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Summary. We present numerical techniques for solving the problem of fluid structure in-
teraction with a compressible elastic material in a laminarincompressible viscous flow via
fully coupled monolithic Arbitrary Lagrangian-Eulerian (ALE) formulation. The mathemati-
cal description and the numerical schemes are designed in such a way that more complicated
constitutive relations can be easily incorporated. The whole domain of interest is treated as
one continuum and we utilize the well knownQ2P1 finite element pair for discretization in
space to gain high accuracy. We perform numerical comparisons for different time stepping
schemes, including variants of the Fractional-Step-θ -scheme, Backward Euler and Crank-
Nicholson scheme for both solid and fluid parts. The resulting nonlinear discretized algebraic
system is solved by a quasi-Newton method which approximates the Jacobian matrices by the
divided differences approach and the resulting linear systems are solved by a geometric multi-
grid approach. In the numerical examples, a cylinder with attached flexible beam is allowed to
freely rotate around its axis which requires a special numerical treatment. By identifying the
center of the cylinder with one grid point of the computational mesh we prescribe a Dirichlet
type boundary condition for the velocity and the displacement of the structure at this point,
which allows free rotation around this point. We present numerical studies for different prob-
lem parameters on various mesh types and compare the resultswith experimental values from
a corresponding benchmarking experiment.

1 Introduction

We consider the problem of viscous fluid flow interacting withan elastic body which is being
deformed by the fluid action. Such a problem is encountered inmany real life applications
of great importance. Typical examples of this type of problem are the areas of biomedical
fluids which include joint lubrication and deformable cartilage and blood flow interaction with
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implants. The theoretical investigation of fluid structureinteraction problems is complicated
by the need of a mixed description. While for the solid part the natural view is the material
(Lagrangian) description, for the fluid it is the spatial (Eulerian) description. In the case of their
combination some kind of mixed description (usually referred to as the Arbitrary Lagrangian-
Eulerian description or ALE) has to be used which brings additional nonlinearity into the
resulting equations.

A numerical solution of the resulting equations of the fluid structure interaction problem poses
great challenges since it includes the features of elasticity, fluid mechanics and their coupling.
The easiest solution strategy, mostly used in the availablesoftware packages, is to decouple the
problem into the fluid part and solid part, for each of those parts using some well established
method of solution; then the interaction process is introduced as external boundary conditions
in each of the subproblems. This has the advantage that thereare many well tested numerical
methods for both separate problems of fluid flow and elastic deformation, while on the other
hand the treatment of the interface and the interaction is problematic. In contrast, the approach
presented here treats the problem as a single continuum withthe coupling automatically taken
care of as internal interface, which in our formulation doesnot require any special treatment.

2 Fluid-structure interaction problem formulation

A general fluid structure interaction problem consists of the description of the fluid and solid
fields, appropriate interface conditions at the interface and conditions for the remaining bound-
aries, respectively. In this paper, we consider the flow of anincompressible Newtonian fluid
interacting with an elastic solid. We denote the domain occupied by the fluid byΩ f

t and the
solid by Ωs

t at the timet ∈ [0,T]. Let Γ 0
t = Ω̄ f

t ∩ Ω̄s
t be the part of the boundary where the

elastic solid interacts with the fluid.

In the following, the fields and interface conditions are introduced. Furthermore, problem
configurations and solution procedure for each of the fields is presented in detail.

2.1 Fluid

The fluid is considered to beNewtonian, incompressibleand its state is described by the
velocityand pressurefieldsvf , pf respectively. The constant density of the fluid isρ f and the
kinematic viscosity is denoted byν f . The balance equations are:

ρ f Dv f

Dt
= divσ f , divv f = 0 in Ω f

t (1)

In order to solve the balance equations we need to specify theconstitutive relations for the
stress tensors. For the fluid we use the incompressible Newtonian relation

σ f = −pf I + µ(∇v f +(∇v f )T), (2)

whereµ represents the dynamic viscosity of the fluid andpf is the Lagrange multiplier cor-
responding to the incompressibility constraint in (1). Thematerial time derivative depends on
the choice of the reference system. There are basically 3 alternative reference systems: the
Eulerian, the Lagrangian, and the Arbitrary Lagrangian Eulerian formulation. The most com-
monly used description for the fluid structure interaction is the ALE description. For the ALE
formulation presented in this paper, discretization techniques are discussed in section 3.
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2.2 Structure

