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Abstrat

In this artile, we onsider oupled paraboli hyperboli problems, as they arise in thermoelastiity.

Starting from a spae time �nite element disretization, a goal oriented a posteriori error estimated based

on the dual weighted residual (DWR) method is derived, whih measures the disretization error in spae

and time as well as the numerial error, where the splitting of the spatial and temporal error is based only

on the properties of the used pathwise higher order reonstrution. We present an adaptive strategy,

whih balanes the spatial and temporal disretization error as well as the numerial error. Finally, some

numerial examples substantiate the e�ieny of our approah.

Keywords: oupled paraboli hyperboli problems, adaptive �nite element method, dual weighted resid-

ual method

1 Introdution

In many engineering problems, the interdependeny of mehanial quantities like the stresses

and the temperature plays a dominant role. One example is the deep hole drilling proess with

minimum quantity lubriation (MQL), where the drilling proess on the one hand indues heat

into the workpiee and on the other hand due to the resulting thermal stresses large workpiee

deviations our, whih an lead to the total failure of the proess. A detailed desription of this

proess, of its marosopi modelling, and of an e�ient �nite element simulation an be found

in [8℄. One key question in designing a solution approah for suh oupled models is to rate the

strength of the oupling between the mehanial and the thermal part. For instane in [8℄, it is

shown that the oupling is very weak suh that the solution of the mehanial and the thermal

part an ompletely be deoupled saving a large amount of omputation time. The aim of this

artile is to develop a methodology, where the strength of the oupling is automatially measured

and the solution proess is adaptively adapted.

The presented approah relies on a posteriori error ontrol espeially the dual weighted residual

(DWR) method. For a general overwiev of the DWR method, we refer to [4, 6℄, where also a �rst

approah to error ontrol onerning the disretization of the heat as well as the wave equation
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is inluded. An enhaned method for nonlinear paraboli problems is presented in [31℄ and

applied on optimal ontrol problems with nonlinear paraboli onstraints in [24℄. This ansatz

is extended to nonlinear hyperboli problems of seond order in [26℄. The adaptive optimal

ontrol of suh a type of problem is disussed in [18℄. The estimates signi�antly simplify for

quasi-periodi solution, f. [10, 12℄, where model adaptive algorithms are also onsidered. A

di�erent linearization is used in [32℄ to derive the error identity. Beside the DWR approah,

there exist a lot of other methods for a posteriori error estimation in literature. For an overview

onerning paraboli problems, we refer to the textbook [35℄, where also �rst onvergene results

are disussed. Adaptive methods for hyperboli problems of seond order are rarely studied in

literature. One approah, whih is used to estimate the error in global norms, is based on �nite

di�erene disretisations in time. Here, separate error estimators are used for the spae and the

time diretion [9, 20, 36℄ or error estimates for the whole problem are derived [1, 7℄. The other

approah, whih is used here, is based on a spae-time Galerkin method. Disontinuous Galerkin

shemes are the basis for the error estimators presented in [2, 15, 19℄. There, the norm of the error

in the last time step is ontrolled, where the dual solution is estimated by analytial arguments

and not solved numerially. The same approah for a ontinuous spae-time Galerkin method

is presented in [14℄. Several results onerning goal-oriented adaptive �nite element methods for

strutural dynamis are published by the group of Shweizerho� [16, 17, 21, 25℄. An important

topi of their work is the redution of the numerial e�ort of the error estimation, whih is also

onsidered in [34℄. Coupled paraboli hyperboli problems are, e. g., onsidered in [2, 33℄.

The approah to a posteriori error ontrol of the disretization error used in this artile is

an extension of the methods presented [26, 31℄ to oupled paraboli hyperboli problems. It is

based on a spae-time �nite element disretization of the underlying problem. Sine we have an

hyperboli part in our system, we use globally ontinuous ansatz funtions in spae and time

while the test funtions an be disontinuous in time. This approah ensures energy onservation

under suitable assumptions, see for instane [26, Proposition 1.2.7℄. Using apropriate quadrature

rules, it orresponds to a Crank-Niolson sheme of seond order. In every time step, a oupled

problem in the displaement and in the temperature has to be solved, where a staggered solution

sheme is used, i. e. a �xpoint iteration onsisting in alternately solving w. r. t. the displaement

and the temperature. We apply the general framework of the DWR method for estimating

the disretization error in some user de�ned target funtional, f. e. g. [6℄, on this spae-time

setting, whih gives rise to a so alled dual problem and a speial dual time stepping sheme,

whih does not oinide with the Crank-Niolson sheme. As usual in DWR methods, we have to

alulate higher order approximations of the primal and dual solution to approximate the analyti

error identity. Several approahes are known in literature, see [4℄ for an overview. Here, we use a

pathwise reonstrution of higher order, sine this approah is numerially heap and allows for a

splitting of the spatial and the temporal error. Measuring the strength of the oupling orresponds

to estimating the error in the staggered solution sheme. To this end, we adopt the tehniques

presented in [23, 27, 28℄ for measuring the numerial error in the DWR method onsidering stati

problems. Roughly speaking, the numerial error orrelate to the primal residual tested with the

dual solution. The information of the error estimator is used in an adaptive strategy to balane

the numerial, spatial and temporal error.

The artile is organized as follows: In Setion 2, some notation and the underlying analytial

problem setting is introdued. Followed by a desription of the spae time �nite element dis-

retization in Setion 3, where the resulting time stepping sheme is presented in the appendix,

Setion A. The main part of the paper is Setion 4, where the a posteriori error estimate is

derived in several steps. First of all, the analyti error identity involving the primal and dual
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residual plus a remainder term is proven, see Setion 4.1. The error identity involves the analyti

and disrete dual problem, whih are disussed in detail in Setion 4.2. The orresponding dual

time stepping sheme is outlined in the appendix, Setion B. The error identity involves the an-

alyti primal and dual solution. Thus it annot be evaluated diretly. We introdue a numerial

approximation sheme in Setion 4.3, whih also allows us to split the spatial and temporal error.

Finally, the error estimate is loalized to the single mesh ells in Setion 4.4, where the onrete

terms are given in the appendix, Setion C. The error estimator is utilized in the adaptive al-

gorithm disussed in Setion 5 and outlined in detail in the appendix, Setion D. To illustrate

the properties of our adaptive ansatz, we disuss several numerial examples onsidering linear

and nonlinear thermoelastiity in Setion 6. In the end, we draw some onlusions and present

an outlook to further open questions.

2 Problem setting

In this setion, we present the underlying general problem formulation having in mind ther-

moelasti problems. Some onrete examples are disussed in Setion 6. At �rst, some nota-

tion is introdued. Let Ω ⊂ Rd
, d = 1, 2, 3, be a bounded domain with a pieewise polygonal

boundary Γ. The boundary Γ is deomposed in the mutually disjoint parts ΓD and ΓN . The

basi funtion spaes are given by L2 (Ω), whih provided the salar produt (u, v) =
´

Ω uv dx

is a Hilbert spae, and L2 (Ω) =
(

L2 (Ω)
)d
. Furthermore, we use the Sobolev spae H1 (Ω),

whih onsists of all funtions in L2 (Ω) that possess �rst weak derivatives also in L2 (Ω), its
subspae H1

D (Ω) =
{

v ∈ H1 (Ω)
∣

∣v|ΓD
= 0

}

, where v|ΓD
denotes the trae of v on ΓD, and

H1
D (Ω) :=

(

H1
D (Ω)

)d
. Dual spaes are generally marked by a

⋆
and the dual pairing is de-

noted by 〈·, ·〉. To study Sobolev spaes involving time, we use the Bohner integral theory. Here,

X is a real Banah spae with norm ‖·‖. The spae L2 (I;X) onsists of all strongly measureable

funtions ϕ : I → X with

‖ϕ‖L2(I;X) :=

(
ˆ

I
‖ϕ‖2 dt

)1/2

<∞,

where I = [0, T ] denotes a time interval. Weak derivatives w.r.t. time are marked by superposed

dots. If X is a Hilbert spae, the spae-time salar produt is denoted by ((u, v)) :=
´

I (u, v) dt.
In general, an outer parenthesis denotes the integration over I. Finally, we de�ne the basi

funtion spae, whih ontain our weak solution, by

V1 :=

{

u ∈ L2
(

I;H1
D (Ω)

)

∣

∣

∣

∣

u̇ ∈ L2
(

I;L2 (Ω)
)

,

ü ∈ L2
(

I;
(

H1
D (Ω)

)⋆)

}

,

V2 :=
{

θ ∈ L2
(

I;H1
D (Ω)

)

∣

∣

∣
θ̇ ∈ L2

(

I;
(

H1
D (Ω)

)⋆
)}

.

It should be remarked that u ∈ C
(

I;H1
D (Ω)

)

and u̇ ∈ C
(

I;L2 (Ω)
)

holds for a funtion u ∈ V1
as well as θ ∈ C

(

I;L2 (Ω)
)

for θ ∈ V2.
Now, we are able to de�ne a weak solution of our general problem:

De�nition 1. We say the displaement u ∈ V1 and the temperature θ ∈ V2 are a weak solution

of our general oupled paraboli hyperboli problem, if

b1 (ü, χ) + a1 (u; θ) (χ) = l1 (χ) (1)

b2

(

θ̇, ω
)

+ a2 (θ;u) (ω) = l2 (ω) (2)



3 Disretization 4

holds for all χ ∈ H1
D (Ω), all ω ∈ H1

D (Ω) and a. e. t ∈ I as well as if the initial onditions

u (0) = us, u̇ (0) = vs, θ (0) = θs

are satis�ed. Here, b1 and b2 denote weighted dual pairings. In our appliations, the weights

are spei�ed by some physial onstants like density. The semilinearforms a1 and a2 represent

the di�erential operators of the elastiity equation and the heat equation respetively. The right

hand sides are given by the linearforms l1 and l2. Finally, we have the initial values us ∈ H1
D (Ω),

vs ∈ L2 (Ω), and θs ∈ H1
D (Ω).

The basis of our disretization is a spae-time formulation of the general oupled paraboli

hyperboli problem. To this end, we rewrite (1) as a system of �rst order in time by introduing

the veloity v = u̇ as additional variable, where the equality is only weakly enfored. The

equations (1) and (2) are integrated over the time interval I and the initial onditions are weakly

inluded. To ease notation, we use

Vn :=
{

v ∈ L2
(

I;
(

H1
D (Ω)

)n) ∣
∣v̇ ∈ L2

(

I;
(

L2 (Ω)
)n)}

as the basi funtion spae with n = 1, 2, 3, whih imposes somewhat stronger assumptions on

the solution than V1 and V2. Finally, the spae-time formulation reads:

De�nition 2. A funtion w = (u, v, θ) ∈ V = Vd × Vd × V1 is alled a weak solution of our

general oupled paraboli hyperboli problem in spae time form, if

A (w) (ϕ) = 0

holds for all ϕ = (χ,ψ, ω) ∈ V with

A (w) (ϕ) := (b1 (u̇− v, ψ)) + (b1 (v̇, χ)) + (a1 (u; θ) (χ))− (l1 (χ))

+
(

b2

(

θ̇, ω
))

+ (a2 (θ;u) (ω))− (l2 (ω))

+b1 (u (0)− us, ψ (0)) + b1 (v (0)− vs, χ (0)) + b2 (θ (0) − θs, ω (0)) .

Due to the stronger assumptions in V , b1 and b2 an be seen as weighted L2
-salar produts here.

In our general setting, the question of existene and uniqueness of the solution w has to be

left open. For our disretization and a posteriori error analysis, we assume that the spae time

semilinearform A is three times ontinuously Fréhet di�erentiable w. r. t. the �rst argument,

that an isolated weak solution w ∈ V aording to De�nition 2 exists, and that the Fréhet

derivative of A leads to a well-posed linear problem in the neighbourhood of w.

3 Disretization

We use a spae-time �nite element method in this work. Let us start with the temporal part of

the disretization. The time interval I is deomposed into M ∈ N subintervals Im = (tm−1, tm]
with

0 = t0 < t1 < . . . < tM = T and I = {0} ∪ I1 ∪ . . . ∪ IM .
The length of a subinterval Im is denoted by km = tm − tm−1. The time instanes ti, i ∈
{0, 1, . . . ,M} orrespond to the time steps in a �nite di�erene approah. We also all this

deomposition temporal mesh Tk.
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(a) Mesh with path struture (b) Corresponding path mesh

Fig. 1: Illustration of the path struture of the �nite element mesh

The spatial domain Ω is subdivided by meshes Tm
h , whih onsist of quadrilaterals for d = 2

and of hexahedrons for d = 3. To realize adaptive mesh re�nement, we allow for so alled (spatial)

hanging nodes in the meshes. Furthermore, for the evaluation of the presented a posteriori error

estimate, we require the meshes to have path struture, see Figure 1 for an illustration. Here,

we say, roughly speaking, a mesh has path struture, if one an always merge 2d adjaent mesh

elements to one path element. We refer to [26℄ for more details. The sequene of meshes in the

single time steps is alled Mh := (Tm
h )0≤m≤M .

