two steps are named “refine” in Figure 3. In the last step, mutiple hanging nodes in time are
removed. To this end, we need a forward ( “forward” in Figure 3) and a backward regularisation
(“backward” in Figure 3), cf. |26, Section 2.3|. If it has been decided not to refine the temporal
mesh, we set Mth = Mlh, ']I‘f,:rl = ']I‘f,C and skip the temporal refinement. Otherwise, we use again
the optimal mesh strategy to determine the set @2 - 1t contains the temporal mesh cells, which
are marked for refinement. Then the temporal mesh is adaptively refined. Thereby, we have to
modify the spatial mesh sequence M?l, since the number of time steps is changed and a specific
spatial mesh is connected to each time step. If a time step is refined, we have to add a spatial
mesh, call it ']THI m+1/2 i I\\7JII+1 Possible choices for ’]I'ﬁj_l’m—’_l/z are ’]I'ﬁ:rl’m, ’]I'ﬁ:rl’erl or, e. g.,
the mesh consisting of the ﬁnest cells of ’]I‘lJrl " and ’]I‘ﬁ:rl’mH. We simply insert ’]I‘ﬁ:rl’mH. This
is referred to as “temporal” in Figure 3. After the adaptive refinement, we increase the number
of the iteration cycle [ and restart the iteration with the solution of the primal problem.

6 Numerical examples

In this section, we consider several numerical examples concerning the application of our adaptive
framework, where two different underlying models are used. The first one consists of linear
thermoelasticity, whereas in the second one several nonlinearities are included.
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6.1 Linear thermoelasticity

Here, we only shortly present the model of linear thermoelasticity, a more detailed discussion is
for instance included in [13]. We set

bi(pw) = (ppw), oweL*(Q),
a1 (u;0) (x) = (Ce(u)+00ld,e(x)), u,x €Hp(Q),0€ Hp(Q),
h(x) = (f,x), x€LQ),
by (p,w) = (epp,w), @,we L’ ),
as (u;0) (x) = (kVO,Vx)+ (efstr (e (1), x), uweHp(Q),0,x€H (Q),
o(x) = (¢.x), x€L*(Q).

Here, the material density is denoted by p > 0, the linearized strain tensor by € (u) = % (Vu + VuT)
as well as the elasticity tensor by C, which is a fourth order tensor determined by the elastic mod-
ulus E > 0 and Poisson’s ratio v € [0,0.5). The connection between heat and displacement is usu-
ally described by the coefficient of thermal expansion o > 0. Here, we use the stress-temperature

modulus
_ ol 3v i1
=i o \l—w ’

which leads to a more convenient formulation. The volume forces are given by f € L? (I ; L2 (Q))
The specific heat is denoted by ¢, > 0 and the conductivity by x« > 0. The heat generated
by the elastic deformation is determined by efstr (¢ (%)). The inner heat source is specified by
qe L*(I;L*(Q)).

We choose the domain Q = (0,1)? and homogeneous Dirichlet boundary conditions on 952,
ie. I'p = 0Q. The time interval is given by I = [0, 1]. Furthermore, we specify the parameters
p=E=rk=c,=1,v=03,and a = 1073 as well as the analytical solution

7
(2, y.t) 50 (64" 2 @) (- 057 + (- 0.625)7)
u(z,y,t) = o fe
20 (t— 1) 2 (2, p) ((x ~ 0.5 - 0.0625v3)” + (y — 0.4375)2> "
7/10

3/2 9
O(x,y,t) := 100 (t - g) z(x,y) ((x — 0.5+ 0.0625\/5) +(y— 0.4375)2> ,

with z (z,y) = 2 (z — 1)y (y — 1). The volume forces f, the inner heat source ¢, as well as the
initial conditions wus, v, and O, are calculated based on u and 6. We consider the quantity of
interest

J(w)://u1 + ug 4 0 da dt = 0.0163187678 . ..
I1JB

with B = [0.25,0.75)%.

