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Summary. We present numerical techniques for solving the problemuad fstructure in-
teraction with a compressible elastic material in a laminaompressible viscous flow via
fully coupled monolithic Arbitrary Lagrangian-EuleriaAl(E) formulation. The mathemati-
cal description and the numerical schemes are designedinasway that more complicated
constitutive relations can be easily incorporated. Thelevidomain of interest is treated as
one continuum and we utilize the well knov@pP; finite element pair for discretization in
space to gain high accuracy. We perform numerical compasiar different time stepping
schemes, including variants of the Fractional-Sepecheme, Backward Euler and Crank-
Nicholson scheme for both solid and fluid parts. The resgitionlinear discretized algebraic
system is solved by a quasi-Newton method which approxisrithge Jacobian matrices by the
divided differences approach and the resulting linearsystare solved by a geometric multi-
grid approach. In the numerical examples, a cylinder withchted flexible beam is allowed to
freely rotate around its axis which requires a special nicaktreatment. By identifying the
center of the cylinder with one grid point of the computatibmesh we prescribe a Dirichlet
type boundary condition for the velocity and the displacenw the structure at this point,
which allows free rotation around this point. We present atioal studies for different prob-
lem parameters on various mesh types and compare the reghlesxperimental values from
a corresponding benchmarking experiment.

1 Introduction

We consider the problem of viscous fluid flow interacting véthelastic body which is being
deformed by the fluid action. Such a problem is encounteredany real life applications

of great importance. Typical examples of this type of problare the areas of biomedical
fluids which include joint lubrication and deformable clagie and blood flow interaction with
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implants. The theoretical investigation of fluid structimteraction problems is complicated
by the need of a mixed description. While for the solid paet tiatural view is the material
(Lagrangian) description, for the fluid it is the spatial [&tian) description. In the case of their
combination some kind of mixed description (usually refdrto as the Arbitrary Lagrangian-
Eulerian description or ALE) has to be used which brings tiatttl nonlinearity into the
resulting equations.

A numerical solution of the resulting equations of the fluidisture interaction problem poses
great challenges since it includes the features of elstikiid mechanics and their coupling.
The easiest solution strategy, mostly used in the avaikditevare packages, is to decouple the
problem into the fluid part and solid part, for each of thosespasing some well established
method of solution; then the interaction process is intoediuas external boundary conditions
in each of the subproblems. This has the advantage thataheraany well tested numerical
methods for both separate problems of fluid flow and elasficrdetion, while on the other
hand the treatment of the interface and the interactiomiklpmatic. In contrast, the approach
presented here treats the problem as a single continuunheittoupling automatically taken
care of as internal interface, which in our formulation donesrequire any special treatment.

2 Fluid-structure interaction problem formulation

A general fluid structure interaction problem consists efdlescription of the fluid and solid
fields, appropriate interface conditions at the interfase@nditions for the remaining bound-
aries, respectively. In this paper, we consider the flow ofnaompressible Newtonian fluid
interacting with an elastic solid. We denote the domain pixl by the fluid byQtf and the
solid by QF at the timet € [0,T]. Let ;0 = Q' n QF be the part of the boundary where the
elastic solid interacts with the fluid.

In the following, the fields and interface conditions areaduced. Furthermore, problem
configurations and solution procedure for each of the fidgsésented in detail.

2.1 Fluid

The fluid is considered to bewtonian, incompressibleand its state is described by the
velocityand pressurefieldsvf, pf respectively. The constant density of the fluigfsand the
kinematic viscosity is denoted by . The balance equations are:

f

D
pfFVt:divcﬂ divvf =0 in o 1)

In order to solve the balance equations we need to specifgdhstitutive relations for the
stress tensors. For the fluid we use the incompressible Méwtoelation

of =—p"+p@v'+@vH), )

where represents the dynamic viscosity of the fluid guidis the Lagrange multiplier cor-
responding to the incompressibility constraint in (1). Thaterial time derivative depends on
the choice of the reference system. There are basicallyeBnalive reference systems: the
Eulerian, the Lagrangian, and the Arbitrary LagrangiareBEah formulation. The most com-
monly used description for the fluid structure interacti®thie ALE description. For the ALE
formulation presented in this paper, discretization tégplnes are discussed in section 3.
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2.2 Structure