The spatial �nite element spaes are based on d-linear basis funtions and nodal degrees of

freedom, i. e. we hoose

V m
h :=

{

ϕ ∈ H1
D (Ω)

∣

∣∀T ∈ Tm
h : ϕ|T ∈ Q1 (T ,R)

}

.

Here, Q1 (T ,R) is the set of d-linear basis funtions on a mesh element T . Beause of V m
h ⊂ C (Ω),

we have to ensure the ontinuity of the disrete funtions in hanging nodes by imposing the

resulting onstraint in the disrete systems.

The test spae of the spae-time Galerkin method is given by

Wn
kh :=

{

ϕ ∈ L2
(

I;
(

H1
D (Ω)

)n) ∣
∣ϕ|Im ∈ P0 (Im; (V m

h )n) , m = 1, 2, . . . ,M, ϕ (0) ∈
(

V 0
h

)n}
.

Here, Pq (ω,X) is the linear spae of polynomials on ω ⊂ R with values in X, whih have

the maximum degree q. Funtions from Wn
kh are pieewise onstant in time and are possibly

disontinuous at ti, i = 0, 1, . . . ,M . The de�nition of the trial spae Vnkh is more involved, sine

it is di�ult to ensure the global ontinuity, if the spaes V m
h vary. Then hanging nodes in time

arise and have to be treated in an appropriate way. A temporal hanging node is a degree of

freedom, whih is ontained in V m
h but not in V m−1

h or vie versa. We work with the approah

presented in [5, 22, 31℄ for paraboli problems. A disussion of hanging nodes in time in the

ontext of the wave equation is given in [3℄. We use linear temporal basis funtions and hoose

the usual Lagrange basis of P1 (Im;R)

τm0 (t) =
tm − t
km

and τm1 (t) =
t− tm−1

km
.

We de�ne the set of the loal basis funtions by

P̃n,m
1 := span

{

τm0
(

V m−1
h

)n
, τm1 (V m

h )n
}

.

The spae P̃n,m
1 oinides with P1 (Im;V n

h ), if V m−1
h = V m

h = Vh holds. The trial spae is given

by

Vnkh :=
{

ϕkh ∈ C
(

I;
(

H1
D (Ω)

)n)
∣

∣

∣
ϕkh|Im ∈ P̃

n,m
1 , m = 1, 2, . . . ,M

}

.
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Spatial basis funtions from V m−1
h , whih vanish when stepping from tm−1 to tm, are only on-

neted to the temporal basis funtion τ0, whih is zero at tm. Spatial basis funtions from V m
h ,

whih arise when stepping from tm−1 to tm, are only oupled with the temporal basis funtion

τ1 and τ1 vanishes at tm−1. Thus, all funtions in Vkh are globally ontinuous. Using the above

de�nitions, we state the disrete problem formulation:

De�nition 3. A funtion wkh = (ukh, vkh, θkh) ∈ Vkh = Vdkh × Vdkh × V1kh is alled a disrete

solution of our general oupled paraboli hyperboli problem, if

A (wkh) (ϕkh) = 0 (3)

holds for all ϕkh = (χkh, ψkh, ωkh) ∈Wkh =Wd
kh ×Wd

kh ×W1
kh.

The disrete problem (3) an diretly be solved leading to a d + 1 dimensional problem.

However, the speial struture of the test spae Wkh allows for a deoupling of the single time

intervals Im. By this, the disrete problem (3) an be redued to a time stepping sheme. However,

we only ompute an approximation w̃kh to wkh resulting from the solution of the disrete oupled

system here. For the evaluation of the time integrals, we use the trapezoidal rule. This approah

results in a Crank-Niolson method for the system of �rst order. For the hyperboli part, it

orresponds to Newmark's method. Furthermore, we an eliminate the veloity from the arising

system in eah time step. Thus, we only need to solve an nonlinear equation in the displaement

ũkh and the temperature θ̃kh. The omplete time stepping sheme is outlined in Algorithm 9

in the appendix in Setion A. In the �rst step, the disrete initial values a determined as L2
-

projetion of the ontinuous ones. We use a staggered solution sheme, whih is given in the

steps 3 to 7. Firstly, the solutions of the preeding time step are projeted on the urrent mesh

by Pm
h . Here, we solve equation (13) w. r. t. the temperature θ̃m,l

kh for �xed ũm,l−1
kh �rst. Then

the new displaement ũm,l
kh is determined using θ̃m,l

kh by solving equation (14). In step 6, we hek

the usual stopping riterion for a �xed point iteration. After the onvergene of this iteration,

the veloity ṽmkh is alulated in the post proessing step 8, where equation (15) orresponds to a

simple L2
-projetion, whih redues to a linear ombination of vetors, if V m−1

h = V m
h holds.

4 A posteriori error estimation

The aim is to derive an a posteriori error estimate for the disretisation error in a more or less

arbitrary funtional, whih represents the quantity of interest. We onsider funtionals of the

type

J(w) :=

ˆ T

0
J1(w) dt + J2(w(T )), (4)

where J1, J2 ∈ V ⋆
are three times ontinuously Fréhet di�erentiable. The form of J spei�ed in

(4) onsiders two typial situations: One is interested in the mean value of a quantity over I or

in the value at the end point.

4.1 Derivation of the error identity

The derivation of the error estimate is based on optimization arguments. To embed the error

estimation in the optimization ontext, we de�ne the Lagrangian

L(w, z) := J(w) −A(w)(z)
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for w, z ∈ V . The onnetion between the Lagrangian and the general oupled paraboli hy-

perboli problem beomes apparent as soon as we onsider the Fréhet derivative of L w.r.t.

z:
L′z (w, z) (δw, δz) = −A(w)(δz). (5)

It orresponds to the weak formulation of the general oupled paraboli hyperboli problem. In

the disrete ase, we reover the spae-time Galerkin approximation. The Fréhet derivative

w.r.t. w is

L′w(w, z)(δw, δz) = J ′(w)(δw) −A′(w)(δw, z), (6)

whih de�nes the so alled dual problem.

De�nition 4. The funtion z =
(

ū, v̄, θ̄
)

∈ V is alled dual solution if

J ′(w)(δw) −A′(w)(δw, z) = 0 (7)

holds for all δw ∈W . The disrete dual solution zkh =
(

ūkh, v̄kh, θ̄kh
)

∈Wkh is spei�ed by

∀δwkh ∈ Vkh : J ′ (wkh) (δwkh)−A′ (wkh) (δwkh, zkh) = 0. (8)

We all its numerial approximation z̃kh. The time stepping sheme for the determination of z̃kh
is presented after the derivation of the a posteriori error estimate.

The point (w, z) ∈ V × V is a stationary point of L, i.e.

L′(w, z)(δw, δz) = 0 (9)

for all (δw, δz) ∈ V × V . Analogously, (wkh, zkh) ∈ Vkh ×Wkh is a stationary point of L, i.e.

L′ (wkh, zkh) (δwkh, δzkh) = 0 (10)

for all (δwkh, δzkh) ∈Wkh × Vkh.
The following a posteriori error analysis is ompliated by the fats that on the one hand in

general

L′ (w̃kh, z̃kh) (δwkh, δzkh) 6= 0

and that on the other hand Wkh * V . We obtain the following result:

Proposition 5. Let A and J be three times ontinuously Fréhet di�erentiable, the ontinuous

stationarity ondition (9) and disrete one (10) hold, as well as w̃kh ∈ Vkh and z̃kh ∈ Wkh are

approximations of wkh ∈ Vkh and zkh ∈Wkh. Then we have the error identity

J (w)− J (w̃kh)

=
1

2
L′ (w̃kh, z̃kh) (w − w̃kh, z − z̃kh) +A (w̃kh) (z̃kh) +Rkh

=
1

2
[ρ (w̃kh) (z − z̃kh) + ρ⋆ (w̃kh, z̃kh) (w − w̃kh)] +A (w̃kh) (z̃kh) +Rkh.

(11)

Here, the primal residual ρ is given by

ρ (w̃kh) (·) := L′z (w̃kh) (·) = −A (w̃kh) (·)
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and the dual residual ρ⋆ by

ρ⋆ (w̃kh, z̃kh) (·) := L′w (w̃kh, z̃kh) (·) = J ′ (w̃kh) (·)−A′ (w̃kh) (·, z̃kh) .
The remainder term

Rkh :=
1

2

ˆ 1

0

{

J ′′′ (w̃kh + sẽ) (ẽ, ẽ, ẽ)−A′′′ (w̃kh + sẽ) (ẽ, ẽ, ẽ, z̃kh + sẽ∗)

−3A′′ (w̃kh + sẽ) (ẽ, ẽ, ẽ∗)
}

s (s− 1) ds

is of third order in the primal error ẽ := w − w̃kh and the dual error ẽ∗ := z − z̃kh.
Proof. Introduing the notation x := (u, z), x̃kh := (w̃kh, z̃kh), and L (x) := L (u, z), we obtain

L (x)− L (x̃kh) =

ˆ 1

0
L′ (x̃+ s (x− x̃kh)) (x− x̃kh) ds.

For the trapezoidal rule, we have the error representation

ˆ 1

0
f (s) ds =

1

2
(f (0) + f (1)) +

1

2

ˆ 1

0
f ′′ (s) s (s− 1) ds

for f ∈ C2 ((0, 1)). Bringing these two things together leads to

J (w)− J (w̃kh) = L (x) +A (w) (z)− L (x̃kh) +A (w̃kh) (z̃kh)

=

ˆ 1

0
L′ (x̃+ s (x− x̃kh)) (x− x̃kh) ds+A (w̃kh) (z̃kh)

=
1

2
L′ (w̃kh, z̃kh) (w − w̃kh, z − z̃kh) +

1

2
L′ (w, z) (w − w̃kh, z − z̃kh)

+A (w̃kh) (z̃kh) +Rkh.

By a density argument, f. [22, Theorem 6.2℄ for the paraboli and [26, Proposition 1.3.2℄ for the

hyperboli ase, we an �nally show that L′ (w, z) (w − w̃kh, z − z̃kh) = 0 and therewith �nish

the proof.

4.2 Dual problem

The error identity (11) involves the quantities z and z̃kh, whih are de�ned by the stationarity

onditions (9) and (10) as solutions of the variational problems (7) and (8), respetively. These

problems are alled the ontinuous and the disrete dual problem, respetively. Let us now take

a loser look at the ontinuous dual problem. The Fréhet derivative of A w.r.t. w is given by

A′ (w) (δw, z) =
(

b1

(

˙δu− δv, v̄
))

+
(

b1

(

δ̇v, ū
))

+
(

a′1,u (u; θ) (δu, ū)
)

+
(

a′1,θ (u; θ) (δθ, ū)
)

+
(

b2

(

δ̇θ, θ̄
))

+
(

a′2,θ (θ;u)
(

δθ, θ̄
))

+
(

a′2,u (θ;u)
(

δu, θ̄
))

+b1 (δu (0) , v̄ (0)) + b1 (δv (0) , ū (0)) + b2
(

δθ (0) , θ̄ (0)
)

.

We use integration by parts to shift the time derivative from the test funtions to the solution

variables and obtain

A′ (w) (δw, z) = − (b1 (δv, v̄ + ˙̄u))− (b1 (δu, ˙̄v)) +
(

a′1,u (u; θ) (δu, ū)
)

+
(

a′1,θ (u; θ) (δθ, ū)
)

−
(

b2

(

δθ, ˙̄θ
))

+
(

a′2,θ (θ;u)
(

δθ, θ̄
))

+
(

a′2,u (θ;u)
(

δu, θ̄
))

+b1 (δu (T ) , v̄ (T )) + b1 (δv (T ) , ū (T )) + b2
(

δθ (T ) , θ̄ (T )
)

.
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The Fréhet derivative of J is

J ′(w)(δw) = J ′
u(w)(δu) + J ′

v(w)(δv) + J ′
θ(w)(δθ)

=

ˆ T

0
J ′
1,u(w)(δu) dt + J ′

2,u(w(T ))(δu(T ))

+

ˆ T

0
J ′
1,v(w)(δv) dt + J ′

2,v(w(T ))(δv(T ))

+

ˆ T

0
J ′
1,θ(w)(δθ) dt + J ′

2,θ(w(T ))(δθ(T )).