The structure is assumed to beelasticandcompressible. Its configuration is described by the
displacementus, with velocity fieldvs = ∂us

∂ t . The balance equations are:

ρs∂vs

∂ t
+ρs(∇vs)vs = divσs+ρsg, in Ωs

t . (3)

Written in the more common Lagrangian description, i.e. with respect to some fixed reference
(initial) stateΩs, we have

ρs∂ 2us

∂ t2 = div(JσsF−T)+ρsg, in Ωs. (4)

The constitutive relations for the stress tensors for the compressible structure are presented,
however, also incompressible structures can be handled in the same way. The density of the
structure in the undeformed configuration isρs. The material elasticity is characterized by
a set of two parameters, the Poisson ratioνs and the Young modulusE. Alternatively, the
characterization is described by the Lam´e coefficientsλ s and the shear modulusµs. These
parameters satisfy the following relations

νs =
λ s

2(λ s+ µs)
E =

µs(3λ s+2µ2)

(λ s+ µs)
(5)

µs =
E

2(1+νs)
λ s =

νsE
(1+νs)(1−2νs)

, (6)

whereνs = 1/2 for a incompressible andνs < 1/2 for a compressible structure. In the large
deformation case it is common to describe the constitutive equation using a stress-strain re-
lation based on the Green Lagrangian strain tensorE and the 2.Piola-Kirchhoff stress tensor
S(E) as a function ofE. The 2.Piola-Kirchhoff stress can be obtained from the Cauchy stress
σs as

Ss = JF−1σsF−T , (7)

and the Green-Lagrange tensorE as

E =
1
2
(FTF − I). (8)

In this paper, the material is specified by giving the Cauchy stress tensorσs by the following
constitutive law for theSt.Venant-Kirchhoff material for simplicity

σs =
1
J

F(λ s(trE)I +2µsE)FT Ss = λ s(trE)I +2µsE. (9)

J denotes the determinant of the deformation gradient tensorF , defined asF = I +∇us.

2.3 Interaction Condition

The boundary conditions on the fluid solid interface are assumed to be

σ f n = σsn, v f = vs, on Γ 0
t , (10)

wheren is a unit normal vector to the interfaceΓ 0
t . This implies the no-slip condition for the

flow and that the forces on the interface are in balance.
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3 Discretization and solution techniques

The common solution approach is a separate discretization in space and time. We first dis-
cretize in time by one of the usual methods known from the treatment of ordinary differen-
tial equations, such as the Backward Euler (BE), the Crank-Nicholson (CN), Fractional-Step-
θ -scheme (FS) or a new modified Fractional-Step-θ -scheme (GL). Properties of these time
stepping schemes applying on incompressible Navier-Stokes equations are described in detail
below.

3.1 Time discretization

We consider numerical solution techniques for the incompressible Navier-Stokes equations

vt −ν∆v+v ·∇v+∇p = f, divv = 0, in Ω × (0,T ] , (11)

for given forcef and viscosityν, with prescribed boundary values on the boundary∂Ω and
an initial condition att = 0.

Basicθ -scheme

Givenvn andK = tn+1− tn, then solve forv = vn+1 andp = pn+1

v−vn

K
+θ [−ν∆v+v ·∇v]+∇p = gn+1, divv = 0, in Ω (12)

with right hand sidegn+1 := θ fn+1 +(1−θ )fn− (1−θ )[−ν∆vn +vn ·∇vn].

The parameterθ has to be chosen depending on the time-stepping scheme, e.g., θ = 1 for
the Backward Euler, orθ = 1/2 for the Crank-Nicholson-scheme. The pressure term∇p =
∇pn+1 may be replaced byθ∇pn+1 +(1−θ )∇pn, but, with appropriate postprocessing, both
strategies lead to solutions of the same accuracy. In all cases, we end up with the task of
solving, at each time step, a nonlinear saddle point problemof given type which has then to
be discretized in space.