The structure is assumed to &lasticandcompressible Its configuration is described by the
displacement®, with velocity fieldvS = %—‘{. The balance equations are:

ovs . .
psd—\; +p5(Ov¥WVs =divaS+p3g, in QF. (3)
Written in the more common Lagrangian description, i.ehwéspect to some fixed reference
(initial) stateQS, we have

SaZUS ; sp—T s i s

P Gz = divJo°F~')+p°g, in Q° 4
The constitutive relations for the stress tensors for thapressible structure are presented,
however, also incompressible structures can be handldttisame way. The density of the
structure in the undeformed configurationg® The material elasticity is characterized by
a set of two parameters, the Poisson ratfoand the Young moduluk. Alternatively, the
characterization is described by the LewnvefficientsAS and the shear modulys®. These
parameters satisfy the following relations

AS US(3AS+-2u?)
S = =
Ve BT e ©
s E s VSE
H=sarw » = arwa—as) ©

wherev® = 1/2 for a incompressible ang® < 1/2 for a compressible structure. In the large
deformation case it is common to describe the constitutipeaon using a stress-strain re-
lation based on the Green Lagrangian strain tesand the 2.Piola-Kirchhoff stress tensor
S(E) as a function oE. The 2.Piola-Kirchhoff stress can be obtained from the Ggustress
o® as

S=IF 15T, (7)
and the Green-Lagrange ten&as
E:%(FTFfI). (8)

In this paper, the material is specified by giving the Cauchgss tensoo® by the following
constitutive law for theSt.Venant-Kirchhoff material for simplicity

oS = %F()\S(trE)l F2uSE)FT S5 = AS(rE)l + 2u°E. )

J denotes the determinant of the deformation gradient tehsdefined a$ = | + Ous.

2.3 Interaction Condition

The boundary conditions on the fluid solid interface are mesiito be

f =S, on ", (10)

f

g'n=0c°%n, v

wheren is a unit normal vector to the interfad:‘é). This implies the no-slip condition for the
flow and that the forces on the interface are in balance.



4 M. Razzaq, J. Hron and S. Turek

3 Discretization and solution techniques

The common solution approach is a separate discretizati@pace and time. We first dis-
cretize in time by one of the usual methods known from thetitmeat of ordinary differen-
tial equations, such as the Backward Euler (BE), the Craickdlson (CN), Fractional-Step-
6-scheme (FS) or a new modified Fractional-Séepeheme (GL). Properties of these time
stepping schemes applying on incompressible Navier-Stejgations are described in detalil
below.

3.1 Time discretization

We consider numerical solution techniques for the incosgibde Navier-Stokes equations
vi —VAv+v-Ov+Op=f, divv=0, in Qx(0,T], (12)

for given forcef and viscosityv, with prescribed boundary values on the bounda€y and
an initial condition at = 0.

Basic 8-scheme

Givenv" andK =t,,1 —tp, then solve fov = v™*1 andp = p"t1

v—V"

+6[-vAv+v.-Ov]+Op=g™?! divw=0, in Q (12)
with right hand sidg™"* := 8f"*1 4 (1— 8)f" — (1— 8)[—vAV" +V"- V"]

The parametef has to be chosen depending on the time-stepping schemef e-gl for
the Backward Euler, 06 = 1/2 for the Crank-Nicholson-scheme. The pressure tépm=
Op™1 may be replaced b§Op™! + (1— 8)0p", but, with appropriate postprocessing, both
strategies lead to solutions of the same accuracy. In aliscage end up with the task of
solving, at each time step, a nonlinear saddle point prolaegiven type which has then to
be discretized in space.

In the past, explicit time-stepping schemes have been cartymused in nonstationary flow
calculations, but because of the severe stability probliefnsrent in this approach, the re-
quired small time steps prohibit the efficient treatmentooig time flow simulations. Due to
the high stiffness, one should prefer implicit schemes éndhoice of time-stepping methods
for solving this problem. Since implicit methods have beedimasible thanks to more effi-
cient nonlinear and linear solvers, the schemes most frelyugsed are still either the simple
first-order Backward Euler scheme (BE), with= 1, or more preferably the second-order
Crank-Nicholson scheme (CN), with=1/2.