Testing equation (7) with ϕ1 = (δu, 0, 0), ϕ2 = (0, δv, 0), and ϕ3 = (0, 0, δθ) for arbitrary δu ∈ Vd,
δv ∈ Vd, and δθ ∈ V1, we obtain the system

− (b1 (δu, ˙̄v)) +
(

a′1,u (u; θ) (δu, ū)
)

+
(

a′2,u (θ;u)
(

δu, θ̄
))

+ b1 (δu (T ) , v̄ (T )) = J ′
u(w)(δu),

− (b1 (δv, v̄ + ˙̄u)) + b1 (ū(T ), δv(T )) = J ′
v(w)(δv),

−
(

b2

(

δθ, ˙̄θ
))

+
(

a′2,θ (θ;u)
(

δθ, θ̄
))

+
(

a′1,θ (u; θ) (δθ, ū)
)

+ b2
(

δθ (T ) , θ̄ (T )
)

= J ′
θ(w)(δθ).

This formulation provides more insight into the struture of the dual problem. The �rst important

observation is that the dual problem starts at T and runs bakward in time to 0. Consequently,
the initial values are spei�ed for T . Furthermore, the dual problem is linear. The homogeneous

Dirihlet boundary onditions of the primal problem are transferred to the dual problem. The

nonhomogeneous Neumann boundary onditions are transformed into homogeneous ones. The

desriptive interpretation of the dual solution is that it represents the in�uene of a ertain

spae-time point (x, t) onto the error measured in the funtional J .
Let us now take a loser look at the disrete dual problem spei�ed in equation (8). We

observe that the disrete solution z̃kh is ontained in the test spae Wkh of the primal problem,

i.e. z̃kh is a pieewise onstant funtion in time. Thus, the approximation of the dual problem is

globally of maximum order k. However, we are not interested in an aurate numerial solution

of the dual problem but in an aurate a posteriori error estimate. The time stepping sheme

resulting from (8) di�ers from the primal time stepping sheme desribed in Algorithm 10 in the

appendix in Setion B. For the derivation of the dual time stepping sheme from (8), we rewrite

the Fréhet derivative by means of elementwise integration by parts and using żkh ≡ 0 as

A′ (w̃kh) (δwkh, z̃kh) =
M
∑

m=1

{

− (b1 (δvkh, ˜̄vkh))m +
(

a′1,u
(

ũkh; θ̃kh

)

(δukh, ˜̄ukh)
)

m

}

+

M
∑

m=1

{(

a′1,θ
(

ũkh; θ̃kh

)(

δθkh,
˜̄θkh

))

m
− b1

(

[˜̄ukh]m−1 , δv
m−1
kh

)

}

+
M
∑

m=1

{

−b1
(

[˜̄vkh]m−1 , δu
m−1
kh

)

+
(

a′2,θ
(

θ̃kh; ũkh

)(

δθkh,
˜̄θkh

))

m

}

+

M
∑

m=1

{

−b2
(

[

˜̄θkh

]

m−1
, δθm−1

kh

)

+
(

a′2,u
(

θ̃kh; ũkh

)(

δukh,
˜̄θkh

))

m

}

+b1

(

δvMkh, ˜̄u
M,−
kh

)

+ b1

(

δuMkh, ˜̄v
M,−
kh

)

+ b2

(

δθMkh,
˜̄θM,−
kh

)

.
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b

b

b
b

b

b

b

b
b

b

b

ϕkh

i
(1)
k
ϕkh

tm−1 tm tm+1

Im Im+1

(a) Pieewise linear interpolation of a piee-

wise onstant funtion

b

b

b
b

b

b

b

b
b

b

b

ϕkh

i
(2)
2k ϕkh

tm−1 tm tm+1

Im Im+1

(b) Pieewise quadrati interpolation of a

pieewise linear funtion

Fig. 2: Illustration of the interpolation operators i
(1)
k and i

(2)
2k

Here, the jump of a possibly disontinuous funtion ω at a time instane tm is de�ned by

ωm,+ := lim
t↓tm

ω(t), , ωm,− := lim
t↑tm

ω(t), [ω]m := ωm,+ − ωm,−.

Using speial test funtions, we an now dedue the dual time stepping sheme. It is outlined

in Algorithm 10 in the appendix in Setion B and onsists of solving two oupled Helmholtz

equations and a simple L2
-projetion.

4.3 Numerial approximation of the error identity and error splitting

We have disussed the numerial solution of the dual problem, whih is needed to evaluate the

error identity (11). However, the identity (11) ontains the weights w − w̃kh and z − z̃kh. The

weights measure the approximation or interpolation error of the spaes Vkh and Wkh w.r.t. the

ontinuous solutions w and z. We are not able to evaluate these terms exatly. In literature,

many approahes to approximate these terms are proposed, see, e.g., [4℄ for an overview. The

idea to use a higher order reonstrution of the disrete solutions w̃kh and z̃kh has turned out to

be an aurate and e�ient approximation. Thus, we also use this idea here. Furthermore, it

allows us to split the spatial and the temporal part of the error, see Lemma 6.

In spae, we need a higher order reonstrution of the d-linear basis funtions. Consequently,
we work with d-quadrati basis funtions to de�ne the reonstrution. For d-quadrati basis

funtions, whih shall be based on nodal values, 3d nodal values are needed to determine the

basis oe�ients. We use the path struture of the spatial meshes to obtain these nodal values,

see Figure 1 for an illustration. The funtion spae, whih ontains the interpolating funtions,

is

V
(2),m
2h :=

{

ϕ ∈ L2 (Ω)
∣

∣∀T ∈ Tm
2h : ϕ|T ∈ Q2 (T ;R)

}

, (12)

where Tm
2h is the mesh of the path elements in the mth

-time step and Q2 (T ;R) is the spae of the
d-quadrati basis funtions. Eventually, we obtain the operator i

(2)
2h : V m

h → V
(2),m
2h , whih maps

a �nite element funtion from V m
h into the spae V

(2),m
2h . Furthermore, we de�ne the projetion

Π
(2)
2h := i

(2)
2h − id.

For the de�nition of the spae time interpolations of higher order, we set V(1,1)kh := Vkh,
V(0,1)kh :=Wkh,

V(0,2)kh :=

{

ϕkh ∈ L2
(

I;H1
D (Ω)

)

∣

∣

∣

∣

∣

ϕkh|Im ∈ P0
(

Im;V
(2),m
2h

)

,

m = 1, . . . ,M, ϕkh(0) ∈ V (2),0
2h

}

.



4 A posteriori error estimation 11

We set τ
(1)
0 := τ0 and τ

(1)
1 := τ1 the linear temporal basis funtions on Im. The quadrati

temporal basis funtions on Im ∪ Im+1 are given by

τ
(2)
0 (t) :=

(tm − t) (tm+1 − t)
km (km + km+1)

,

τ
(2)
1 (t) :=

(t− tm−1) (tm+1 − t)
kmkm+1

,

τ
(2)
2 (t) :=

(t− tm−1) (t− tm)

(km + km+1) km+1
.

Furthermore, we de�ne

P̃m
1,2 :=

{

τ
(1)
i ϕi

∣

∣

∣
ϕi ∈ V (2),m−1+i

2h , i = 0, 1
}

,

P̃m
2,1 :=

{

τ
(2)
i ϕi

∣

∣ϕi ∈ V m−1+i
h , i = 0, 1, 2

}

,

P̃m
2,2 :=

{

τ
(2)
i ϕi

∣

∣

∣
ϕi ∈ V (2),m−1+i

2h , i = 0, 1, 2
}

.

Finally, we denote

V(i,j)kh :=
{

ϕkh ∈ C
(

I;H1
D (Ω)

)

∣

∣

∣
ϕkh|Im ∈ P̃m

i,j, m = 1, 2, . . . ,M
}

for i, j = 1, 2. In time, we use the spatial interpolation operator of higher order i
(2)
2h transferred

to the one dimensional ase for the interpolation of pieewise linear and ontinuous funtions.

The approah is illustrated in Figure 2(b). The interpolation is named i
(2)
2k . For the pieewise

onstant temporal basis funtions, we speify a linear interpolant i
(1)
k . The idea is exempli�ed in

Figure 2(a). We de�ne the projetions

Π
(1)
k := i

(1)
k − id and Π

(2)
2k := i

(2)
2k − id

for the temporal interpolants.

Now, we are able to de�ne our spae-time reonstrution of higher order. For i = 0, 1, 2 and

j = 1, 2, let φ ∈ V(i,j)kh . The funtion φ an be represented by the temporal basis funtions τ (i),m

in the form

φ(x, t) =

M
∑

m=0

τ (i),m(t) · ϕm(x)

with ϕm(x) ∈ V m
h . We de�ne three di�erent spae-time interpolation operators: The �rst one

only interpolates the spatial part and is given by

i
(j,2)
h : V(j,1)kh → V(j,2)kh ,

i
(j,2)
h φ(x, t) :=

M
∑

m=0

τ (j),m(t) · i(2)2h ϕ
m(x),

for j = 0, 1, 2. Let

i
(j+1,i)
k : V(j,i)kh → V(j+1,i)

kh ,

i
(j+1,i)
k φ(x, t) :=

M
∑

m=0

i
(j+1)
k τ (j),m(t) · ϕm(x),
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for j = 0, 1 and i = 1, 2 be the interpolation operator, whih only interpolates the temporal part.

The operator interpolating in spae and time is

i
(j+1,2)
hk : V(j,1)kh → V(j+1,2)

kh ,

i
(j+1,2)
kh φ(x, t) :=

M
∑

m=0

i
(j+1)
k τ (j),m(t) · i(2)2h ϕ

m(x),

for j = 0, 1. We are now able to de�ne the spae time projetions. They are given by

Π
(j,2)
2h : V(j,1)kh → V(j,2)kh , Π

(j,2)
2h := i

(j,2)
h − id, j = 0, 1, 2,

Π
(1,j)
k : V(0,j)kh → V(0,j)kh ∪ V(1,j)kh , Π

(1,j)
k := i

(1,j)
k − id, j = 1, 2,

Π
(2,j)
2k : V(1,j)kh → V(2,j)kh , Π

(2,j)
2k := i

(2,j)
k − id, j = 1, 2,

Π
(1,2)
k,2h : V(0,1)kh → V(0,1)kh ∪ V(1,2)kh , Π

(1,2)
k,2h := i

(1,2)
kh − id,

Π
(2,2)
2k,2h : V(1,1)kh → V(2,2)kh , Π

(2,2)
2k,2h := i

(2,2)
kh − id.

We have stated the higher order reonstrution for the salar ase to ease the notation here. They

an diretly be extended to vetor valued funtions. Now, we an state the approximation of the

error identity (11):

J (w)− J (w̃kh)

=
1

2
[ρ (w̃kh) (z − z̃kh) + ρ⋆ (w̃kh, z̃kh) (w − w̃kh)] +A (w̃kh) (z̃kh) +Rkh

≈ 1

2

[

ρ (w̃kh)
(

Π
(1,2)
k,2h z̃kh

)

+ ρ⋆ (w̃kh, z̃kh)
(

Π
(2,2)
2k,2hw̃kh

)]

+A (w̃kh) (z̃kh)

=: η + ηit.

Beside the approximation of the weights by the spei�ed projetions, we have negleted the

remainder term Rkh. It is of third order w.r.t. the error e, thus of higher order. Therewith, we
are able to de�ne the error estimator η. It should be remarked that the approximation sign �≈�
only ours here in the derivation of the error estimate. In every other step, only real �=� signs
our. Furthermore, no other �higher order arguments� are involved. In [31℄, the derivation is

based on the semi- and the full-disrete problem formulation to split the spatial and the temporal

error estimator part. There, the unknown semi-disrete solution has to be approximated by the

full-disrete one, whih involves a higher order argument. In ontrast to this, we use the following

lemma to split the spatial and the temporal part of the a posteriori error estimate:

Lemma 6. The following identities hold:

Π
(1,2)
k,2h = i

(1,2)
k Π

(0,2)
2h +Π

(1,1)
k

= i
(1,2)
h Π

(1,1)
k +Π

(0,2)
2h ,

Π
(2,2)
2k,2h = i

(2,2)
k Π

(1,2)
2h +Π

(2,1)
2k

= i
(2,2)
h Π

(2,1)
2k +Π

(1,2)
2h .

Proof. Let ϕkh be an arbitrary funtion from V(1,1)kh . Sine ϕkh is a tensor produt funtion in
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spae and time, we obtain

Π
(2,2)
2k,2hϕkh = i

(2,2)
kh ϕkh − i(2,1)k ϕkh + i

(2,1)
k ϕkh − ϕkh

= i
(2,2)
k

(

i
(1,2)
h ϕkh − ϕkh

)

+Π
(2,1)
2k ϕkh

= i
(2,2)
k Π

(1,2)
2h ϕkh +Π

(2,1)
2k ϕkh.

Furthermore, we have

Π
(2,2)
2k,2hϕkh = i

(2,2)
kh ϕkh − ϕkh

= i
(2,2)
kh ϕkh − i(1,2)h ϕkh + i

(1,2)
h ϕkh − ϕkh

= i
(2,2)
h

(

i
(2,1)
k ϕkh − ϕkh

)

+Π
(1,2)
2h ϕkh

= i
(2,2)
h Π

(1,1)
k ϕkh +Π

(1,2)
2h ϕkh.