In the past, explicit time-stepping schemes have been commonly used in nonstationary flow
calculations, but because of the severe stability problemsinherent in this approach, the re-
quired small time steps prohibit the efficient treatment of long time flow simulations. Due to
the high stiffness, one should prefer implicit schemes in the choice of time-stepping methods
for solving this problem. Since implicit methods have become feasible thanks to more effi-
cient nonlinear and linear solvers, the schemes most frequently used are still either the simple
first-order Backward Euler scheme (BE), withθ = 1, or more preferably the second-order
Crank-Nicholson scheme (CN), withθ = 1/2.

These two methods belong to the group ofOne-Step-θ -schemes. The CN scheme occasionally
suffers from numerical instabilities because of its only weak damping property (not strongly
A-stable), while the BE-scheme is of first order accuracy only (however: it is a good candidate
for steady-state simulations). Another method which has proven to have the potential to excel
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in this competition is the Fractional-Step-θ -scheme (FS). It uses three different values forθ
and for the time stepK at each time level.

We define a time step withK = tn+1 − tn in the case of the Backward Euler or the Crank-
Nicholson scheme, with the sameθ (θ = 0.5 orθ = 1) as above. In the following, we use the
more compact form for the diffusive and advective part:

N(v)v = −ν∆v+v ·∇v (13)

Backward Euler-scheme

[I +KN(vn+1)]vn+1 +∇pn+1 = vn +Kfn+1

divvn+1 = 0

Crank-Nicholson-scheme

[I + K
2 N(vn+1)]vn+1 +∇pn+1 = [I − K

2 N(vn)]vn + K
2 fn+1 + K

2 fn

divvn+1 = 0

Fractional-Step-θ -scheme

For the Fractional-Step-θ -scheme we proceed as follows. Choosingθ = 1−
√

2
2 , θ ′ = 1−2θ ,

and α = 1−2θ
1−θ , β = 1−α, the macro time steptn → tn+1 = tn + K is split into the three

following consecutive sub steps (with̃θ := αθK = βθ ′K):

[I + θ̃N(vn+θ )]vn+θ +∇pn+θ = [I −βθKN(vn)]vn +θKfn

divvn+θ = 0

[I + θ̃N(vn+1−θ )]vn+1−θ +∇pn+1−θ = [I −αθ ′KN(vn+θ )]vn+θ

+θ ′Kfn+1−θ

divvn+1−θ = 0

[I + θ̃N(vn+1)]vn+1 +∇pn+1 = [I −βθKN(vn+1−θ )]vn+1−θ

+θKfn+1−θ

divvn+1 = 0

A modified Fractional-Step-θ -scheme

Consider an initial value problem of the following form, with X(t) ∈ Rd,d ≥ 1:





dX
dt

= f (X,t) ∀t > 0

X(0) = X0

(14)
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Then, a modifiedθ -scheme (see [7] and [8]) with macro time step∆ t can be written again as
three consecutive sub steps, whereθ = 1−1/

√
2, X0 = X0, n≥ 0 andXn is known:

Xn+θ −Xn

θ∆ t
= f

(
Xn+θ ,tn+θ

)

Xn+1−θ =
1−θ

θ
Xn+θ +

2θ −1
θ

Xn

Xn+1−Xn+1−θ

θ∆ t
= f

(
Xn+1,tn+1

)

As shown in [8], the most important properties of thisθ -scheme are that

• it is fully implicit;
• it is strongly A-stable;
• it is second order accurate (in fact, it is ”nearly” third order accurate [8]).