We denote by N the total number of spatial mesh cells and by M the number of time steps.
In Table 1, we outline the error estimator n,i for a fixed temporal mesh and the estimator 7;
for a fixed spatial mesh, respectively. We observe that the error estimators are approximately
constant, if we vary the spatial mesh for n}; and the temporal mesh for 7, respectively. Thus,
the estimators 77;@ and 71y meet the expectation to be approximately independent of h and k,
respectively. A direct consequence of this fact is that the indicators 7;" depend linearly on k,
which needs to be compensated in the adaptive strategy.
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| M N . | M N ny
1200 12,800 —2.93158 - 107 1] 10 1,024 | —2.80260 - 10~°
2| 200 51,200 —9.19793 - 10~7 220 1,024 | —2.52073 - 107°
31200 204,800 | —6.11811-10"" 3| 40 1,024 | —2.52819 -107°
4 | 200 819,200 —5.36550 - 10~7 41 80 1,024 | —2.54982-107°
51200 3,276,800 | —5.16700- 10" 5160 1,024 | —2.55852-107°
6 | 200 13,107,200 | —5.11873-10~7 6| 320 1,024 | —2.56353-107°
71200 52,428,800 | —5.10674 - 1077 71640 1,024 | —2.56770 - 107°
Tab. 1: Developement of the error estimator 7}, for fixed temporal and 7} for fixed spatial mesh,
respectively

| M N L E.q It

1| 10 640 21 —1.52943 -10 1.35183

2| 20 5,120 42 —3.11951-107* 1.37868

3| 40 40,960 80 —1.10382-10~% 2.05974

4| 80 327,680 160  —1.97408 - 10~° 1.53549

51160 2,621,440 320 —4.62124-1076 1.70509

6 | 320 20,971,520 640 —1.76392-1076 8.41146

71640 167,772,160 1,280 —1.02975-10"% 2.49093

Tab. 2: Devolopment of the error for uniform refinement in the first example

l M N L Ere I

1 10 640 10 —1.5294-10~%  1.35106
2 20 5,120 20 —3.11951 - 10~  1.37497
3 40 36,160 40 —1.11967 - 10~*  2.06148
4 80 275,840 80 —2.03484 - 1075 1.49947
5| 160 2,080,000 160  —4.93344-107% 1.38472
6| 284 14,635, 088 284  —2.05623-107% 2.04664
7| 544 28, 366, 336 544  —1.47233-107% 2.45806
811,080 221,944,320 1,080 —1.93684-10"" 1.26259

Tab. 3: Development of the error for adaptive refinement using the constant mesh approach in
the first example
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Fig. 4: Adaptive meshes in the constant mesh approach

In a second step, we test the adaptive algorithm. Since the spatial singularities of the analytic
solution do not depend on time, we work with the constant mesh approach. We denote by L the
total number of fixpoint iterations, the relative error by

J (w) — J (wgn)

Erc = s
: J (w)

and the effectivity index by

I o J(’LU) — J(wkh)

eff -— .

n

In Table 2, the results for the uniform refinement are listed. We find that the rate of convergence
is reduced, which has to be expected because of the low regularity of the analytic solution. The
results of the adaptive algorithm using the constant mesh approach are outlined in Table 3. We
observe an improved convergence rate and that the estimator is more accurate in the adaptive
approach. Exemplary adaptive meshes are depicted in Figure 4. We observe spatial refinements
in the midlle of the domain, where the single singularities are not resolved. The temporal mesh is
uniformly refined in the majority of the cases. We find smaller time step lengths in the beginning
and the end.

6.2 Nonlinear thermoelasticity

In this section, we extend the linear model considered in the last section by some nonlinearities.
On the one hand, we assume a linear temperature dependent conductivity, i. e.

k(0) = ko (14 56)

with constants kg, 8 > 0. On the other hand, we consider the St. Vernant-Kirchhoff material law
taking large deformations into account. Therefore, we define the strain tensor

1
€(u) = 3 (Vu +Vu' + VuTVu)
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M N L Frel
100 19,200 258 3.55026 - 102
200 153,600 516  6.17390 - 103
400 1,228,800 842  1.16529-1073
800 9,830,400 1,600 3.59487-1074
1,600 78,643,200 3,200 9.59380-107°

T W N |~

Tab. 4: Devolopement of the error for uniform refinement in the second example

and the deformation gradient F'(u) = Id 4+ Vu. The semilinearform a; is then given by
a1 (u;0) (x) := (F (Ce (u) + 001d) ;e (1)), u,x € Hp(Q), 0 € Hp ().