The indentities for Π
(1,2)
k,2h are derived analogously.

De�nition 7. Let us now de�ne the spatial error estimator terms

ηnh :=
1

2

[

ρ (w̃kh)
(

Π
(0,2)
2h z̃kh

)

+ ρ⋆ (w̃kh, z̃kh)
(

Π
(1,2)
2h w̃kh

)]

,

ηih :=
1

2

[

ρ (w̃kh)
(

i
(1,2)
k Π

(0,2)
2h z̃kh

)

+ ρ⋆ (w̃kh, z̃kh)
(

i
(2,2)
k Π

(1,2)
2h w̃kh

)]

,

and the temporal error estimator terms

ηnk :=
1

2

[

ρ (w̃kh)
(

Π
(1,1)
k z̃kh

)

+ ρ⋆ (w̃kh, z̃kh)
(

Π
(2,1)
2k w̃kh

)]

,

ηik :=
1

2

[

ρ (w̃kh)
(

i
(1,2)
h Π

(1,1)
k z̃kh

)

+ ρ⋆ (w̃kh, z̃kh)
(

i
(2,2)
h Π

(2,1)
2k w̃kh

)]

.

Furthermore, we set

ηni := ηnh + ηik,

ηin := ηih + ηnk .

Lemma 6 diretly implies the following Corollary:

Corollary 8. It holds

η = ηni = ηin.

Here, we fous on ηni as the experienes in [26, Setion 1.4℄ show no di�erenes between the

approahes. The numerial results substantiate that both ηnh and ηih measure the spatial error

and that ηnk as well as ηik represent the temporal error.

4.4 Loalization of the error estimate

The loalization in temporal diretion is onduted as follows: We split the integral over I into

the sum over all subintervals Im, 0 < m ≤ M and the error estimate in the initial values. For

this purpose, we de�ne

ηnh =

M
∑

m=0

ηn,mh , ηik =

M
∑

m=1

ηi,mk , and ηit =

M
∑

m=1

ηmit .
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The detailed form of ηi,mk is presented in Setion C.1 and of ηn,mh in Setion C.2 in the appendix.

Up to now, we have loalized the error estimate to single temporal subintervals. This loal-

ization is su�ient for the adaptive temporal re�nement. We have to loalize the spatial error

estimator ηn,mh to the single mesh ells in every time step for the spatial mesh re�nement. In

literature, three di�erent tehniques to realize the spatial loalization of DWR type error estima-

tors are known: We have ellwise integration by parts of the di�erential operator, whih leads to

very omplex algorithms, see for instane [4℄, partition of the unity, f. [30℄, and nodal �ltering.

We apply the third approah, whih goes bak to [11℄. Let

{

αm
j : Ω→ R2d+1

∣

∣

∣j = 1, 2, . . . , N̄m := dim (V m
h )2d+1

}

be the nodal Lagrange basis of (V m
h )2d+1

and

{

βmj : Ω→ R2d+1
∣

∣j = 1, 2, . . . , N̄m
}

the basis of

(

V
(2),m
2h

)2d+1
. Furthermore, wm

j ∈ R, j = 1, 2, . . . , N̄m
, are the oe�ients of w̃m

kh,

i.e.

w̃m
kh =

N̄m

∑

j=1

wm
j α

m
j and i

(2)
2h w̃

m
kh =

N̄m

∑

j=1

wm
j β

m
j .

We set w̄m =
(

wm
1 , . . . , w

m
N̄m

)⊤
. In the same way, we de�ne the oe�ients zmj of z̃mkh. The value

of the error estimator ηn,mh an then be expressed by

ηn,mh =
N̄m

∑

j=1

(

ΨP,m
j zmj +ΨD,m

j wm
j

)

+
N̄m−1

∑

j=1

ΛD,m
j wm−1

j ,

where ΨP,m
j , ΨD,m

j , and ΛD,m
j represent the assembling of the error estimator w.r.t. the di�erene

of the d-quadrati basis {βj} and the d-linear one {αj}. The spae

V m
2h :=

{

ϕ ∈ L2 (Ω)
∣

∣∀T ∈ Tm
2h : ϕ|T ∈ Q1 (T ;R)

}

onsists of bilinear basis funtions on pathes. Beause of the path struture of the meshes, we

have V m
2h ⊆ V m

h . The operator i
(1)
2h : V m

h → V m
2h interpolates a funtion from V m

h in V m
2h . We

de�ne the operator π := id − i(1)2h and all π �ltering operator. The nodal vetor w̄π,m
denotes

the oe�ients of the �ltered funtion πw̄m
kh w.r.t. the basis αj , i.e.

πw̄m
kh =

N̄m

∑

j=1

w̄π,m
j αj .

The interpolation operator i
(2)
2h is the identity on V m

2h . Thus, we obtain

i
(2)
2h παj − παj = i

(2)
2h αj − αj = βj − αj .

The linearity of the seond argument leads to

ηn,mh =

N̄m

∑

j=1

(

ΨP,m
j zπ,mj +ΨD,m

j wπ,m
j

)

+

N̄m−1

∑

j=1

ΛD,m
j wπ,m−1

j ,
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see [11℄ for the detailed alulation. We end up with the nodal values ΨP,m
j zπ,mj , ΨD,m

j wπ,m
j , and

ΛD,m
j wπ,m−1

j , whih provide a su�ient loalisation, f. [11℄. Finally, the nodal values have to

be shifted from the nodes to the ells. We use the method presented in [11℄, i. e. we simply take

the mean value of the values of all nodes, whih are the verties of the mesh ell.

5 Adaptive algorithm

We work with two di�erent approahes to the spatial adaptivity. In the �rst approah, we set

V m
h = Vh for all m = 0, 1, . . . ,M , i. e. the meshes do not hange from time step to time step.

However, the underlying mesh Th is adaptively re�ned. This method is alled onstant mesh

approah (CM). The alternative is that the meshes an hange from time step to time step. We

all this the dynami mesh approah (DM). Using the presented loalization methods, we obtain

error indiators ηn,mT for all T ∈ Tm
h and all m = 0, 1, . . . ,M . The sets

Θk :=
{

|ηi,mk |
∣

∣

∣
m = 1, 2, . . . ,M

}

ΘCM
h :=

{

ηnT :=

M
∑

m=0

∣

∣ηn,mT
∣

∣

∣

∣

∣

∣

∣

T ∈ Th

}

,

ΘDM
h :=

{

k̂

km

∣

∣ηn,mT
∣

∣

∣

∣

∣

∣

∣

T ∈ Tm
h , m = 0, 1, . . . ,M

}

are the basis for the adaptive re�nement, where the saling fator

k̂/km with k̂ := T/M ompensates

the linear dependene on km of ηn,mT in order to obtain globally omparable indiators. In some

ases, additional modi�ations of the spatial indiators may beome neessary, f. [26, Setion

2.1℄. The numerial error due to the staggered solution sheme is measure by ηN := A (w̃kh) (z̃kh).
The adaptive solution algorithm for the dynami mesh approah is outlined in detail in Al-

gorithm 11 in Setion D and illustrated in Figure 3. We ommit the detials for the onstant mesh

approah, sine it involves only obvious simpli�ations of the presented algorithm. Let us om-

ment here on the essential parts of the algorithm, where l denotes the urrent iteration number.

We have to speify in advane an initial spatial and temporal mesh as well as the parameters of

the staggered solution sheme. Furthermore, a safety fator cf ∈ (0, 1), whih ensures that the

numerial error is some orders smaller than the disretization error, and a equilibration onstant

ce > 1 for the weighting of spatial and temporal error have to be given. We usually work with

cf = 10−3
and ce = 5. The �rst step is the determination of the solution wl

kh of the primal prob-

lem (3). For this purpose, we use the time stepping sheme outlined in Algorithm 9 in Setion A

in the appendix. Sine we need wkh during the solution of the dual problem and the evaluation

of the error estimator, we have to save it on the harddis. These operations are referred to as

�primal� in Figure 3. The bakward or dual problem (8) is solved in the next step (�dual� in

Figure 3), where we use the time stepping sheme outlined in Algorithm 10 in the appendix

in Setion B. The dual solution zlkh is also saved on the harddis, beause we need it in the

evaluation of the error estimate. The evaluation of the error estimate and the alulation of the

re�nement indiators is performed next (�estimate� in Figure 3). On one hand, we evaluate the

error estimate spei�ed in De�nition 7. For this purpose, we evaluate the terms given in Setion

C.1, C.2, and C.3. On the other hand, we alulate the re�nement indiators on eah ell, i. e. we

have to evaluate the loalized form of the error estimator. The re�nement indiators are saved on

the harddis for their use in the re�nement strategies. After the evaluation of the error estimate,
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time step 0 time step 1 . . . time step M

primal primal . . . primal

dual. . .dualdual

estimate estimate . . . estimate

stopping? STOP
yes

no

numerical?
yes

no

spatial?

yes

no

refine refine . . . refine

forward forward . . . forward

backward. . .backwardbackward

temporal?

yes

no

temporal temporal . . . temporal

next iteration

Fig. 3: Illustration of the adaptive solution algorithm based on the dynami mesh approah
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we hek the stopping riterion (�stopping?� in Figure 3), for instane if the estimated error is

smaller than a given tolerane. If it is ful�lled, we stop the iteration with the desired solution

w⋆
kh. If it is not, we test whether the estimated numerial error is small enough,

∣

∣ηN,l
∣

∣ < cf
∣

∣ηl
∣

∣

,

or not. When the numerial error is dominant, we diretly start a new iteration of the adaptive

solution algorithm. Otherwise, we redue the disretization error by adaptive re�nement. The

�rst step of the adaptive re�nement proedure is to deide, whether the temporal mesh Tl
k , if

∣

∣

∣
ηi,lk

∣

∣

∣
> ce

∣

∣

∣
ηn,lh

∣

∣

∣
,

the spatial mesh sequene Ml
h, if

∣

∣

∣η
n,l
h

∣

∣

∣ > ce

∣

∣

∣η
i,l
k

∣

∣

∣ ,

or both, if

ce

∣

∣

∣
ηn,lh

∣

∣

∣
≥

∣

∣

∣
ηi,lk

∣

∣

∣
≥ c−1

e

∣

∣

∣
ηn,lh

∣

∣

∣
,

should be re�ned. In Figure 3, we illustrate this step by �spatial?� and �temporal?�. A similar

strategy an be found in [31℄. If no spatial re�nement is needed, we set Ml
h = M̃l+1

h and skip the

spatial re�nement. We begin the spatial re�nement with the determination of the set ΘDM,l
h,r . It

ontains all mesh ells, whih are hosen for re�nement by the optimal mesh strategy, f. [29℄.

For the determination of ΘDM,l
h,r , all re�nement indiators of the mesh sequene Ml

h are ompared.

This should lead to a maximum e�ient disretisation, sine all available information is used in

the re�nement strategy and it is not restrited to a single time step. For the spatial adaptive

re�nement, we use the algorithms presented in [26, Chapter 2℄. We ondut three single steps

here. In the �rst one, all marked ells are re�ned. Then, the spatial meshes in eah time step are

regularized suh that they have path struture and ontain only single hanging nodes in spae.

These two steps are named �re�ne� in Figure 3. In the last step, mutiple hanging nodes in time are

removed. To this end, we need a forward ( �forward� in Figure 3) and a bakward regularisation

(�bakward� in Figure 3), f. [26, Setion 2.3℄. If it has been deided not to re�ne the temporal

mesh, we set Ml+1
h = M̃l

h, T
l+1
k = Tl

k and skip the temporal re�nement. Otherwise, we use again

the optimal mesh strategy to determine the set Θl
k,r. It ontains the temporal mesh ells, whih

are marked for re�nement. Then the temporal mesh is adaptively re�ned. Thereby, we have to

modify the spatial mesh sequene M̃l+1
h , sine the number of time steps is hanged and a spei�

spatial mesh is onneted to eah time step. If a time step is re�ned, we have to add a spatial

mesh, all it Tl+1,m+1/2
h , in M̃l+1

h . Possible hoies for Tl+1,m+1/2
h are Tl+1,m

h , Tl+1,m+1
h or, e. g.,

the mesh onsisting of the �nest ells of Tl+1,m
h and Tl+1,m+1

h . We simply insert Tl+1,m+1
h . This

is referred to as �temporal� in Figure 3. After the adaptive re�nement, we inrease the number

of the iteration yle l and restart the iteration with the solution of the primal problem.