These properties promise some advantageous behavior, particularly in implicit CFD simula-
tions for nonstationary incompressible flow problems. Applying one step of this scheme to the
Navier-Stokes equations, we obtain the following variant of the scheme:

1.






vn+θ −vn

θ∆ t
+N(vn+θ )vn+θ +∇pn+θ = fn+θ

divvn+θ = 0

2. vn+1−θ = 1−θ
θ vn+θ + 2θ−1

θ vn

3.






vn+1−vn+1−θ

θ∆ t
+N(vn+1)vn+1 +∇p̃n+1 = fn+1

divvn+1 = 0

3b. pn+1 = (1−θ )pn+θ +θ p̃n+1

These 3 substeps build one macro time step and have to be compared with the previous de-
scription of the Backward Euler, Crank-Nicholson and the classical Fractional-Step-θ -scheme
which all have been formulated in terms of a macro time step with 3 sub steps, too. Then, the
resulting accuracy and numerical cost are better comparable and the rating is fair. The main
difference to the previous ‘classical’ FS scheme is that substeps 1. and 3. look like a Backward
Euler step while substep 2. is an extrapolation step only forpreviously computed data such
that no operator evaluations at previous time steps are required.

Substep 3b. can be viewed as postprocessing step for updating the new pressure which however
is not a must. In fact, in our numerical tests [7] we omitted this substep 3b. and accepted the
pressure from substep 3. as final pressure approximation, that meanspn+1 = p̃n+1.

Summarizing, one obtains that the numerical effort of the modified scheme for each substep is
cheaper - at least for ‘small’ time steps (treatment of the nonlinearity) and complex right hand
side evaluations while the resulting accuracy is similar. Incidentally, the modifiedθ -scheme
is a Runge-Kuttaone; it has been derived in [8] as a particular case of the Fractional-Step-θ -
scheme.
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3.2 Space discretization

Our treatment of the fluid structure-interaction problem asone system suggests that we use
the same finite elements for both the solid part and the fluid region. Since the fluid is incom-
pressible we have to choose a pair of finite element spaces known to be stable for problems
with incompressibility constraint.

The conforming elementQ2P1

One possible choice is the conforming biquadratic, discontinuous linearQ2P1 pair, see figure
1 for the location of the degrees of freedom. This choice results in 39 degrees of freedom per
element in the case of displacement, velocity, pressure formulation in two dimensions and 112
degrees of freedom per element in three dimensions. Let us define the following spaces

vh,uh

ph,
∂ ph
∂x , ∂ ph

∂y

x

y

Fig. 1.Location of the degrees of freedom for theQ2P1 element.

U = {u ∈ L∞(I , [W1,2(Ω)]3),u = 0 on ∂Ω},
V = {v ∈ L2(I , [W1,2(Ωt)]

3)∩L∞(I , [L2(Ωt)]
3),v = 0 on ∂Ω},

P = {p∈ L2(I ,L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is to find(u,v, p) ∈
U ×V ×P such that the equations are satisfied for all(ζ ,ξ ,γ) ∈U ×V ×P including appro-
priate initial conditions. The spacesU,V,P on an interval[tn,tn+1] would be approximated in
the case of theQ2,P1 pair as

Uh = {uh ∈ [C(Ωh)]
2,uh|T ∈ [Q2(T)]2 ∀T ∈ Th,uh = 0 on ∂Ω},

Vh = {vh ∈ [C(Ωh)]
2,vh|T ∈ [Q2(T)]2 ∀T ∈ Th,vh = 0 on ∂Ω},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T) ∀T ∈ Th}.

Let us denote byun
h the approximation ofu(tn), vn

h the approximation ofv(tn) and pn
h the

approximation ofp(tn). Consider for eachT ∈ Th the bilinear transformationψT : T̂ → T to
the unit squareT. Then,Q2(T) is defined as
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Q2(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y,xy,x2,y2,x2y,y2x,x2y2 >

}
(15)

with nine local degrees of freedom located at the vertices, midpoints of the edges and in the
center of the quadrilateral. The spaceP1(T) consists of linear functions defined by

P1(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y >

}
(16)

with the function value and both partial derivatives located in the center of the quadrilateral,
as its three local degrees of freedom, which leads to a discontinuous pressure. The inf-sup
condition is satisfied (see [2]); however, the combination of the bilinear transformationψ with
a linear function on the reference squareP1(T̂) would imply that the basis on the reference
square did not contain the full basis. So, the method can at most be first order accurate on
general meshes (see [1, 2])

‖p− ph‖ = O(h). (17)

The standard remedy is to consider a local coordinate system(ξ ,η) obtained by joining the
midpoints of the opposing faces ofT ( see [1, 5, 6]). Then, we set on each elementT

P1(T) := span< 1,ξ ,η > . (18)

For this case, the inf-sup condition is also satisfied and thesecond order approximation is
recovered for the pressure as well as for the velocity gradient (see [2, 3])

‖p− ph‖ = O(h2) and ‖∇(u−uh)‖0 = O(h2). (19)

For a smooth solution, the approximation error for the velocity in the L2-norm is of order
O(h3) which can easily be demonstrated for prescribed polynomials or for smooth data on
appropriate domains.