In this example, we consider the L-shaped domain Q = (—0.5,0.5) x (—=0.5,0) U(—0.5,0) x (0,0.5)
and the time interval I = [0,2 ++/0.125]. We specify the parameters p = 2700, E = 106,
v =033 a=24-10"% Ky = 220, B = 0.05, and cp = 900. Furthermore, we set the initial
conditions and the volume forces to zero. For the displacement and the velocity, we assume
homogeneous Dirichlet boundary conditions on 02, whereas homogeneous Neumann boundary
conditions are considered for the temperature on 0{2. We define the function

(—0.25,0.5 —t) ", 0<t<t,
T
_ t—tl t—t
) =4 (S -025,-58) . h<t<th,
(t —tg,—0.25) ", ty <t < ts,

with t1 = 0.5, to = t1 + v/0.125, and t3 = to + 0.5 as well as the set
K(t) = {(az,y)T € Q( ((:c,y)T - c(t)‘ < 0.125},

where |-| denotes the Euclidean vector norm. The inner heat source is then given by

103,  t<tsand (z,y) € K (1),

0, otherwise.

q(z,y,t) = {
We counsider the quantity of interest
_ 8 2 -3 2
J (w) —/ 10° |u (2, y, t3)|" + 107" (0 (2, y, t3))” dz.
Q

Since the analytic solution of the presented example is not known, we calculate a reference
value of the quantity of interest by extrapolation over all calculated values of J in the uniform
mesh approach and obtain

Jref = 0.10759787968.

We use the numerically determined reference value to calculate the relative error. It is outlined for
the uniform approach in Table 4 and for the dynamic mesh approach in Table 5. The last value of
the adaptive algorithm seems to be more accurate than the reference value such that we ignore the
calculated error in this iteration. We achieve with the dynamic mesh approach the approximately
same accuracy as with the uniform approach using half the number of unknowns. The temporal
mesh is depicted in Figure 5, where large time step lengths are used in the beginning. The adaptive
meshes are outlined in Figure 6. We observe only few refinements in the beginning, which follow
the heat source. For ¢t > t3, the adptive meshes follow the diffusion of the temperature.
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M N L Frel
100 19,200 100 3.55049 - 102
188 92, 700 188 1.87003 - 102
366 633,816 366  —3.4622-1073
724 4,378,752 724  —2.5334-107*
1,442 28,424,544 1,442 —2.8798-10~*

U W N |~

Tab. 5: Development of the error for adaptive refinement using the dynamic mesh approach in
the first example

e 1072

(o} T
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% 91 N
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< 1 |
)

= L1

éo (= | | 8
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Fig. 5: Temporal mesh in the 5'"-iteration of the adaptive algorithm in the second example

7 Conclusions and outlook

In this paper, we present an adaptive algorithm for solving thermomechanical coupled problemns,
which especially estimates the numerical error introduced by the staggered solution scheme. By
this approach, the a posteriori error estimator measures the strength of the coupling between
the mechanical and thermal part of the model and can significantly reduce the numerical effort.
As usual in DWR methods, we have to introduce some numerical approximation to obtain an
evaluable error estimate, which can up to now only be justified by numerical examples, see Section
6, or under high regularity assumptions, cf. [4]. The main disadvantage of the presented approach
lies in the fact that we must compute the whole primal and dual solution to obtain an estimate of
the numerical error. It would be much better to directly have such an estimate at hand during the
solution of the primal problem. It is one topic of further research to construct algorithms, surely
involving some additional approximations, which provide such type of information. An other
research field is the extension of the presented result to coupled parabolic hyperbolic problems
involving plasticity and friction as further sources of heat. However, these problems need a
completely different approach because they are modelled by variational inequalities.
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7 Conclusions and outlook
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Fig. 6: Adaptive meshes in the 5" iteration of the adaptive algorithm in the second example
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A Primal time stepping scheme

Algorithm 9. Specify a stopping tolerance TOL > 0 and a maximum number of inner iterations
MAX € N.