6 Numerial examples

In this setion, we onsider several numerial examples onerning the appliation of our adaptive

framework, where two di�erent underlying models are used. The �rst one onsists of linear

thermoelastiity, whereas in the seond one several nonlinearities are inluded.
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6.1 Linear thermoelastiity

Here, we only shortly present the model of linear thermoelastiity, a more detailed disussion is

for instane inluded in [13℄. We set

b1 (ϕ,ω) := (ρϕ, ω) , ϕ, ω ∈ L2 (Ω) ,
a1 (u; θ) (χ) := (Cε (u) + ̺θId, ε (χ)) , u, χ ∈ H1

D (Ω) , θ ∈ H1
D (Ω) ,

l1 (χ) := (f, χ) , χ ∈ L2 (Ω) ,
b2 (ϕ,ω) := (cpρϕ, ω) , ϕ, ω ∈ L2 (Ω) ,

a2 (u; θ) (χ) := (κ∇θ,∇χ) + (̺θstr (ε (u̇)) , χ) , u ∈ H1
D (Ω) , θ, χ ∈ H1 (Ω) ,

l2 (χ) := (q, χ) , χ ∈ L2 (Ω) .

Here, the material density is denoted by ρ > 0, the linearized strain tensor by ε (u) = 1
2

(

∇u+∇u⊤
)

as well as the elastiity tensor by C, whih is a fourth order tensor determined by the elasti mod-

ulus E > 0 and Poisson's ratio ν ∈ [0, 0.5). The onnetion between heat and displaement is usu-

ally desribed by the oe�ient of thermal expansion α > 0. Here, we use the stress-temperature

modulus

̺ = − αE

1 + ν

(

3ν

1− 2ν
+ 1

)

,

whih leads to a more onvenient formulation. The volume fores are given by f ∈ L2
(

I;L2 (Ω)
)

.

The spei� heat is denoted by cp > 0 and the ondutivity by κ > 0. The heat generated

by the elasti deformation is determined by ̺θstr (ε (u̇)). The inner heat soure is spei�ed by

q ∈ L2
(

I;L2 (Ω)
)

.

We hoose the domain Ω = (0, 1)2 and homogeneous Dirihlet boundary onditions on ∂Ω,
i.e. ΓD = ∂Ω. The time interval is given by I = [0, 1]. Furthermore, we speify the parameters

ρ = E = κ = cp = 1, ν = 0.3, and α = 10−3
as well as the analytial solution

u(x, y, t) :=







50
(

t− 1
3

)3/2
z (x, y)

(

(x− 0.5)2 + (y − 0.625)2
)7/10

20
(

t− 1
6

)3/2
z (x, y)

(

(

x− 0.5− 0.0625
√
3
)2

+ (y − 0.4375)2
)7/10






,

θ(x, y, t) := 100

(

t− 2

3

)3/2

z (x, y)

(

(

x− 0.5 + 0.0625
√
3
)2

+ (y − 0.4375)2
)7/10

,

with z (x, y) = x (x− 1) y (y − 1). The volume fores f , the inner heat soure q, as well as the
initial onditions us, vs, and θs are alulated based on u and θ. We onsider the quantity of

interest

J (w) =

ˆ

I

ˆ

B
u1 + u2 + θ dx dt = 0.0163187678 . . .

with B = [0.25, 0.75]2.
We denote by N the total number of spatial mesh ells and by M the number of time steps.

In Table 1, we outline the error estimator ηik for a �xed temporal mesh and the estimator ηnh
for a �xed spatial mesh, respetively. We observe that the error estimators are approximately

onstant, if we vary the spatial mesh for ηik and the temporal mesh for ηnh , respetively. Thus,

the estimators ηik and ηnh meet the expetation to be approximately independent of h and k,
respetively. A diret onsequene of this fat is that the indiators ηmh depend linearly on k,
whih needs to be ompensated in the adaptive strategy.
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l M N ηik
1 200 12, 800 −2.93158 · 10−6

2 200 51, 200 −9.19793 · 10−7

3 200 204, 800 −6.11811 · 10−7

4 200 819, 200 −5.36550 · 10−7

5 200 3, 276, 800 −5.16700 · 10−7

6 200 13, 107, 200 −5.11873 · 10−7

7 200 52, 428, 800 −5.10674 · 10−7

l M N/M ηnh
1 10 1, 024 −2.80260 · 10−5

2 20 1, 024 −2.52073 · 10−5

3 40 1, 024 −2.52819 · 10−5

4 80 1, 024 −2.54982 · 10−5

5 160 1, 024 −2.55852 · 10−5

6 320 1, 024 −2.56353 · 10−5

7 640 1, 024 −2.56770 · 10−5

Tab. 1: Developement of the error estimator ηik for �xed temporal and ηnh for �xed spatial mesh,

respetively

l M N L Erel Ieff
1 10 640 21 −1.52943 · 10−3 1.35183
2 20 5, 120 42 −3.11951 · 10−4 1.37868
3 40 40, 960 80 −1.10382 · 10−4 2.05974
4 80 327, 680 160 −1.97408 · 10−5 1.53549
5 160 2, 621, 440 320 −4.62124 · 10−6 1.70509
6 320 20, 971, 520 640 −1.76392 · 10−6 8.41146
7 640 167, 772, 160 1, 280 −1.02975 · 10−6 2.49093

Tab. 2: Devolopment of the error for uniform re�nement in the �rst example

l M N L Erel Ieff
1 10 640 10 −1.5294 · 10−3 1.35106
2 20 5, 120 20 −3.11951 · 10−4 1.37497
3 40 36, 160 40 −1.11967 · 10−4 2.06148
4 80 275, 840 80 −2.03484 · 10−5 1.49947
5 160 2, 080, 000 160 −4.93344 · 10−6 1.38472
6 284 14, 635, 088 284 −2.05623 · 10−6 2.04664
7 544 28, 366, 336 544 −1.47233 · 10−6 2.45806
8 1, 080 221, 944, 320 1, 080 −1.93684 · 10−7 1.26259

Tab. 3: Development of the error for adaptive re�nement using the onstant mesh approah in

the �rst example
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(a) Spatial mesh in the 5
th

iteration
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(b) Temporal mesh in the 8

th
iteration

Fig. 4: Adaptive meshes in the onstant mesh approah

In a seond step, we test the adaptive algorithm. Sine the spatial singularities of the analyti

solution do not depend on time, we work with the onstant mesh approah. We denote by L the

total number of �xpoint iterations, the relative error by

Erel :=
J (w)− J (wkh)

J (w)
,

and the e�etivity index by

Ieff :=
J (w)− J (wkh)

η
.

In Table 2, the results for the uniform re�nement are listed. We �nd that the rate of onvergene

is redued, whih has to be expeted beause of the low regularity of the analyti solution. The

results of the adaptive algorithm using the onstant mesh approah are outlined in Table 3. We

observe an improved onvergene rate and that the estimator is more aurate in the adaptive

approah. Exemplary adaptive meshes are depited in Figure 4. We observe spatial re�nements

in the midlle of the domain, where the single singularities are not resolved. The temporal mesh is

uniformly re�ned in the majority of the ases. We �nd smaller time step lengths in the beginning

and the end.

6.2 Nonlinear thermoelastiity

In this setion, we extend the linear model onsidered in the last setion by some nonlinearities.

On the one hand, we assume a linear temperature dependent ondutivity, i. e.

κ (θ) = κ0 (1 + βθ)

with onstants κ0, β > 0. On the other hand, we onsider the St. Vernant-Kirhho� material law

taking large deformations into aount. Therefore, we de�ne the strain tensor

ǫ (u) =
1

2

(

∇u+∇u⊤ +∇u⊤∇u
)
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l M N L Erel

1 100 19, 200 258 3.55026 · 10−2

2 200 153, 600 516 6.17390 · 10−3

3 400 1, 228, 800 842 1.16529 · 10−3

4 800 9, 830, 400 1, 600 3.59487 · 10−4

5 1, 600 78, 643, 200 3, 200 9.59380 · 10−5

Tab. 4: Devolopement of the error for uniform re�nement in the seond example

and the deformation gradient F (u) = Id +∇u. The semilinearform a1 is then given by

a1 (u; θ) (χ) := (F (Cǫ (u) + ̺θId) , ε (χ)) , u, χ ∈ H1
D (Ω) , θ ∈ H1

D (Ω) .

In this example, we onsider the L-shaped domain Ω = (−0.5, 0.5)×(−0.5, 0)∪(−0.5, 0)×(0, 0.5)
and the time interval I =

[

0, 2 +
√
0.125

]

. We speify the parameters ρ = 2700, E = 106,
ν = 0.33, α = 24 · 10−6

, κ0 = 220, β = 0.05, and cp = 900. Furthermore, we set the initial

onditions and the volume fores to zero. For the displaement and the veloity, we assume

homogeneous Dirihlet boundary onditions on ∂Ω, whereas homogeneous Neumann boundary

onditions are onsidered for the temperature on ∂Ω. We de�ne the funtion

c(t) =















(−0.25, 0.5 − t)⊤ , 0 ≤ t ≤ t1,
(

t−t1√
2
− 0.25,− t−t1√

2

)⊤
, t1 < t ≤ t2,

(t− t2,−0.25)⊤ , t2 < t ≤ t3,

with t1 = 0.5, t2 = t1 +
√
0.125, and t3 = t2 + 0.5 as well as the set

K(t) =
{

(x, y)⊤ ∈ Ω
∣

∣

∣

∣

∣

∣(x, y)
⊤ − c (t)

∣

∣

∣ ≤ 0.125
}

,

where |·| denotes the Eulidean vetor norm. The inner heat soure is then given by

q (x, y, t) =

{

108, t ≤ t3 and (x, y)⊤ ∈ K (t) ,

0, otherwise.

We onsider the quantity of interest

J (w) =

ˆ

Ω
108 |u (x, y, t3)|2 + 10−3 (θ (x, y, t3))

2 dx.

Sine the analyti solution of the presented example is not known, we alulate a referene

value of the quantity of interest by extrapolation over all alulated values of J in the uniform

mesh approah and obtain

Jref = 0.10759787968.

We use the numerially determined referene value to alulate the relative error. It is outlined for

the uniform approah in Table 4 and for the dynami mesh approah in Table 5. The last value of

the adaptive algorithm seems to be more aurate than the referene value suh that we ignore the

alulated error in this iteration. We ahieve with the dynami mesh approah the approximately

same auray as with the uniform approah using half the number of unknowns. The temporal

mesh is depited in Figure 5, where large time step lengths are used in the beginning. The adaptive

meshes are outlined in Figure 6. We observe only few re�nements in the beginning, whih follow

the heat soure. For t > t3, the adptive meshes follow the di�usion of the temperature.
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l M N L Erel

1 100 19, 200 100 3.55049 · 10−2

2 188 92, 700 188 1.87003 · 10−2

3 366 633, 816 366 −3.4622 · 10−3

4 724 4, 378, 752 724 −2.5334 · 10−4

5 1, 442 28, 424, 544 1, 442 −2.8798 · 10−4

Tab. 5: Development of the error for adaptive re�nement using the dynami mesh approah in

the �rst example
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Fig. 5: Temporal mesh in the 5th-iteration of the adaptive algorithm in the seond example

7 Conlusions and outlook

In this paper, we present an adaptive algorithm for solving thermomehanial oupled problems,

whih espeially estimates the numerial error introdued by the staggered solution sheme. By

this approah, the a posteriori error estimator measures the strength of the oupling between

the mehanial and thermal part of the model and an signi�antly redue the numerial e�ort.

As usual in DWR methods, we have to introdue some numerial approximation to obtain an

evaluable error estimate, whih an up to now only be justi�ed by numerial examples, see Setion

6, or under high regularity assumptions, f. [4℄. The main disadvantage of the presented approah

lies in the fat that we must ompute the whole primal and dual solution to obtain an estimate of

the numerial error. It would be muh better to diretly have suh an estimate at hand during the

solution of the primal problem. It is one topi of further researh to onstrut algorithms, surely

involving some additional approximations, whih provide suh type of information. An other

researh �eld is the extension of the presented result to oupled paraboli hyperboli problems

involving plastiity and frition as further soures of heat. However, these problems need a

ompletely di�erent approah beause they are modelled by variational inequalities.
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(a) m = 0 (b) m = 100 () m = 200

(d) m = 300 (e) m = 400 (f) m = 500

(g) m = 600 (h) m = 700 (i) m = 800

(j) m = 1000 (k) m = 1200 (l) m = 1400

Fig. 6: Adaptive meshes in the 5th iteration of the adaptive algorithm in the seond example
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A Primal time stepping sheme

Algorithm 9. Speify a stopping tolerane TOL > 0 and a maximum number of inner iterations

MAX ∈ N.

1. Calulate the disrete initial values by solving

∀ψh ∈
(

V 0
h

)d
:

(

ũ0kh, ψh

)

= (us, ψh) ,

∀χh ∈
(

V 0
h

)d
:

(

ṽ0kh, χh

)

= (vs, χh) ,

∀ωh ∈ V 0
h :

(

θ̃0kh, ωh

)

= (θs, ωh) .