3.3 Solution algorithm

The system of nonlinear algebraic equations arising from the governing equations prescribed
in section 2.1 and 2.2 is




Suu Suv 0
Svu Svv kB
cuBT

s cvBT
f 0







u
v
p


 =




fu
fv
fp


 (20)

which is typical saddle point problem, whereS describes the diffusive and convective terms
from the governing equations. The above system of nonlinearalgebraic equations (20) is
solved using Newton method as basic iteration. The basic idea of the Newton iteration is
to find a root of a function,R(X) = 0 , using the available known function value and its first
derivative, whereX = (uh,vh, ph) ∈ Uh ×Vh ×Ph. One step of the Newton iteration can be
written as

Xn+1 = Xn−
[

∂R
∂X

(Xn)

]−1

R(Xn). (21)
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1. LetXn be some starting guess.
2. Set the residuum vectorRn = R(Xn) and the tangent matrixA = ∂R

∂X (Xn).
3. Solve for the correctionδX

AδX = Rn.

4. Find optimal step lengthω.
5. Update the solutionXn+1 = Xn−ωδX.

Fig. 2. One step of the Newton method with line search.

This basic iteration can exhibit quadratic convergence provided that the initial guess is suffi-
ciently close to the solution. To ensure the convergence globally, some improvements of this
basic iteration are used. The damped Newton method with linesearch improves the chance of
convergence by adaptively changing the length of the correction vector. The solution update
step in the Newton method (21) is replaced by

Xn+1 = Xn−ωδX, (22)

where the parameterω is determined such that a certain error measure decreases (see [6, 15]

for more details). The Jacobian matrix∂R(Xn)
∂X can be computed by finite differences from the

residual vectorR(X)

[
∂R
∂X

]

i j
(Xn) ≈ [R]i(Xn +α jej )− [R]i(Xn−α jej )

2α j
, (23)

whereej are the unit basis vectors inRn and the coefficientsα j are adaptively taken according
to the change in the solution in the previous time step. Sincewe know the sparsity pattern
of the Jacobian matrix in advance, which is given by the used finite element method, this
computation can be done in an efficient way so that the linear solver remains the dominant
part in terms of the CPU time (see [6, 14] for more details).

3.4 Multigrid solver

The solution of the linear problems is the most time consuming part of the solution process. A
good candidate seems to be a direct solver for sparse systemslike UMFPACK (see [11]); while
this choice provides very robust linear solvers, its memoryand CPU time requirements are too
high for larger systems (i.e. more than 20.000 unknowns). Large linear problems can be solved
by Krylov space methods (BiCGStab, GMRes, see [10]) with suitable preconditioners. One
possibility is the ILU preconditioner with special treatment of the saddle point character of our
system, where we allow certain fill-in for the zero diagonal blocks, see [13]. The alternative
option for larger systems is the multigrid method presentedin this section.

We also utilize a standard geometric multigrid approach based on a hierarchy of grids obtained
by successive regular refinement of a given coarse mesh. The complete multigrid iteration is
performed in the standard defect-correction setup with theV or F-type cycle. While a direct
sparse solver [11] is used for the coarse grid solution, on finer levels a fixed number (2 or 4)
of iterations by local MPSC schemes (Vanka-like smoother) [6, 12, 15] is performed. Such
iterations can be written as
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


ul+1

vl+1

pl+1


 =




ul

vl

pl


−ω ∑

elementΩi




Suu|Ωi
Suv|Ωi

0
Svu|Ωi

Svv|Ωi
kB|Ωi

cuBT
s|Ωi

cvBT
f |Ωi

0




−1


deflu
deflv
de flp


 .