These two methods belong to the groupufe-Stepd-schemesThe CN scheme occasionally
suffers from numerical instabilities because of its onlyawelamping property (not strongly
A-stable), while the BE-scheme is of first order accuracy ¢gnbwever: it is a good candidate
for steady-state simulations). Another method which hasear to have the potential to excel
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in this competition is the Fractional-Stépscheme (FS). It uses three different valueséor
and for the time stel at each time level.

We define a time step witK =t 1 —t, in the case of the Backward Euler or the Crank-
Nicholson scheme, with the sarid@ = 0.5 or 8 = 1) as above. In the following, we use the
more compact form for the diffusive and advective part:

N(v)v=—vAv-+v-0Ov (13)

Backward Euler-scheme

[| +KN(Vn+1)]Vn+1+ Dpn+1 — Vn+Kfn+l
divv™l =0

Crank-Nicholson-scheme

[| + %N(v”*l)}v”+1+|]p”+1 _ [ _ %N(Vn)]vn+ %fn+1+ %fn
divv"tl =0

Fractional-Step-8-scheme

For the Fractional-Stef-scheme we proceed as follows. Choosthg 1 — ‘/75 ,0'=1-26,
ando = % , B =1-a, the macro time stefy, — ty;1 = th + K is split into the three

following consecutive sub steps (wiét: a 6K = BO'K):

L +éN(Vn+6)]Vn+9+Dpn+9 _

(I — BOKN(VM)]v" + BKf"
divvt® =0

“ +éN(v“*lfe)]v”“*e+Dp”+1*9 _ [| —aG’KN(V”*e)]vMe
+O/K -0
divv*1-6 — o
“ +éN(V”+1)]vn+l+Dpn+l — [| 7B9KN(V”+1_9)}VH+1_9
+OKf+1-6

divv™l =0

A modified Fractional-Step-8-scheme

Consider an initial value problem of the following form, tiX(t) € R d>1:
dX
— = f(X;t) t>0
{ dt ) (14)
X(0) Xo
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Then, a modified-scheme (see [7] and [8]) with macro time st&pcan be written again as
three consecutive sub steps, whére 1— 1/\@, X0 = Xy, n> 0 andX" is known:

6
Xn+9A; Xn _ f (Xn+6’tn+6)
Xn+179 — 176xn+9_‘_ 29*1xn

6 0

xn+1 _ XI‘H—l—Q ; <xn+1 tn+1)

0At
As shown in [8], the most important properties of tBischeme are that

e itis fully implicit;
e itis strongly A-stable;
e itis second order accurate (in fact, it is "nearly” third eréccurate [8]).

These properties promise some advantageous behaviagupenty in implicit CFD simula-
tions for nonstationary incompressible flow problems. Apy one step of this scheme to the
Navier-Stokes equations, we obtain the following varidrthe scheme:

[}
Vn+9A; vn n N(vn+9)vn+e 4+ Opo = o
1.
divv*f =0

2 vn+1—9 — 17._}9\/n+9+ Zee—lvn

Vn+1 _ vn+1—9

AT + N(Vn+l)vn+l + Dr)ﬂJrl _ fn+1
3.

divvtl=0

3b. pn+1 — (17 e)pn+9 + Qb'n+1

These 3 substeps build one macro time step and have to be @mpih the previous de-
scription of the Backward Euler, Crank-Nicholson and tlessical Fractional-Ste@-scheme
which all have been formulated in terms of a macro time step @/sub steps, too. Then, the
resulting accuracy and numerical cost are better compmeaid the rating is fair. The main
difference to the previous ‘classical’ FS scheme is thaswgs 1. and 3. look like a Backward
Euler step while substep 2. is an extrapolation step onlypfeviously computed data such
that no operator evaluations at previous time steps aréregu

Substep 3b. can be viewed as postprocessing step for updatinew pressure which however
is not a must. In fact, in our numerical tests [7] we omitteid Bubstep 3b. and accepted the
pressure from substep 3. as final pressure approximatianméang™1 = pt1,