2. Set m = 1.

3. Set l = 1, ũm,0
kh = Pm

h ũ
m−1
kh , θ̃m,0

kh = Pm
h θ̃

m−1
kh .

4. Solve the nonlinear equation

b2

(

θ̃m,l
kh , ωh

)

+
1

2
kma2

(

θ̃m,l
kh ; ũm,l−1

kh ; ũm,l−1
kh

)

(ωh)

=b2

(

θ̃m−1
kh , ωh

)

− 1

2
kma2

(

θ̃m−1
kh ; ũm−1

kh ; ũm−1
kh

)

(ωh) +
1

2
km

[

lm2 (ωh) + lm−1
2 (ωh)

]

,

(13)

whih has to hold for all ωh ∈ V m
h , w. r. t. θ̃m,l

kh ∈ V m
h by a damped Newton method.

5. Determine the solution ũm,l
kh ∈ (V m

h )d of the nonlinear equation

b1

(

ũm,l
kh , χh

)

+
1

4
k2ma1

(

ũm,l
kh ; θ̃m,l

kh

)

(χh)

=b1
(

ũm−1
kh , χh

)

+ kmb1
(

ṽm−1
kh , χh

)

− 1

4
k2ma1

(

ũm−1
kh ; θ̃m−1

kh

)

(χh)

+
1

4
k2m

[

lm1 (χh) + lm−1
1 (χh)

]

(14)

for all χh ∈ (V m
h )d using a damped Newton sheme.
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6. If

∥

∥

∥
ũm,l
kh − ũ

m,l−1
kh

∥

∥

∥
+

∥

∥

∥
θ̃m,l
kh − θ̃

m,l−1
kh

∥

∥

∥
≤ TOL or i = MAX, then set ũmkh = ũm,l

kh and θ̃mkh =

θ̃m,l
kh , go to 8.

7. Set l← l + 1 and go to 4.

8. Calulate ṽmkh ∈ (V m
h )d by solving the linear equation

b1 (ṽ
m
kh, ψh) = b1

(

2

km
ũmkh −

2

km
ũm−1
kh − ṽm−1

kh , ψh

)

(15)

for all ψh ∈ (V m
h )d using a CG-method.

9. If m =M then STOP.

10. Set m← m+ 1 and go to 3.

B Dual time stepping sheme

Algorithm 10. Speify a stopping tolerane TOL > 0 and a maximum number of inner iterations

MAX ∈ N.

1. Set l = 1, m =M − 1, ˜̄uM,0
kh = 0, ˜̄θM,0

kh = 0.

2. Determine the solution

˜̄uM,l
kh ∈

(

VM
h

)d
of the Helmholtz equation

b1

(

δuh, ˜̄u
M,l
kh

)

+
1

4
k2Ma

′
1,u

(

ũMkh; θ̃
M
kh

)(

δuh, ˜̄u
M,l
kh

)

= −1

4
k2Ma

′
2,u

(

θ̃Mkh; ũ
M
kh

)(

δuh,
˜̄θM,l
kh

)

+
1

4
k2MJ

′
1,u

(

w̃M
kh

)

(δuh)

+
1

2
kMJ

′
2,u

(

w̃M
kh

)

(δuh) +
1

2
kMJ

′
1,v

(

w̃M
kh

)

(δuh) + J ′
2,v

(

w̃M
kh

)

(δuh)

for all δuh ∈
(

VM
h

)d
using a CG-method.

3. Solve the Helmholtz equation

b2

(

δθh,
˜̄θM,l
kh

)

+
1

2
kMa

′
2,θ

(

θ̃Mkh; ũ
M
kh

)(

δθh,
˜̄θM,l
kh

)

= −1

2
kMa

′
1,θ

(

ũMkh; θ̃
M
kh

)(

δθh, ˜̄u
M,l−1
kh

)

+
1

2
kMJ

′
1,θ

(

w̃M
kh

)

(δθh) + J ′
2,θ

(

w̃M
kh

)

(δθh) ,

whih has to hold for all δθh ∈ VM
h , w. r. t.

˜̄θM,l
kh ∈ VM

h by a CG-sheme.

4. If

∥

∥

∥

˜̄uM,l
kh − ˜̄uM,l−1

kh

∥

∥

∥
+

∥

∥

∥

˜̄θM,l
kh − ˜̄θM,l−1

kh

∥

∥

∥
≤ TOL or i = MAX, then set

˜̄uMkh = ˜̄uM,l
kh and

˜̄θMkh = ˜̄θM,l
kh , go to 6.

5. Set l← l + 1 and go to 2.

6. Calulate

˜̄vMkh ∈
(

VM
h

)d
by solving the linear equation

b1
(

δvh, ˜̄v
M
kh

)

=
2

kM
b1

(

δvh, ˜̄u
M
kh

)

− J ′
1,v

(

w̃M
kh

)

(δvh)−
2

kM
J ′
2,v

(

w̃M
kh

)

(δvh)

for all δvh ∈
(

VM
h

)d
using a CG-method.
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7. Set l = 1, ˜̄um,0
kh = Pm

h
˜̄um+1
kh ,

˜̄θm,0
kh = Pm

h
˜̄θm+1
kh .

8. Determine the solution

˜̄um,l
kh ∈ (V m

h )d of the Helmholtz equation

b1

(

˜̄um,l
kh , δuh

)

+
1

4
k2ma

′
1,u

(

ũmkh; θ̃
m
kh

)(

δuh, ˜̄u
m,l
kh

)

= b1
(

˜̄um+1
kh , δuh

)

+
1

2
(km + km+1) b1

(

δuh, ˜̄v
m+1
kh

)

− 1

4
kmkm+1a

′
1,u

(

ũmkh; θ̃
m
kh

)

(

δuh, ˜̄u
m+1
kh

)

−1

4
k2ma

′
2,u

(

θ̃mkh; ũ
m
kh

)(

δuh,
˜̄θm,l
kh

)

− 1

4
kmkm+1a

′
2,u

(

θ̃mkh; ũ
m
kh

)(

δuh,
˜̄θm+1
kh

)

+
1

4
km (km + km+1) J

′
1,u (w̃

m
kh) (δuh) +

1

2
(km + km+1)J

′
1,v (w̃

m
kh) (δuh)

for all δuh ∈ (V m
h )d using a CG-method.

9. Solve the Helmholtz equation

b2

(

˜̄θmkh, δθh

)

+
1

2
kma

′
2,θ

(

θ̃mkh; ũ
m
kh

)(

δθh,
˜̄θmkh

)

= b2

(

˜̄θm+1
kh , δθh

)

− 1

2
kma

′
1,θ

(

ũmkh; θ̃
m
kh

)

(δθh, ˜̄u
m
kh)−

1

2
km+1a

′
1,θ

(

ũmkh; θ̃
m
kh

)

(

δθh, ˜̄u
m+1
kh

)

−1

2
km+1a

′
2,θ

(

θ̃mkh; ũ
m
kh

)(

δθh,
˜̄θm+1
kh

)

+
1

2
(km + km+1)J

′
1,θ (w̃

m
kh) (δθh) ,

whih has to hold for all δθh ∈ V m
h , w. r. t.

˜̄θm,l
kh ∈ V m

h by a CG-sheme.

10. If

∥

∥

∥

˜̄um,l
kh − ˜̄um,l−1

kh

∥

∥

∥
+

∥

∥

∥

˜̄θm,l
kh − ˜̄θm,l−1

kh

∥

∥

∥
≤ TOL or i = MAX, then set

˜̄umkh = ˜̄um,l
kh and

˜̄θmkh =

˜̄θm,l
kh , go to 12.

11. Set l← l + 1 and go to 8.

12. Calulate

˜̄vmkh ∈ (V m
h )d by solving the linear equation

b1 (δvh, ˜̄v
m
kh) = −km+1

km
b1

(

δvh, ˜̄v
m+1
kh

)

− 2

km
b1

(

˜̄um+1
kh − ˜̄umkh, δvh

)

−
(

km + km+1

km

)

J ′
1,v (w̃

m
kh) (δvh)

for all δvh ∈ (V m
h )d using a CG-method.

13. If m = 1 then go to 15.

14. Set m← m− 1 and go to 7.

15. Solve the linear equation

b2

(

˜̄θ0kh, δθh

)

= −1

2
k1a

′
1,θ

(

ũ0kh; θ̃
0
kh

)

(

δθh, ˜̄u
1
kh

)

− 1

2
k1a

′
2,θ

(

θ̃0kh; ũ
0
kh

)(

δθh,
˜̄θ1kh

)

+b2

(

˜̄θ1kh, δθh

)

+
1

2
k1J

′
1,θ

(

w̃0
kh

)

(δθh)

whih has to hold for all δθh ∈ V 0
h , w. r. t.

˜̄θ0kh ∈ V 0
h by a CG-sheme.
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16. Determine the solution

˜̄u0kh ∈
(

V 0
h

)d
of the linear equation

b1
(

˜̄u0kh, δvh
)

=
1

2
k1b1

(

δvh, ˜̄v
1
kh

)

+ b1
(

˜̄u1kh, δvh
)

+
1

2
k1J

′
1,v

(

w̃0
kh

)

(δvh)

for all δuh ∈
(

V 0
h

)d
using a CG-method.

17. Calulate

˜̄v0kh ∈
(

V 0
h

)d
by solving the linear equation

b1
(

˜̄v0kh, δuh
)

= −1

2
k1a

′
1,u

(

ũ0kh; θ̃
0
kh

)

(

δuh, ˜̄u
1
kh

)

− 1

2
k1a

′
2,u

(

θ̃0kh; ũ
0
kh

)(

δuh,
˜̄θ1kh

)

+b1
(

˜̄v1kh, δuh
)

+
1

2
k1J

′
1,u

(

w̃0
kh

)

(δuh)

for all δvh ∈
(

V 0
h

)d
using a CG-method.

C Conrete terms of the error estimator

Here, we ollet the onrete terms of the error estimator w.r.t. the temporal and the spatial

part.

C.1 Temporal error estimate

This setion is devoted to the detailed derivation of the temporal error estimator. For the evalua-

tion of the a posteriori error estimate, two di�erent interpolation methods of higher order in time

are needed. The �rst one is i
(1)
k , whih is linear and is used in the ase of pieewise onstant trial

funtions. The other one is i
(2)
2k , whih is quadrati. Pieewise linear funtions are extrapolated

by this method. The interpolation operator i
(1)
k is de�ned as

i
(1)
k vkh(t) :=

tm − t
km

vm−1
kh +

t− tm−1

km
vmkh

with t ∈ Im and vkh ∈Wkh. The evaluation of the interpolation at di�erent time instanes results

in the terms

i
(1)
k vkh (tm) = vmkh

i
(1)
k vkh (tm−1) = vm−1

kh

i
(1)
k vkh

(

tm− 1

2

)

=
1

2
km

[

vmkh + vm−1
kh

]

.

The interpolation operator i
(2)
2k is de�ned as

i
(2)
2k vkh(t) :=

(tm − t) (tm+1 − t)
km (km + km+1)

vm−1
kh +

(t− tm−1) (tm+1 − t)
kmkm+1

vmkh

+
(t− tm−1) (t− tm)

(km + km+1) km+1
vm+1
kh

for t ∈ Im ∪ Im+1 and vkh ∈ Vkh. The basi evaluation terms are

i
(2)
2k vkh (tm−1) = vm−1

kh , i
(2)
2k vkh (tm) = vmkh, i

(2)
2k vkh (tm+1) = vm+1

kh
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and

i
(2)
2k vkh

(

tm− 1

2

)

=
1

2

km+1 +
1
2km

km + km+1
vm−1
kh +

1

2

(

1 +
km

2km+1

)

vmkh

−1

4

k2m
(km + km+1) km+1

vm+1
kh

i
(2)
2k vkh

(

tm+ 1

2

)

= −1

4

k2m+1

km (km + km+1)
vm−1
kh +

1

2

(

1 +
km+1

2km

)

vmkh

+
1

2

km + 1
2km+1

km + km+1
vm+1
kh

with

tm− 1

2

=
1

2
(tm−1 + tm) and tm+ 1

2

=
1

2
(tm + tm+1) .