1. Calculate the discrete initial values by solving

Vi, € (Vf?)d : (apn) = (us,¥p),
Vxn € (V;?)d : (Tpsxn) = (s, Xn)
Y, € V2 (égh,wh) = (fs,wpn).

2. Set m = 1.
3 Set l=1,ay," = Ppraf, 0 = Prog.

4. Solve the nonlinear equation

-~ 1 il ~mid—1 ~m.l—
by (Gkh’l,wh) + §k7ma2 <9k;£l§uk}{l 1§uk}{l 1) (Wh) (13)
nm— 1 om—1, ~m—1, ~m— 1 m m—
b (A5 ) = S (B 5 ) )+ S 17 )+ )]

which has to hold for all wy € V™, w. r. t. é,j;ll € V;" by a damped Newton method.
5. Determine the solution ﬁﬁ;l € (th)d of the nonlinear equation

b ~m,l ]‘kz ~m7l. émJ

1\ U s Xn ) + 1 m@1 \ Urp 3 Yk, (Xh)
o S 1 1. Frm—

=by (a7t xn) + kb (0757 xn) — ZFmar <UZ2 Lom 1) (xn) (14)

1 _

+ Zkrzn [ () + 171 ()]

for all x5, € (th)d using a damped Newton scheme.
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6. If Hukh — u?hl 1H + Hézzl - é;'";ll 1H < TOL or i = MAX, then set a}}, = ukh and 07} =
92’;1, go to 8.
7. Set [ <~ 1+ 1 and go to 4.
8. Calculate 07} € (th)d by solving the linear equation
by (7%, ) = by <%u?h /jn“?h g 17%) (15)

for all ¥y, € (th)d using a CG-method.
9. If m = M then STOP.

10. Set m <~ m + 1 and go to 3.

B Dual time stepping scheme

Algorithm 10. Specify a stopping tolerance TOL > 0 and a maximum number of inner iterations

MAX € N.
1 Setl=1,m=M—1,a"0 =0,6M1° 0.

2. Determine the solution ﬁ%’l € (VhM )d of the Helmholtz equation

bl (5Uh,ukh ) + kMal U (Ukh,ekh) ((SUh,ﬁ%’l)
= —ijzv[%,u (ekmﬂkh) <5uh79kh ) +7 k‘MJ1u (@Wkh) (Oun)
1
+§f€MJ£,u (@) (Bun) + §k‘MJ1,U (@) (Bun) + Jo, (@hr,) (Sun)
for all duy, € (VhM)d using a CG-method.
3. Solve the Helmholtz equation
by (59h,9kh ) + k;MaM (Hkh,ukh) (59h,9le>
1 - ~
= —ngalLe (Ukh; ekh) <59h7u£/}[Ll 1) + kMJ1 0 (wkh) (06n) + J5 0 (wkh) (60n) ,
which has to hold for all 66, € VhM, w. r. t. é%’l € VhM by a CG-scheme.

4T Hukh =i+ (@ 0| < TOL or i = MAX, then set @lf = ap’

9%—9kh,goto6
5. Set [ <~ [+ 1 and go to 2.

6. Calculate vkh (Vh ) by solving the linear equation

- 2 - s 2 .
b1 (Svn, Dppy) = Ebl (vn, upp) — J1v (ps) (6vp) — EJQ’U (wp7) (Svp)

for all dvy, € (VhM)d using a CG-method.

and
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_ :m70 _ mE=m—+1 m70 _ m:m—i-l
7. Set [ =1, uy, =Pru™, 0,7 =Pro; .

8. Determine the solution ﬁZ;;l € (V,:”)d of the Helmholtz equation

~ 1 ~ N ~
by (az’”;;‘, 5uh) + R (arns 0, ) (dun ')

- 1 - 1 ~ -
= b (5 0un) + 5 U+ 1) by (Sun, 55 = Rk (505 ) (Gun, 75

1 ~ 1 5 7
—Zkfnaé,u <9ﬁ%ﬂ%> (5%, 9%) — k1), <0,§’”;l;ﬂﬁ> (5uh, 9;73;’1)

1 . 1 .
+ka (km + kmt1) J{,u (Wgp) (dup) + ) (km + km+1) J{,v (Wg) (Oup)

for all duy, € (th)d using a CG-method.