Summarizing, one obtains that the numerical effort of thelifired scheme for each substep is
cheaper - at least for ‘small’ time steps (treatment of thainearity) and complex right hand
side evaluations while the resulting accuracy is similacidentally, the modified-scheme
is a Runge-Kuttaone; it has been derived in [8] as a particular case of thetibread-Stepd-
scheme.
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3.2 Space discretization

Our treatment of the fluid structure-interaction problenoae system suggests that we use
the same finite elements for both the solid part and the fligtre Since the fluid is incom-
pressible we have to choose a pair of finite element spacesrktmbe stable for problems
with incompressibility constraint.

The conforming elementQ,P;

One possible choice is the conforming biquadratic, disnaous lineaiQ,P; pair, see figure
1 for the location of the degrees of freedom. This choiceltesu 39 degrees of freedom per
element in the case of displacement, velocity, pressuredtation in two dimensions and 112
degrees of freedom per element in three dimensions. Letfusedbe following spaces

Ay
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Q
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O VhUp

apn, @
é’ pm%:,;—p;

& & o

\]

Fig. 1. Location of the degrees of freedom for tQeP; element.

U={uel(,W?@Q)®),u=00ndQ},
V = {vel?(1,W2(Q)]®)nL>(,[L3(2)]%),v=00ndQ},
P={peL?(,L%(Q))},

then the variational formulation of the fluid-structuredirgction problem is to finfu,v, p) €
U xV x P such that the equations are satisfied for(&ll€, y) € U x V x P including appro-
priate initial conditions. The spackkV,P on an interva[t”,t”*l] would be approximated in
the case of th€),, P; pair as

Un = {Un € [C(Qn)]% unlT € [Q2(T)]> VT € Jh,un=00n0dQ},
Vh = {Vh € [C(Qn)]%, VhlT € [Q2T)]?> VT € Fh,vh=00ndQ},
Ph={ph € L%(Qn), pnlt €PL(T) VT € %}
Let us denote by the approximation ofi(t"), v the approximation of/(t") and pj} the

approximation ofp(t"). Consider for each € T}, the bilinear transformatiogy : T-Tto
the unit squar@ . Then,Qy(T) is defined as
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Q(T) = {qo Wl gespan< 1,x,y,xy, X%, y2, X2y, y2x, Xy >} (15)

with nine local degrees of freedom located at the verticedpaints of the edges and in the
center of the quadrilateral. The spa®&€T) consists of linear functions defined by

Pl(T):{qoL,uT‘l:qespan< 1,x,y>} (16)

with the function value and both partial derivatives lochite the center of the quadrilateral,
as its three local degrees of freedom, which leads to a discmus pressure. The inf-sup
condition is satisfied (see [2]); however, the combinatibthe bilinear transformatiogy with

a linear function on the reference squﬁﬁéf) would imply that the basis on the reference
square did not contain the full basis. So, the method can at bmfirst order accurate on
general meshes (see [1, 2])

[P—pnll = O(h). X))

The standard remedy is to consider a local coordinate sy&fem) obtained by joining the
midpoints of the opposing faces ®f( see [1, 5, 6]). Then, we set on each elenient

P (T):=span<1,&,n >. (18)

For this case, the inf-sup condition is also satisfied andsdwnd order approximation is
recovered for the pressure as well as for the velocity gradiee [2, 3])

Ip—pnll = O(h*) and [|O(u—un)llo = O(?). (19)

For a smooth solution, the approximation error for the vigyoim the Lo-norm is of order
O(h3) which can easily be demonstrated for prescribed polyn@miaffor smooth data on
appropriate domains.

3.3 Solution algorithm

The system of nonlinear algebraic equations arising fragrgthverning equations prescribed
in section 2.1 and 2.2 is

Su Sw O u fu
Su_ Sw kB vii=|f (20)
Bl oB] O] |p fp

which is typical saddle point problem, wheBalescribes the diffusive and convective terms
from the governing equations. The above system of nonliadgebraic equations (20) is
solved using Newton method as basic iteration. The basie adehe Newton iteration is
to find a root of a functionR(X) = 0, using the available known function value and its first
derivative, whereX = (up,Vh, pn) € Un X Vi, x By, One step of the Newton iteration can be
written as

-1
XML — xn B—i(x”)} R(XM). (21)
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H

LetX™be some starting guess.
Set the residuum vect®" = R(X") and the tangent matri&k = gfﬁ(x”).
3. Solve for the correctiofX

n

AdX =R".