The inverse of the local systems (39×39) can be done by hardware optimized direct solvers.
The full nodal interpolation is used as the prolongation operatorP with its transposed operator
used as the restrictionR = PT (see [4, 6] for more details).

4 Objectives and problem configuration

The main objective of the following numerical investigation is to analyze and to validate our
monolithic approach for a configuration with a point constraint (”rigid solid with rotational
degree of freedom”) for a special experimental set up. In thefuture, these numerical and ex-
perimental studies shall lead to a reliable data basis for the validation and comparison purposes
of different numerical methods and code implementations for fluid-structure interaction sim-
ulations. These numerical studies are focused on the two-dimensional periodical swiveling
motion of a simple flexible structure driven by a prescribed inflow velocity (see [9]). The
structure has a linear mechanical behavior and the fluid is considered incompressible and in
the laminar regime. The cylinder is fixed only at the center and can rotate freely. To allow
for this kind of additional rotational movement in our method, the cylinder has to be included
in the mesh in our recent approach. By prescribing zero displacement for the node located
in the center of the cylinder we eliminate the translationaldegree of freedom of the whole
structure but preserve the rotational freedom of the cylinder. Hence, the position of all other
nodes located inside the cylinder are taken into account as part of the solution. We divided the
numerical tests into two parts corresponding to the thickness of the elastic beam i.e for 1mm
thick beam and for 0.04mmthick beam attached to an aluminum cylinder. At the trailingedge
of the elastic beam a rectangular stainless steel mass is located. Both the rear mass and the
cylinder are considered rigid. All the structure is free to rotate around an axis located in the
center point of the cylinder. The detailed dimensions of thestructure are presented in Fig. 3.
The densities of the different materials used in the construction of the model are given in Table
1. The shear modulus of stainless steel is 7.58×1013kg/mms2 and Poisson ratio of the beam
ν p is taken as 0.3. The Young modulus is measured to be 200kN/mm2. As fluid for the tests, a

Table 1.Density values of the structure components.

Cylinder (aluminum) 2.828×10−6kg/mm3

Beam (stainless steel) 7.855×10−6kg/mm3

Rear mass (stainless steel) 7.800×10−6kg/mm3

Polyethylene glycol syrup is chosen because of its high viscosity and a density close to water.
It has a kinematic viscosity 164mm2/s and the density of the fluid is 1.05×10−6kg/mm3.
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Fig. 3.Structure (dimensions in millimeters).

(-55,120) (284,120)

(-36,85) (236,85)

(-55,-120) (284,-120)

(-36,-85) (236,-85)

X

y

L

L’

WW’

Fig. 4.Physical domain (continuous line) and flow field measuring domain (hatched line).

Geometry of the problem

The geometry of the physical domain coincides with the shapeof the facility test function. The
co-ordinate system used is centered in the rotating axis of the flexible structure front body. The
x-axis is aligned with the incoming flow. Then, the geometricdetails are as follows:
• The overall dimensions of the physical domain are lengthL = 338mm and widthW =
240mm.
• The center of the cylindrical front body is C which is located55mm downstream of the
beginning of the physical domain, and the radiusr is 11mm.
• The dimensions of the flow field measuring domain (hatched line) are given by length
L′ = 272mmand widthW′ = 170mm. The measuring domain begins 19mm after the beginning
of the physical domain as shown in Figure 4. The Reynolds number is defined byRe= 2rV̄

ν f
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with mean velocityV̄ = 2
3v(0,W/2,t), r radius of the cylinder andW height of the channel

(see Fig. 4).