9. Solve the Helmholtz equation
] 1 7} ~m Hm
by (9,@1, 59h> + Shmab (9,22; ukh> (59h, ekh)
= 1 ~m . pm =m 1 ~m . gm =m
— b2 <92;L+17 60h> — §]€ma,179 <ukh7 9kh> (59h,ukh) — §km+1a/1’€ (ukh’ ekh) (60h,ukh+1)

1 aom . ~m om 1 ~m
—§km+1a,2,9 <9kh%ukh> (59h’9kh+1) + 5 (B + k1) J1o (Win) (96n) ,

which has to hold for all 66, € V™, w. r. t. 6™ € V™ by a CG-scheme.

10. 1f |y’ = | + o' = 0| < TOL or i = MAX, then set iy, = ! and 6, =
5,?;;1, go to 12.
11. Set [ <=1+ 1 and go to 8.

12. Calculate o7} € (th)d by solving the linear equation

~ k:m ~m 2 =m =m
by (dvn, Upp) = — kHbl (dvn, 05") — b (g, = i, ovn)
km + km 1 ~m
- <7k ~ > J{,v (W) (0vp)

for all dv,, € (V;™)? using a CG-method.
13. If m =1 then go to 15.
14. Set m <~ m — 1 and go to 7.

15. Solve the linear equation

bo <9:2h,59h) = _%klall,ﬁ (ﬂghQégh) (664, tjy,) — %klalze <égh§ﬂ2h) (59h7§1ih)
by <§;h, 59h) n %kl,}{ﬂ (@25) (50,)

which has to hold for all 66, € V,?, w. r. t. égh € V}? by a CG-scheme.
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16. Determine the solution ﬁgh € (V}?)d of the linear equation
=0 1 ~1 ~1 1 /.0
bl (ukh,5vh) = 5]@1[)1 (5’L)h,vkh) + bl (Ukh,(S’Uh) + 5]?1:]17” (wkh) (5Uh)

for all duy, € (V}?)d using a CG-method.

17. Calculate 1:)2h € (V}?)d by solving the linear equation
= 1 ~ i ~ 1 ~ . ~
by (Opp, Sup) = —§/<71a/1,u (ugiﬁegh) (Oun, gp) — §k1a/2,u <92h3u2h) <5uh’91ih)
. 1 -
+by (@éh, 5uh) + §k1‘]{,u (wgh) ((5uh)
for all dvy, € (V,?)d using a CG-method.

C Concrete terms of the error estimator

Here, we collect the concrete terms of the error estimator w.r.t. the temporal and the spatial
part.

C.1 Temporal error estimate

This section is devoted to the detailed derivation of the temporal error estimator. For the evalua-
tion of the a posteriori error estimate, two different interpolation methods of higher order in time

(1)

are needed. The first one is 4, ’, which is linear and is used in the case of piecewise constant trial

(2)

functions. The other one is ¢5,”, which is quadratic. Piecewise linear functions are extrapolated

by this method. The interpolation operator z’l(:) is defined as

a tm—t 1 t—tm
z,(g)vkh(t) = ”;C—mvzz +T:v,%

with ¢t € I, and vg, € Wyy,. The evaluation of the interpolation at different time instances results
in the terms

(1)

iy Vkh (tm) = Ugp
(1 _
z,(Q )vkh (tm—1) = wvpp, !
(1 1 _
Z](g )Ukh (tm_%> = §/€m [’UZ;L + ’UZ;L 1] .

(2)

The interpolation operator iy, is defined as

(2) (tm =) (b1 — 1) 1 (E—tm—1) b1 — 1)
t) =

fak van(F) b o+ k) % Rk F

(t —tm—1) (t — tm)va

(km + km+1) ki1 0

for t € I, U Ip+1 and vy, € Vip. The basic evaluation terms are

(2 _ (2 (2
ng)vkh (tm—1) = V]2, ng)vkh (tm) = vip,, ng)vkh (tmt1) = vt

+
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and

. 1 km—l—l + lkf'm 1 k
t > . 2 m— 1 m
Yok Vkh ( m—j 2 Fom + g 2 AT L

_l k%@ ,Um+1
4 (km + km+1) km+1 kh

i(Q)U (t 1> — _1 kr2n,+1 ’Um_l + 1 1 4 km—i—l Um
2k Vkh \ "m+ 3 4 kpy (ki + k1) kh 5 —ka Lh
lmvmﬁ—l
2 ko + ki1 P

with

1 1
tm_% = 5 (tm—l + tm) and tm-i—% = 5 (tm + tm+1) .