Using this interpolation ansatz, we are able to write down the temporal error estimator

ηi,mk

=
1

2

[

ρ (w̃kh)
(

i
(2)
2hΠ

(1)
k z̃kh

)

m
+ ρ⋆ (w̃kh, z̃kh)

(

i
(2)
2hΠ

(2)
2k w̃kh

)

m

]

=

[

−1

2
A (w̃kh)

(

i
(2)
2hΠ

(1)
k z̃kh

)

]

m

+

[

1

2
J ′
1 (w̃kh)

(

i
(2)
2hΠ

(2)
2k w̃kh

)

− 1

2
A′ (w̃kh)

(

i
(2)
2hΠ

(2)
2k w̃kh

)

]

m

=:
[

ηmk,pu + ηmk,pv + ηmk,pθ
]

+
[

ηmk,dū + ηmk,dv̄ + ηmk,dθ̄

]

for 0 < m < M . Using suitable quadrature rules, we obtain for the single terms

ηmk,pu = −1

2

[(

b1

(

˙̃vkh, i
(2)
2hΠ

(1)
k

˜̄ukh

))

m
+

(

a1

(

ũkh; θ̃kh

)(

i
(2)
2hΠ

(1)
k

˜̄ukh

))

m

]

+
1

2

(

l1

(

i
(2)
2hΠ

(1)
k

˜̄ukh

))

m

=
1

4
b1

(

ṽmkh − ṽm−1
kh , i

(2)
2h

(

˜̄umkh − ˜̄um−1
kh

)

)

+
km
6
a1

(

ũmkh; θ̃
m
kh

)(

i
(2)
2h

˜̄umkh

)

−km
6
a1

(

ũ
m− 1

2

kh ; θ̃
m− 1

2

kh

)

(

i
(2)
2h

(

˜̄umkh + ˜̄um−1
kh

)

)

−km
12
a1

(

ũm−1
kh ; θ̃m−1

kh

)(

i
(2)
2h

(

˜̄um−1
kh − 3˜̄umkh

)

)

+
km
12

[

−2lm1
(

i
(2)
2h

˜̄umkh

)

+ 2l
m− 1

2

1

(

i
(2)
2h

(

˜̄umkh + ˜̄um−1
kh

)

)

+ lm−1
1

(

i
(2)
2h

(

˜̄um−1
kh − 3˜̄umkh

)

)

]

,

ηmk,pv = −1

2

(

b1

(

˙̃ukh − ṽkh, i(2)2hΠ
(1)
k

˜̄vkh

))

m

=
1

4
b1

(

ũmkh − ũm−1
kh , i

(2)
2h

(

˜̄vmkh − ˜̄vm−1
kh

)

)

− 1

12
kmb1

(

ṽmkh + 2ṽm−1
kh , i

(2)
2h

(

˜̄vmkh − ˜̄vm−1
kh

)

)

,
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ηmk,pθ = −1

2

[(

b2

(

˙̃
θkh, i

(2)
2hΠ

(1)
k

˜̄θkh

))

m
+

(

a2

(

θ̃kh; ũkh

)(

i
(2)
2hΠ

(1)
k

˜̄θkh

))

m

]

+
1

2

(

l2

(

i
(2)
2hΠ

(1)
k

˜̄θkh

))

m

=
1

4
b2

(

θ̃mkh − θ̃m−1
kh , i

(2)
2h

(

˜̄θmkh − ˜̄θm−1
kh

))

+
km
6
a2

(

ũmkh; θ̃
m
kh

)(

i
(2)
2h

˜̄θmkh

)

−km
6
a2

(

ũ
m− 1

2

kh ; θ̃
m− 1

2

kh

)

(

i
(2)
2h

(

˜̄θmkh +
˜̄θm−1
kh

))

−km
12
a2

(

ũm−1
kh ; θ̃m−1

kh

)(

i
(2)
2h

(

˜̄θm−1
kh − 3˜̄θmkh

))

+
km
12

[

−2lm2
(

i
(2)
2h

˜̄θmkh

)

+ 2l
m− 1

2

2

(

i
(2)
2h

(

˜̄θmkh +
˜̄θm−1
kh

))

+ lm−1
2

(

i
(2)
2h

(

˜̄θm−1
kh − 3˜̄θmkh

))

]

,

ηmk,dū =
1

2

ˆ

Im

J ′
1,u (w̃kh)

(

i
(2)
2hΠ

(2)
2k ũkh

)

dt− 1

2

(

a′1,u
(

ũkh; θ̃kh

)(

i
(2)
2hΠ

(2)
2k ũkh, ˜̄ukh

))

m

−1

2

(

a′2,u
(

θ̃kh; ũkh

)(

i
(2)
2hΠ

(2)
2k ũkh,

˜̄θkh

))

m
+

1

2
b1

(

[˜̄vkh]m , i
(2)
2hΠ

(2)
2k ũ

m
kh

)

= −km
6

[

J ′
1,u (w̃

m
kh)

(

i
(2)
2h ũ

m
kh

)

+ J ′
1,u

(

w̃m−1
kh

)

(

i
(2)
2h ũ

m−1
kh

)]

+
km
3
J ′
1,u

(

w̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k ũ

m− 1

2

kh

)

+
km
6

[

a′1,u
(

ũmkh; θ̃
m
kh

)(

i
(2)
2h ũ

m
kh, ˜̄u

m
kh

)

+ a′1,u
(

ũm−1
kh ; θ̃m−1

kh

)(

i
(2)
2h ũ

m−1
kh , ˜̄umkh

)]

−km
3
a′1,u

(

ũ
m− 1

2

kh ; θ̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k ũ

m− 1

2

kh , ˜̄umkh

)

+
km
6

[

a′2,u
(

θ̃mkh; ũ
m
kh

)(

i
(2)
2h ũ

m
kh,

˜̄θmkh

)

+ a′2,u
(

θ̃m−1
kh ; ũm−1

kh

)(

i
(2)
2h ũ

m−1
kh , ˜̄θmkh

)]

−km
3
a′2,u

(

θ̃
m− 1

2

kh ; ũ
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k ũ

m− 1

2

kh , ˜̄θmkh

)

,

ηmk,dv̄ =
1

2

ˆ

Im

J ′
1,v (w̃kh)

(

i
(2)
2hΠ

(2)
2k ṽkh

)

dt

+
1

2

[(

b1

(

i
(2)
2hΠ

(2)
2k ṽkh, ˜̄vkh

))

m
+ b1

(

[˜̄ukh]m , i
(2)
2hΠ

(2)
2k ṽ

m
kh

)]

= −km
6

[

J ′
1,v (w̃

m
kh)

(

i
(2)
2h ṽ

m
kh

)

+ J ′
1,v

(

w̃m−1
kh

)

(

i
(2)
2h ṽ

m−1
kh

)]

+
km
3
J ′
1,v

(

w̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k ṽ

m− 1

2

kh

)

−km
6
b1

(

i
(2)
2h

(

ṽmkh + ṽm−1
kh

)

, ˜̄vmkh

)

+
km
3
b1

(

i
(2)
2h i

(2)
2k ṽ

m− 1

2

kh , ˜̄vmkh

)

,
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ηmk,dθ̄ =
1

2

ˆ

Im

J ′
1,θ (w̃kh)

(

i
(2)
2hΠ

(2)
2k θ̃kh

)

dt− 1

2

(

a′1,θ

(

ũkh; θ̃kh

)(

i
(2)
2hΠ

(2)
2k θ̃kh,

˜̄θkh

))

m

−1

2

(

a′2,θ
(

θ̃kh; ũkh

)(

i
(2)
2hΠ

(2)
2k θ̃kh,

˜̄θkh

))

m
+

1

2
b2

([

˜̄θkh

]

m
, i

(2)
2hΠ

(2)
2k θ̃

m
kh

)

= −km
6

[

J ′
1,θ (w̃

m
kh)

(

i
(2)
2h θ̃

m
kh

)

+ J ′
1,θ

(

w̃m−1
kh

)

(

i
(2)
2h θ̃

m−1
kh

)]

+
km
3
J ′
1,θ

(

w̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k θ̃

m− 1

2

kh

)

+
km
6

[

a′1,θ
(

ũmkh; θ̃
m
kh

)(

i
(2)
2h θ̃

m
kh, ˜̄u

m
kh

)

+ a′1,θ
(

ũm−1
kh ; θ̃m−1

kh

)(

i
(2)
2h θ̃

m−1
kh , ˜̄umkh

)]

−km
3
a′1,θ

(

ũ
m− 1

2

kh ; θ̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k θ̃

m− 1

2

kh , ˜̄umkh

)

+
km
6

[

a′2,θ
(

θ̃mkh; ũ
m
kh

)(

i
(2)
2h θ̃

m
kh,

˜̄θmkh

)

+ a′2,θ
(

θ̃m−1
kh ; ũm−1

kh

)(

i
(2)
2h θ̃

m−1
kh , ˜̄θmkh

)]

−km
3
a′2,θ

(

ũ
m− 1

2

kh ; θ̃
m− 1

2

kh

)(

i
(2)
2h i

(2)
2k θ̃

m− 1

2

kh , ˜̄θmkh

)

.

C.2 Spatial error estimate

In this setion, we give the single terms of the spatial error estimator ηnh . In the �rst time step,

we obtain

ηn,0h = −1

2

[

b1

(

ũ0kh − us,Π
(2)
2h

˜̄v0kh

)

+ b1

(

ṽ0kh − vs,Π
(2)
2h

˜̄u0kh

)

+ b2

(

θ̃0kh − θs,Π
(2)
2h

˜̄θ0kh

)]

+
1

2

[

b1

(

˜̄u1kh − ˜̄u0kh,Π
(2)
2h ṽ

0
kh

)

+ b1

(

˜̄v1kh − ˜̄v0kh,Π
(2)
2h ũ

0
kh

)

+ b2

(

˜̄θ1kh − ˜̄θ0kh,Π
(2)
2h θ̃

0
kh

)]

For a time step 0 < m < M , it holds

ηn,mh

=
1

2

[

ρ (w̃kh)
(

Π
(0,2)
2h z̃kh

)

m
+ ρ⋆ (w̃kh, z̃kh)

(

Π
(1,2)
2h w̃kh

)

m

]

=

[

−1

2
A (w̃kh)

(

Π
(0,2)
2h z̃kh

)

]

m

+

[

1

2
J ′
1 (w̃kh)

(

Π
(1,2)
2h w̃kh

)

− 1

2
A′ (w̃kh)

(

Π
(1,2)
2h w̃kh, z̃kh

)

]

m

=:
[

ηmh,pu + ηmh,pv + ηmh,pθ
]

+
[

ηmh,dū + ηmh,dv̄ + ηmh,dθ̄

]

.

The single terms result using suitable quadrature rules in

ηmh,pu = −1

2

[(

b1

(

˙̃vkh,Π
(0,2)
2h

˜̄ukh

))

m
+

(

a1

(

ũkh; θ̃kh

)(

Π
(0,2)
2h

˜̄ukh

))

m
−

(

l1

(

Π
(0,2)
2h

˜̄ukh

))

m

]

= −1

2
b1

(

ṽmkh − ṽm−1
kh ,Π

(2)
2h

˜̄umkh

)

− km
4
a1

(

ũmkh; θ̃
m
kh

)(

Π
(2)
2h

˜̄umkh

)

−km
4
a1

(

ũm−1
kh ; θ̃m−1

kh

)(

Π
(2)
2h

˜̄umkh

)

+
km
4

[

lm1

(

Π
(2)
2h

˜̄umkh

)

+ lm−1
1

(

Π
(2)
2h

˜̄umkh

)]

,

ηmh,pv = −1

2

(

b1

(

˙̃ukh − ṽkh,Π(0,2)
2h

˜̄vkh

))

m

= −1

2
b1

(

ũmkh − ũm−1
kh ,Π

(2)
2h

˜̄vmkh

)

+
km
4
b1

(

ṽmkh + ṽm−1
kh ,Π

(2)
2h

˜̄vmkh

)

,
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ηmh,pθ = −1

2

[(

b2

(

˙̃
θkh,Π

(0,2)
2h

˜̄θkh

))

m
+

(

a2

(

θ̃kh; ũkh

)(

Π
(0,2)
2h

˜̄θkh

))

m
−

(

l2

(

Π
(0,2)
2h

˜̄θkh

))

m

]

= −1

2
b2

(

θ̃mkh − θ̃m−1
kh ,Π

(2)
2h

˜̄θmkh

)

− km
4
a2

(

θ̃mkh; ũ
m
kh

)(

Π
(2)
2h

˜̄θmkh

)

−km
4
a2

(

θ̃m−1
kh ; ũm−1

kh

)(

Π
(2)
2h

˜̄θmkh

)

+
km
4

[

lm2

(

Π
(2)
2h

˜̄θmkh

)

+ lm−1
2

(

Π
(2)
2h

˜̄θmkh

)]

,

ηmh,dū =
1

2

ˆ

Im

J ′
1,u (w̃kh)

(

Π
(1,2)
2h ũkh

)

dt− 1

2

(

a′1,u
(

ũkh; θ̃kh

)(

Π
(1,2)
2h ũkh, ˜̄ukh

))

m

−1

2

(

a′2,u
(

θ̃kh; ũkh

)(

Π
(1,2)
2h ũkh,

˜̄θkh

))

m
+

1

2
b1

(

[˜̄vkh]m ,Π
(2)
2h ũ

m
kh

)

=
km
4

[

J ′
1,u (w̃

m
kh)

(

Π
(2)
2h ũ

m
kh

)

+ J ′
1,u

(

w̃m−1
kh

)