»

Find optimal step lengtt.
5. Update the solutioX"1 = X" — wdX.

Fig. 2. One step of the Newton method with line search.

This basic iteration can exhibit quadratic convergenceigeal that the initial guess is suffi-

ciently close to the solution. To ensure the convergenciealllp some improvements of this

basic iteration are used. The damped Newton method wittstiaech improves the chance of
convergence by adaptively changing the length of the ctorewector. The solution update

step in the Newton method (21) is replaced by

XM = X"~ woX, (22)

where the parametew is determined such that a certain error measure decreasefB(s15]

for more details). The Jacobian matﬁ’% can be computed by finite differences from the
residual vectoR(X)

B—ﬂ” xm = [RIX +ajej)2;j[R]i(X —ae) (23)

wheree; are the unit basis vectorsRf' and the coefficienta are adaptively taken according
to the change in the solution in the previous time step. Sime&know the sparsity pattern
of the Jacobian matrix in advance, which is given by the useitefelement method, this
computation can be done in an efficient way so that the linelwes remains the dominant
part in terms of the CPU time (see [6, 14] for more details).

3.4 Multigrid solver

The solution of the linear problems is the most time consgrpert of the solution process. A
good candidate seems to be a direct solver for sparse syktertdFPACK (see [11]); while
this choice provides very robust linear solvers, its menzony CPU time requirements are too
high for larger systems (i.e. more than@0@0 unknowns). Large linear problems can be solved
by Krylov space methods (BiCGStab, GMRes, see [10]) witltekle preconditioners. One
possibility is the ILU preconditioner with special treatmief the saddle point character of our
system, where we allow certain fill-in for the zero diagonlaicks, see [13]. The alternative
option for larger systems is the multigrid method preseimedtis section.

We also utilize a standard geometric multigrid approacketas a hierarchy of grids obtained
by successive regular refinement of a given coarse mesh.drhplete multigrid iteration is
performed in the standard defect-correction setup witivttoe F-type cycle. While a direct
sparse solver [11] is used for the coarse grid solution, T fievels a fixed number (2 or 4)
of iterations by local MPSC schemes (Vanka-like smooth@r)LP, 15] is performed. Such
iterations can be written as
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-1
u'+t ul Swie, Swie 0 def,
VI +1 = VI —w Z SIU Qi SIV+Qi kBl Q deﬁv
pl+t p elemeng; C“leoi CVBf\Qi 0 def'p

The inverse of the local systems (889) can be done by hardware optimized direct solvers.
The full nodal interpolation is used as the prolongationrafie P with its transposed operator
used as the restrictidR = PT (see [4, 6] for more details).

4 Objectives and problem configuration

The main objective of the following numerical investigatiis to analyze and to validate our
monolithic approach for a configuration with a point conistirg’rigid solid with rotational
degree of freedom”) for a special experimental set up. Irfubgre, these numerical and ex-
perimental studies shall lead to a reliable data basis évalidation and comparison purposes
of different numerical methods and code implementationdlfiid-structure interaction sim-
ulations. These numerical studies are focused on the tmefhional periodical swiveling
motion of a simple flexible structure driven by a prescribefiioiv velocity (see [9]). The
structure has a linear mechanical behavior and the fluidrisidered incompressible and in
the laminar regime. The cylinder is fixed only at the cented ean rotate freely. To allow
for this kind of additional rotational movement in our medhthe cylinder has to be included
in the mesh in our recent approach. By prescribing zero aigphent for the node located
in the center of the cylinder we eliminate the translatiathedree of freedom of the whole
structure but preserve the rotational freedom of the cglinHence, the position of all other
nodes located inside the cylinder are taken into accountid®pthe solution. We divided the
numerical tests into two parts corresponding to the thiskr# the elastic beam i.e form
thick beam and for @4mmthick beam attached to an aluminum cylinder. At the traildge
of the elastic beam a rectangular stainless steel massatethcBoth the rear mass and the
cylinder are considered rigid. All the structure is free dtate around an axis located in the
center point of the cylinder. The detailed dimensions ofdtnecture are presented in Fig. 3.
The densities of the different materials used in the consbm of the model are given in Table
1. The shear modulus of stainless steel.58% 10'3%kg/mm¢g and Poisson ratio of the beam
vP is taken as 0.3. The Young modulus is measured to beN0@n?. As fluid for the tests, a

Table 1. Density values of the structure components.