Using this interpolation ansatz, we are able to write down the temporal error estimator
i,m
M
1 - : - L . .
= 5 [p (wkh) <1§i)ﬂl(€l)2kh> + p* (wkh,zkh) (Zéi)ﬂggwkh) }
m m
1 . - 1 - . _ 1 . . -
= [_aA(wkh) <Z$3H/(€1)zkh>] + [gJ{ (W) <Z§L)H§3wkh) - §A/ (W) (Zggnggwkhﬂ
m

= [nz?pu + nlzr,bpv + nlz?pe] + |:77]1;r,bdﬂ + nlzr,bdf) + U]erdé]

m

for 0 < m < M. Using suitable quadrature rules, we obtain for the single terms

Mhopu = % [(bl <’Ukhﬂéh)ﬂ( )Ukh>>m + <a1 (@kh;ékh) <Z‘§)H;(€1)?7kh>)m]
S (gmn),
_ %bl (Uﬁ Gt ) (e 1)> N %mal (ag}L;é,;’";L) (zgifa?h)
—%nm <ﬂkh_% Nm__> <z ) ukh—l-ﬂ?h 1))
o ) (4 )
+% [—21;” (i) + 20 () @y + ) + 10t (i) g - 3&;;;))] ,
Mhepy = —% (bl (akh - @kh,iéi)ﬂg)?:fkh))m

L P 1 s )
= o (@ — il (5 — ) ) — spkmbn (7 + 20575 (50 — ) ) -
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Nhpo = % [(b2 (ekh Zg} . )H:kh>>m + <a2 (ékh;@kh) (zéi)ﬂ,(f)ékh))m}
g (6 (S1000))
o i o)) + S ) (5
_ 1

Meda = %/1 J1u (Wpen) (zéi)ﬂéi’akh) dt — % (a'Lu <ﬂkh;§kh> <Z§L)H§3ﬂkhaﬁkh)>m
—% (alzm (@h%kh) (iéi)ﬂéi)ﬂkh 5kh>> + 1b1 ([lz%h] ,iéi)néi)ﬂ%)
b g a (90) + 2 ) ()]

K _m—1 2 m—3
+?J{,u <wkh ) <gh) ;k)“kh 2)

+%m [allu (akmh-e,’j;) (g}a%ﬁﬁ) +al, (ﬂ?h_l %—1> (zé??uzz 1 “Zﬁﬂ

—k?mallu <ukh 9 2) <'§i)i§i)ﬂz§fé ﬂkh)

+— {an (ekh ukh) ( g, Ukhs 9kh> + a2u (9"2 L Sy 1) (Zgz)“kh ! ekh)]
1
2

’fm M g (2),(2) ~m
3 “/2u <9kh Uy, > <2hz2kukh 279kh )

/ T (Den) (515 T ) dt
Im

3 [0 (G 50) 0 (B, 50
_ _%m 1.0 @) (#58) + 1 () (1550 |

K, _m—1 2) (2 3
+?J{,v <wkh 2) <gh)zgk)vkh 2)

km . 2 ~m ~m— ~m, k: 2 l ~m
_Fbl (Z;h) (Ukh + Upy, 1) a”kh) + ?bl < éh)zgk)vkh Za’Ukh) )

=

>

Ry

|
+ N | =
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UZ?dg = %/Im J{,e (W) <Z'$L)H§z)9 > dt — % (ale <ukh79kh> <$L) gk)ekhvekh»m
—% (alz,e (ékhQ ﬂkh) (iéi)ﬂéi)ékh,ékh»m + 1bz ([ékh} ZgL) ék)ekh)
= —]%m [J{,e (wg) ( (2)9kh) + 10 () < o O 1)]
v (o) (520070
o Lot o (a0 (1900718 + oo (a0 ) (000 )
—k?mai,e (ﬂﬁ_é;éﬁ_ > (éi) gc)ekh %j‘%)