Boundary and Initial conditions

The velocity profile prescribed at the left channel inflow is defined as approximation of the
experimental inflow data

v f (0,y) = Ū(1− (y/120)8)(1+(y/120)8), (24)

such that the maximum of the inflow velocity profile is̄U . The outflow condition effectively
prescribes some reference value for the pressure variablep. While this value could be arbi-
trarily set in the incompressible case, in the case of a compressible structure this will have
influence onto the stress and consequently the deformation of the solid. Theno-slip condition
is prescribed for the fluid on the other boundary parts, i.e. top and bottom wall, circle and
fluid-structure interfaceΓ 0

t . Suggested starting procedure for the non-steady tests is to use a
smooth increase of the velocity profile in time as

v f (t,0,y) =





v f (0,y)
1−cos(πt/2)

2
i f t < 1

v f (0,y) otherwise
(25)

wherev f (0,y) is the velocity profile given in (24). Since the cylinder is allowed to freely rotate
around its axis, we need to incorporate this into our setup. As described before, by identifying
the center of the cylinder with one grid point of our mesh we can prescribe a Dirichlet type
boundary condition for the velocity and the displacement ofthe structure at this point. This
point constraint effectively fixes the position of the cylinder axis, but still allows the free
rotation around this point.

5 Experimental results

Experimental studies on reference test cases were conducted in laminar flows(Re≤ 200) at
the Institute of Fluid Mechanics at University of Erlangen-Nürnberg (see [9]). The structure
was defined to be constituted by a 0.04mm thick stainless steel sheet attached to an 22mm
diameter aluminum cylindrical front body. At the trailing edge of the beam a 10mm×4mm
rectangular stainless steel mass was located. All the structure was free to rotate around an axis
located in the center point of the front cylinder. Both the front cylinder and the rear mass were
considered rigid. The structure model was tested in a viscous liquid flow at different velocities
up to 2000mm/s. The minimum velocity needed for the movement of the structure slightly
varied from test to test. In most of the cases it was already possible to achieve a consistent
swiveling motion for velocities slightly smaller than 1000mm/s. The frequency of the structure
movement increased linearly with the velocity of the approaching fluid. For velocity ranging
from 1140mm/s to 1300mm/s, the frequency of oscillations showed a pronounced hysteresis
depending on increasing versus decreasing flow velocity. There were two test cases performed
using different flow velocity and the corresponding resultswere as follows: Using velocity
1080mm/s (Re≈ 145) one measures a frequency of oscillations of the structure≈ 6Hz, and
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with velocity 1450mm/s (Re≈ 195) a frequency of oscillations of the structure≈ 13.58Hz is
observed. At higher velocities the motion of the structure became faster and more complex. At
around 1300mm/s the structure shifted abruptly to a new swiveling mode in which the second
deflection mode played an important role.

6 Numerical investigations

In this section we will present numerical results for the 1mm thick beam and preliminary
calculations for the 0.04mmthick beam.

6.1 Results for 1mm thick beam

Experimental studies are conducted taking a 0.04mmthick beam. However, in the first numeri-
cal test we set the thickness of the beam 1mm(see Fig. 3) and also we reduce the rigidity of the
beam (i.e., shear modulus) from 7.69×107kg/mms2 to 7.69×104kg/mms2 to make the prob-
lem numerically easier, all other parameters are from table1. We applied the presented time
stepping schemes, namely (BE, CN, FS, GL) prescribed in section 3.1 to analyze the behavior
for different∆ t. For ∆ t = 0.0005 almost the identical amplitude of oscillations(≈ 13.84) of
rear mass is observed (see figure 7) for the higher order schemes (CN, FS, GL) and for the
1st order Backward Euler (BE) the amplitude of oscillations(≈ 12.42) of rear mass shows 10
percent less accuracy compared to CN, FS and GL. For∆ t = 0.00005 Backward Euler (BE)
shows better agreement of the amplitude of oscillations(≈ 13.71) of the rear mass to CN, FS,
GL. For larger time step, GL is more damped than CN and FS. We use two different meshes
(see Fig. 5 and 6) and also we increase the mesh refinement level from level 1 to level 2.
Corresponding plots for two different meshes and differentmesh refinement levels are given
in figure 8 and figure 9 which shows that our solution is almost independent of mesh type
and mesh refinement levels. From experimental results, for velocity 1130mm/s the structure
shows hysteric behavior, but in our simulations no hystericbehavior could be observed so
for and resulting frequency of oscillations is≈ 10Hz for applying all the four time stepping
schemes mentioned above.