Cylinder (aluminum)  8B28x 10 kg/mn?
Beam (stainless steel).865x 10 8kg/mn?
Rear mass (stainless steel)8G0x 10-%kg/mn?

Polyethylene glycol syrup is chosen because of its highogisg and a density close to water.
It has a kinematic viscosity 16dn? /s and the density of the fluid is 5 x 10-%kg/mn¥.
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Fig. 3. Structure (dimensions in millimeters).
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Fig. 4. Physical domain (continuous line) and flow field measuringdio (hatched line).

Geometry of the problem

The geometry of the physical domain coincides with the sladiiee facility test function. The

co-ordinate system used is centered in the rotating axiedfeéxible structure front body. The

x-axis is aligned with the incoming flow. Then, the geometiétails are as follows:

e The overall dimensions of the physical domain are lergta 338mm and widthwW =

240mm

e The center of the cylindrical front body is C which is locat&simm downstream of the

beginning of the physical domain, and the radiis 11mm.

e The dimensions of the flow field measuring domain (hatchee) lare given by length

L’ = 272mmand widthw/ = 170mm The measuring domain begins 19mm after the beginning
v

of the physical domain as shown in Figure 4. The Reynolds rurighdefined byRe= <7+



12 M. Razzaq, J. Hron and S. Turek

with mean velocity\7: %v(O,W/Z,t), r radius of the cylinder an@V height of the channel
(see Fig. 4).

Boundary and Initial conditions

The velocity profile prescribed at the left channel inflow &fided as approximation of the
experimental inflow data

vi(0,y) =U(1-(y/120®)(1+ (y/1208), (24)

such that the maximum of the inflow velocity profiIeU_s The outflow condition effectively
prescribes some reference value for the pressure vanméhile this value could be arbi-
trarily set in the incompressible case, in the case of a cessrle structure this will have
influence onto the stress and consequently the deformatithe solid. Theno-slip condition
is prescribed for the fluid on the other boundary parts, op.and bottom wall, circle and
fluid-structure interfacde‘to. Suggested starting procedure for the non-steady tesisuiset a
smooth increase of the velocity profile in time as

1-codm/2) ¢ g
2 (25)
vi(0,y) otherwise

f
Vioy =" Y

wherevf (0,y) is the velocity profile given in (24). Since the cylinder ipaled to freely rotate

around its axis, we need to incorporate this into our setsdescribed before, by identifying
the center of the cylinder with one grid point of our mesh we peescribe a Dirichlet type
boundary condition for the velocity and the displacementhef structure at this point. This
point constraint effectively fixes the position of the cgér axis, but still allows the free
rotation around this point.

5 Experimental results

Experimental studies on reference test cases were comdinctaminar flows(Re< 200) at
the Institute of Fluid Mechanics at University of Erlangdiifnberg (see [9]). The structure
was defined to be constituted by @@mmthick stainless steel sheet attached to am22
diameter aluminum cylindrical front body. At the trailingige of the beam a HOmx 4mm
rectangular stainless steel mass was located. All thetateiwas free to rotate around an axis
located in the center point of the front cylinder. Both thenfrcylinder and the rear mass were
considered rigid. The structure model was tested in a vistiquid flow at different velocities
up to 2000nmy/s. The minimum velocity needed for the movement of the stmacalightly
varied from test to test. In most of the cases it was alreadgipte to achieve a consistent
swiveling motion for velocities slightly smaller than 1000y's. The frequency of the structure
movement increased linearly with the velocity of the apphirag fluid. For velocity ranging
from 1140nmy's to 130annys, the frequency of oscillations showed a pronounced hysitere
depending on increasing versus decreasing flow velocigrd¥vere two test cases performed
using different flow velocity and the corresponding resufese as follows: Using velocity
1080nnys (Re~ 145) one measures a frequency of oscillations of the structuéélz, and
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with velocity 1450nny's (Re~ 195) a frequency of oscillations of the structutel3.58Hzis
observed. At higher velocities the motion of the structugeame faster and more complex. At
around 130fhnysthe structure shifted abruptly to a new swiveling mode inchitthe second
deflection mode played an important role.