+]%n [aé,e)( LT;L"&Z;L> (2 Hkhvekh> +ah g (9m L 1) (iéi)éﬁ_l,éﬁﬂ

km ’ m—— ~m m 5
2 2 m
3 azp | U, 2h sz wh o Okn | -

C.2 Spatial error estimate
In this section, we give the single terms of the spatial error estimator n;. In the first time step,

we obtain
o = _% o (8 — n T, ) + by (o — e, D ,) + 8o (8 — 6,150, )|
+% [bl (ailm — Uiy ng)f)lgh) + b (%h — Vs ng)ﬂgh) +bo <§Iih — O, ng)éigh)]
For a time step 0 < m < M, it holds

o
= %h {p (Wkn) (Hé%z)fkh>m + p* (Wrh, Zkn) (Hgiz)’@kh> m]
- —%A(wkh) (n;%)zkh)]m + BJ{ (i) (Hgf)wkh) - %A’ (T (ngz)wkh,zkh)}m
=t [0 s+ ]+ W8+ TR+ g -
The single terms result using suitable quadrature rules in
e = [ 76), (o () (1500)), (0 (1570)
- —%bl (o — o 1) - %al (s 03) (1057773
) ) . [ () 1)
W, = s 5 (b1 (e = 90, 152500 )
)

. 9) ~ k.
= ——bl (ukh Upy, 17H§h)”1%> + Imbl (Ukh + U, ! ALy, v kh)
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33

m
Tlh,pG

m
M, dg

=5 (0 (O 18700)) -+ (a2 (i) (0520)) = (12 (15000))

= gt (00— 0 507) ~ S () (157
o (O (02A,) + 5 i () + 5 ()]

= %/Im J1 0 (Wrn) (H%’Q)ﬁkh) dt — % (all,u (ﬁkh;ékh) (H%z)@kh,ﬁkh»m

- (aé,u (ékh;ﬂkh> (H;[m@kh, ékh))m + %bl ([’l:)kh]m 7H§L)a%>

~m-+1 ~m (2) ~

= B oy (W) 4 Gy ()] + g (s - o )

k 0 = e ~
= [ (i) (a0 )+ (a0 (o )

k ~ = ~ =
—= o, (O ) (a0 ) +as,, (05 ap ) (08 a0 | -

1 N .
Nheds = 3 /1 J1.0 (k) (Héf)vkh) dt
+ 2

% [<b1 <H;2’2)17kh, lzum))m + by <[ﬁkh]m 7H;;3@27;)]

= B [t (o) + 4 o7 ()

k N PR ]
=y (1) (55 + o) ) + b (G — A G, ) |

= %/Im J{,Q (Wkn) <H%£2)ékh> dt — % <a/176 <’L~Lkh§9~kh> (ngz)ékh,akh))m

-1 <a/2,9 (ékh§ ﬂkh) (Hgf)ékh, gkh))m + %bz <[§kh}m vngl)éﬁ)

10 i) (0507 + 1o () (050 ) | + %bQ (Gt = O35 07, )

2) gm—1 =m

aho (01 ) (590 ) + g (a0 ) (05500 )|

k&
o () (M0, 00 + s (a5 (M2, 0)]
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In the last time step, we only have to modify the terms connected to the dual residual. We obtain
1 - 1,2) ~ 1 2 1 2
77}%@ = 5/1 J{,u (Wkn) (th )ukh> dt + 5']5711( ) <th) kh) - §b1 <Ukth( )ukh>
M

—% <a’17u <ﬁkh; ékh) (H%Q)akhaﬁkh))M — % (alg,u (ékm @kh) <Hg£2)ﬁkh7§kh>>M
- [J/(N )(ng) U, +J,<~ )(Hg} i 1)}

+§J2,u( h) (HSB kh) b1 <5%7H§3@%>

B (o (a0 “MM) vy, (a8 (e ) |

_kTM [alzu <9kh’ukh) ;i)al%’éﬁ) +al2,u <9M 17 ~£/{L 1) (Hgg I]gL ! 01%)} )