Fig. 5. Coarse mesh1 with 576 elements, 622 nodes and 11308 dof.
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Fig. 6. Coarse mesh2 with 529 elements, 574 nodes and 10407 dof.
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Fig. 7. For ∆ t = 0.0005, the amplitude of oscillations of rear mass is almost identical for the
different time stepping schemes CN, FS, GL.
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Fig. 8. For the two different meshes, the amplitude of oscillationsis almost the same for the
Fractional-Step-θ -scheme.
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Fig. 9.For refinement level 1 and 2 (mesh1) the amplitude of oscillation is almost identical.

Fig. 10.Snapshots of the vertical displacement of the rear mass withfrequency of oscillations
≈ 10Hz for 1mmthick beam.

Fig. 11.Zoomed snapshots of the deformed 1mmthick beam .
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6.2 Results for 0.04mm thick beam

In this test we keep the thickness of the beam 0.04mmas described in the experimental set up.
The minimum velocity needed to excite the movement of the structure slightly varied from
test to test. In our case for velocity 600mm/s (Re≈ 80) we are able to excite the structure.
Frequency of the structure movement increases linearly with the increase of the velocity of
the fluid. We used the velocity 600mm/s (Re≈ 80) at beginning, then switching to 800mm/s
(Re≈ 107) for simplicity, see figure 14 and 15. Figure 12 shows the comparison between
experimental versus numerical results of the problem. Figure 13 shows the amplitude of os-
cillations of rear mass attached to the elastic beam for velocity 1080mm/s and the frequency
of oscillation observed is≈ 9.5Hz. Figure 17 and 18 shows the deformed shape of the beam
for velocity 1080mm/s, and for the velocity 1450mm/s the deformation of the elastic beam is
even more significant, see figure 19 and 20.

Fig. 12.Experiment from Erlangen (left) and numerical result for velocity 1450mm/s (right).
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Fig. 13. Frequency of oscillations of the rear mass for velocity 1080mm/s for the described
numerical set up is≈ 9Hz.
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Fig. 14. Snapshots of the vertical displacement of the rear mass withmaximum amplitude
≈ 17.0 and frequency≈ 4.5Hz and velocity 800mm/s.

Fig. 15.Zoomed snapshots of the deformed beam for velocity 800mm/s.

Fig. 16.Snapshot of the complete mesh.

Fig. 17.Snapshots of the vertical displacement of the rear mass for velocity 1080mm/s.
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Fig. 18.Zoomed snapshots for deformed thick beam.

Fig. 19.Snapshots of the vertical displacement of the rear mass and velocity 1450mm/s.

Fig. 20.Zoomed snapshots for the deformed beam.

7 Summary and future developments

We presented a general ALE formulation of fluid-structure interaction problems suitable for
applications with finite deformations of the structure and laminar viscous flows. The resulting
discrete nonlinear systems arise from the finite element discretization by using the high or-
derQ2P1 FEM pair which are solved monolithically via discrete Newton iteration and special
Krylov space and multigrid approaches. We applied the Backward Euler, Crank Nicholson,
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Fractional-Step-θ -scheme and a new modified Fractional-Step-θ -scheme for time discretiza-
tion which are numerically examined for several prototypical benchmark configurations.

Results have been given that are obtained from a rigid cylinder in laminar flow. The structure
consists of a thin elastic beam attached to the cylinder, which is identified by the center of the
cylinder with one grid point. This point constraint effectively fixes the position of the cylinder
axis, but still allows the free rotation around this point. At the trailing end of the beam a rear
mass is attached. We simulated two cases corresponding to the thickness of the beam to be
1mmand 0.04mm, respectively. Additionally, we present numerical studies on different mesh
types. Numerical results are provided for all time steppingschemes which show very repro-
ducible symmetrical two–dimensional swiveling motions. These numerical tests show that the
solution is independent of the mesh type and mesh refinement level. Preliminary results for
the experimental benchmark configuration are shown to see the qualitative behavior of the
elastic beam for a high velocity profile fluid. The next steps regarding better efficiency of the
solvers include the development of improved multigrid solvers, for instance of global pressure
Schur complement type [6], and the combination with parallel high performance computing
techniques in future, particularly towards 3D configurations.
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