(

Π
(2)
2h ũ

m−1
kh

)]

+
1

2
b1

(

˜̄vm+1
kh − ˜̄vmkh,Π

(2)
2h ũ

m
kh

)

−km
4

[

a′1,u
(

ũmkh; θ̃
m
kh

)(

Π
(2)
2h ũ

m
kh, ˜̄u

m
kh

)

+ a′1,u
(

ũm−1
kh ; θ̃m−1

kh

)(

Π
(2)
2h ũ

m−1
kh , ˜̄umkh

)]

−km
4

[

a′2,u
(

θ̃mkh; ũ
m
kh

)(

Π
(2)
2h ũ

m
kh,

˜̄θmkh

)

+ a′2,u
(

θ̃m−1
kh ; ũm−1

kh

)(

Π
(2)
2h ũ

m−1
kh , ˜̄θmkh

)]

,

ηmh,dv̄ =
1

2

ˆ

Im

J ′
1,v (w̃kh)

(

Π
(1,2)
2h ṽkh

)

dt

+
1

2

[(

b1

(

Π
(1,2)
2h ṽkh, ˜̄vkh

))

m
+ b1

(

[˜̄ukh]m ,Π
(2)
2h ṽ

m
kh

)]

=
km
4

[

J ′
1,v (w̃

m
kh)

(

Π
(2)
2h ṽ

m
kh

)

+ J ′
1,v

(

w̃m−1
kh

)

(

Π
(2)
2h ṽ

m−1
kh

)]

+
km
4
b1

(

Π
(2)
2h

(

ṽmkh + ṽm−1
kh

)

, ˜̄vmkh

)

+
1

2
b1

(

˜̄um+1
kh − ˜̄umkh,Π

(2)
2h ṽ

m
kh

)

,

ηmh,dθ̄ =
1

2

ˆ

Im

J ′
1,θ (w̃kh)

(

Π
(1,2)
2h θ̃kh

)

dt− 1

2

(

a′1,θ
(

ũkh; θ̃kh

)(

Π
(1,2)
2h θ̃kh, ˜̄ukh

))

m

−1

2

(

a′2,θ
(

θ̃kh; ũkh

)(

Π
(1,2)
2h θ̃kh,

˜̄θkh

))

m
+

1

2
b2

([

˜̄θkh

]

m
,Π

(2)
2h θ̃

m
kh

)

=
km
4

[

J ′
1,θ (w̃

m
kh)

(

Π
(2)
2h θ̃

m
kh

)

+ J ′
1,θ

(

w̃m−1
kh

)

(

Π
(2)
2h θ̃

m−1
kh

)]

+
1

2
b2

(

˜̄θm+1
kh − ˜̄θmkh,Π

(2)
2h θ̃

m
kh

)

−km
4

[

a′1,θ
(

ũmkh; θ̃
m
kh

)(

Π
(2)
2h θ̃

m
kh, ˜̄u

m
kh

)

+ a′1,θ
(

ũm−1
kh ; θ̃m−1

kh

)(

Π
(2)
2h θ̃

m−1
kh , ˜̄umkh

)]

−km
4

[

a′2,θ
(

θ̃mkh; ũ
m
kh

)(

Π
(2)
2h θ̃

m
kh,

˜̄θmkh

)

+ a′2,θ
(

θ̃m−1
kh ; ũm−1

kh

)(

Π
(2)
2h θ̃

m−1
kh , ˜̄θmkh

)]

.
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In the last time step, we only have to modify the terms onneted to the dual residual. We obtain

ηMh,dū =
1

2

ˆ

IM

J ′
1,u (w̃kh)

(

Π
(1,2)
2h ũkh

)

dt+
1

2
J ′
2,u

(

w̃M
kh

)

(

Π
(2)
2h ũ

M
kh

)

− 1

2
b1

(

˜̄vMkh,Π
(2)
2h ũ

M
kh

)

−1

2

(

a′1,u
(

ũkh; θ̃kh

)(

Π
(1,2)
2h ũkh, ˜̄ukh

))

M
− 1

2

(

a′2,u
(

θ̃kh; ũkh

)(

Π
(1,2)
2h ũkh,

˜̄θkh

))

M

=
kM
4

[

J ′
u

(

w̃M
kh

)

(

Π
(2)
2h ũ

M
kh

)

+ J ′
u

(

w̃M−1
kh

)(

Π
(2)
2h ũ

M−1
kh

)]

+
1

2
J ′
2,u

(

w̃M
kh

)

(

Π
(2)
2h ũ

M
kh

)

− 1

2
b1

(

˜̄vMkh,Π
(2)
2h ũ

M
kh

)

−kM
4

[

a′1,u
(

ũMkh; θ̃
M
kh

)(

Π
(2)
2h ũ

M
kh, ˜̄u

M
kh

)

+ a′1,u
(

ũM−1
kh ; θ̃M−1

kh

)(

Π
(2)
2h ũ

M−1
kh , ˜̄uMkh

)]

−kM
4

[

a′2,u
(

θ̃Mkh; ũ
M
kh

)(

Π
(2)
2h ũ

M
kh,

˜̄θMkh

)

+ a′2,u
(

θ̃M−1
kh ; ũM−1

kh

)(

Π
(2)
2h ũ

M−1
kh , ˜̄θMkh

)]

,

ηMh,dv̄ =
1

2

ˆ

IM

J ′
v (w̃kh)

(

Π
(1,2)
2h ṽkh

)

dt+
1

2
J ′
2,v

(

w̃M
kh

)

(

Π
(2)
2h ṽ

M
kh

)

+
1

2

(

b1

(

Π
(1,2)
2h ṽkh, ˜̄vkh

))

M
− 1

2
b1

(

˜̄uMkh,Π
(2)
2h ṽ

M
kh

)

=
kM
4

[

J ′
1,v

(

w̃M
kh

)

(

Π
(2)
2h ṽ

M
kh

)

+ J ′
1,v

(

w̃M−1
kh

)(

Π
(2)
2h ṽ

M−1
kh

)]

+
1

2
J ′
2,v

(

w̃M
kh

)

(

Π
(2)
2h ṽ

M
kh

)

+
kM
4
b1

(

Π
(2)
2h

(

ṽMkh + ṽM−1
kh

)

, ˜̄vMkh

)

− 1

2
b1

(

˜̄uMkh,Π
(2)
2h ṽ

M
kh

)

,

ηMh,dθ̄ =
1

2

ˆ

IM

J ′
1,θ (w̃kh)

(

Π
(1,2)
2h θ̃kh

)

dt+
1

2
J ′
2,θ

(

w̃M
kh

)

(

Π
(2)
2h θ̃

M
kh

)

− 1

2
b2

(

˜̄θMkh,Π
(2)
2h θ̃

M
kh

)

−1

2

(

a′1,θ
(

ũkh; θ̃kh

)(

Π
(1,2)
2h θ̃kh, ˜̄ukh

))

M
− 1

2

(

a′2,θ
(

θ̃kh; ũkh

)(

Π
(1,2)
2h θ̃kh,

˜̄θkh

))

M

=
kM
4

[

J ′
1,θ

(

w̃M
kh

)

(

Π
(2)
2h θ̃

M
kh

)

+ J ′
1,θ

(

w̃M−1
kh

)(

Π
(2)
2h θ̃

M−1
kh

)]

+
1

2
J ′
2,θ

(

w̃M
kh

)

(

Π
(2)
2h θ̃

M
kh

)

− 1

2
b2

(

˜̄θMkh,Π
(2)
2h θ̃

M
kh

)

−kM
4

[

a′1,θ
(

ũMkh; θ̃
M
kh

)(

Π
(2)
2h θ̃

M
kh, ˜̄u

M
kh

)

+ a′1,θ
(

ũM−1
kh ; θ̃M−1

kh

)(

Π
(2)
2h θ̃

M−1
kh , ˜̄uMkh

)]

−kM
4

[

a′2,θ
(

θ̃Mkh; ũ
M
kh

)(

Π
(2)
2h θ̃

M
kh,

˜̄θMkh

)

+ a′2,θ
(

θ̃M−1
kh ; ũM−1

kh

)(

Π
(2)
2h θ̃

M−1
kh , ˜̄θMkh

)]

.

C.3 Numerial error estimate

In this setion, we give the single terms of the numerial error estimator ηit. In the �rst time

step, we obtain

η0it = −b1
(

ũ0kh − us, ˜̄v0kh
)

− b1
(

ṽ0kh − vs, ˜̄u0kh
)

− b2
(

θ̃0kh − θs, ˜̄θ0kh
)

+b1
(

˜̄u1kh − ˜̄u0kh, ṽ
0
kh

)

+ b1
(

˜̄v1kh − ˜̄v0kh, ũ
0
kh

)

+ b2

(

˜̄θ1kh − ˜̄θ0kh, θ̃
0
kh

)

For a time step 0 < m ≤M , it holds

ηmit = [A (w̃kh) (z̃kh)]m =:
[

ηmit,u + ηmit,v + ηmit,θ
]

.
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The single terms result using suitable quadrature rules in

ηmit,u =
(

b1
(

˙̃vkh, ˜̄ukh
))

m
+

(

a1

(

ũkh; θ̃kh

)

(˜̄ukh)
)

m
− (l1 (˜̄ukh))m

= b1
(

ṽmkh − ṽm−1
kh , ˜̄umkh

)

+
km
2
a1

(

ũmkh; θ̃
m
kh

)

(˜̄umkh)

+
km
2
a1

(

ũm−1
kh ; θ̃m−1

kh

)

(˜̄umkh) +
km
2

[

lm1 (˜̄umkh) + lm−1
1 (˜̄umkh)

]

,

ηmit,v =
(

b1
(

˙̃ukh − ṽkh, ˜̄vkh
))

m

= b1
(

ũmkh − ũm−1
kh , ˜̄vmkh

)

− km
2
b1

(

ṽmkh + ṽm−1
kh , ˜̄vmkh

)

,

ηmit,θ =
(

b2

(

˙̃
θkh,

˜̄θkh

))

m
+

(

a2

(

θ̃kh; ũkh

)(

˜̄θkh

))

m
−

(

l2

(

˜̄θkh

))

m

= b2

(

θ̃mkh − θ̃m−1
kh , ˜̄θmkh

)

+
km
2
a2

(

θ̃mkh; ũ
m
kh

)(

˜̄θmkh

)

+
km
2
a2

(

θ̃m−1
kh ; ũm−1

kh

)(

˜̄θmkh

)

+
km
2

[

lm2

(

˜̄θmkh

)

+ lm−1
2

(

˜̄θmkh

)]

.

D Adaptive solution algorithm for the dynami mesh approah

Algorithm 11. Set the number of maximum iterations of the staggered solution sheme MAX and

the stopping tolerane TOL, a stopping riterion, an initial spatial mesh Ih, an initial temporal

mesh T0
k with M0

time steps, a safety fator cf ∈ (0, 1), a equilibration onstant ce > 1, l = 0,
and Ml

h = (Ih)0≤m≤M0 .

1. Solve the primal problem by the time stepping sheme given in Setion 9 using MAX and

TOL. Save w̃l
kh.

2. Solve the dual problem by the time stepping sheme outline in Setion 10 using MAX and

TOL. Save z̃lkh.

3. Evaluate the error estimator η+ηN and alulate the error indiators as outlined in Setion

5.

4. If the stopping riterion is ful�lled, then set w⋆
kh = wl

kh and STOP.

5. If

∣

∣ηN,l
∣

∣ ≥ cf
∣

∣ηl
∣

∣

set l ← l + 1 and go to 1.

6. If

∣

∣

∣
ηn,lh

∣

∣

∣
≥ ce

∣

∣

∣
ηi,lk

∣

∣

∣
perform only spatial re�nement, if

∣

∣

∣
ηi,lk

∣

∣

∣
≥ ce

∣

∣

∣
ηn,lh

∣

∣

∣
perform only temporal

re�nement, otherwise re�ne both.

7. If only temporal re�nement, then set M̃l+1
h = Ml

h and go to 12.

8. Use the optimal mesh strategy to determine ΘDM,l
h,r ⊂ ΘDM,l

h , i. e. the spatial mesh ells for

re�nement.

9. Re�ne Ml
h aording to ΘDM,l

h,r ensuring the path struture and that only single hanging

nodes in spae our. Call the result M̄l+1
h .
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10. Regularize the mesh sequene M̄l+1
h in time leading to M̃l+1

h .

11. If only spatial re�nement, then set Ml+1
h = M̃l+1

h and Tl+1
k = Tl

k. Go to 14.

12. Use the optimal mesh strategy to determine Θl
k,r ⊂ Θl

k, i. e. the temporal mesh ells for

re�nement.

13. Re�ne the temporal mesh Tl
k and modify the spatial mesh sequene M̃l+1

h aording to Θl
k,r.

Call the results Tl+1
k and Ml+1

h .

14. Set l← l + 1 and go to 1.