(H
(H

s = %/IM Jy (Wkn) (ngz)@kh> dt + lJé,v( i) < ;h) kh)
(b1 ( éh’ )Ukhavkh>)M - _bl (Ukhanggf’%>
_ 2 () (W) + a1, () (W2al )] + 5, () ()
Pty () () i) i (D).
”%dé = %/ J1 9 (Wkn) (H%Z)e ) dt + 5 Jze (@ph) (Hgi)§%> - %bz <§%=Héi)é%)

Iy

(o ) (0570 )), (o (3 (18570 00)),
= o (0 >(Héiekh)+Jle< ) (50
+= J29 i) (15)6) ——b (0% 15 o)
l%wUMM%%MMM@ﬁ%M@mWW
At (st ) (WS B2 + b (4t (W82
C.3 Numerical error estimate

In this section, we give the single terms of the numerical error estimator 7. In the first time
step, we obtain

7710t = —h (ﬂgh - Usﬂ:)/gh) —b (’Dgh Usvukh) ba (ekh 987§2h>
+b1 (allch — U, 52h) + b1 (@ih — Oty ﬂgh) + b2 <9_Iih — O, él%h)
For a time step 0 < m < M, it holds

iy = [A (Orn) (Zen)lp = [0 + M0 + 10t -
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The single terms result using suitable quadrature rules in

mitw = (b1 (Okns tikn)),, + (al <1~Lkh§ ékh) (@h)) — (I (ugn)),,

~m ~m—1 =m m, ~m . om ~m
= by (O, — Oyt uRn) + - (ukhS 9kh) (urp)
km ~m— A — ~m km m /=m m— =m
"’7“1 (ukh l?ekh 1) (ugy,) + 9 (17 (agy,) + 17 ! (afh)]

nr, = (b (ﬁkh - @kh,’l:)kh))m

- k -
_ ~m ~m—1 =m m ~m ~m—1 =m
= b (ukh = Ugp, vvkh) — b (Ukh + Vg, 7vkh) )
2

Mo = (bz (ékha 5kh>>m + <a2 (ékm ﬁkh) (ékh))m - (12 (@m))m
= o (05— 0 00) + s () (01

o i) im) + 5 [ () - ().

D Adaptive solution algorithm for the dynamic mesh approach

Algorithm 11. Set the number of maximum iterations of the staggered solution scheme MAX and
the stopping tolerance TOL, a stopping criterion, an initial spatial mesh I, an initial temporal
mesh ']I‘g with M© time steps, a safety factor cr € (0,1), a equilibration constant ¢, > 1, [ =0,
and M} = (In)o<m< aro-

1.

I

. Use the optimal mesh strategy to determine ©,

Solve the primal problem by the time stepping scheme given in Section 9 using MAX and
TOL. Save wfm.

Solve the dual problem by the time stepping scheme outline in Section 10 using MAX and
TOL. Save Zéh.

. Evaluate the error estimator n+n" and calculate the error indicators as outlined in Section

D.

If the stopping criterion is fulfilled, then set wy;, = wéh and STOP.

L If |77N’l| >cf ‘nl| set [ <~ 1+ 1 and go to 1.

> Ce perform only spatial refinement, if > Ce

n,i’l nZ’l‘ perform only temporal

n il
M, Mk
refinement, otherwise refine both.

If only temporal refinement, then set Mﬁ:rl = Mﬁl and go to 12.

Div[’l C @hDM’l, i. e. the spatial mesh cells for

refinement.

. Refine Mlh according to @fiw’l ensuring the path structure and that only single hanging

nodes in space occur. Call the result Mfl.
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10.

11.

12.

13.

14.

Regularize the mesh sequence Mﬁfl in time leading to M?l.
If only spatial refinement, then set Mth = Mth and ']I‘fkJrl = ']I‘fk. Go to 14.

Use the optimal mesh strategy to determine @f,w C O, i. e. the temporal mesh cells for
refinement.

Refine the temporal mesh T% and modify the spatial mesh sequence Mth according to (9§€ -
Call the results ’]I'f:rl and Mﬁ:rl.

Set [ <~ 1+ 1 and go to 1.