6 Numerical investigations

In this section we will present numerical results for thranithick beam and preliminary
calculations for the @4mmthick beam.

6.1 Results for 1Imm thick beam

Experimental studies are conducted takingGmthick beam. However, in the first numeri-
cal test we set the thickness of the beanmi(see Fig. 3) and also we reduce the rigidity of the
beam (i.e., shear modulus) fron68x 10”kg/mm$ to 7.69x 10*kg/mm$ to make the prob-
lem numerically easier, all other parameters are from tabl\&e applied the presented time
stepping schemes, namely (BE, CN, FS, GL) prescribed imose8tl to analyze the behavior
for differentAt. For At = 0.0005 almost the identical amplitude of oscillatidrs 13.84) of
rear mass is observed (see figure 7) for the higher order sshé@N, FS, GL) and for the
1st order Backward Euler (BE) the amplitude of oscillati¢nsl2.42) of rear mass shows 10
percent less accuracy compared to CN, FS and GLAfEet 0.00005 Backward Euler (BE)
shows better agreement of the amplitude of oscillatien&3.71) of the rear mass to CN, FS,
GL. For larger time step, GL is more damped than CN and FS. Wews different meshes
(see Fig. 5 and 6) and also we increase the mesh refinemehfrievelevel 1 to level 2.
Corresponding plots for two different meshes and differaash refinement levels are given
in figure 8 and figure 9 which shows that our solution is almogependent of mesh type
and mesh refinement levels. From experimental results,dlacity 1130nny's the structure
shows hysteric behavior, but in our simulations no hystbgbavior could be observed so
for and resulting frequency of oscillationsAs10Hz for applying all the four time stepping
schemes mentioned above.

%

Fig. 5. Coarse mesh1 with 576 elements, 622 nodes and 11308 dof.
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Fig. 6. Coarse mesh2 with 529 elements, 574 nodes and 10407 dof.

vertical displacement

-15 L L i L
7 7.05 71 715 72 7.25 7.3
timefs]

Fig. 7. For At = 0.0005, the amplitude of oscillations of rear mass is almasttidal for the
different time stepping schemes CN, FS, GL.

vertical displacement

.
2.7 2.75 28 285 29 2.95 3
timefs]

Fig. 8. For the two different meshes, the amplitude of oscillatienalmost the same for the
Fractional-Ste#-scheme.
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Fig. 9. For refinement level 1 and 2 (mesh1) the amplitude of osilids almost identical.

Fig. 10.Snapshots of the vertical displacement of the rear masseitjunency of oscillations
~ 10Hzfor Immthick beam.

Fig. 11.Zoomed snapshots of the deformedrhthick beam .
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6.2 Results for 0.04mm thick beam

In this test we keep the thickness of the beaffthmas described in the experimental set up.
The minimum velocity needed to excite the movement of thectdre slightly varied from
test to test. In our case for velocity 686vs (Rex 80) we are able to excite the structure.
Frequency of the structure movement increases linearly thi¢ increase of the velocity of
the fluid. We used the velocity 6601/'s (Re~ 80) at beginning, then switching to 8®dn/s
(Re~ 107) for simplicity, see figure 14 and 15. Figure 12 shows thmpmarison between
experimental versus numerical results of the problem. rieéig3 shows the amplitude of os-
cillations of rear mass attached to the elastic beam forcitgld080mmy's and the frequency
of oscillation observed is: 9.5Hz. Figure 17 and 18 shows the deformed shape of the beam
for velocity 108@nny's, and for the velocity 145@ny's the deformation of the elastic beam is
even more significant, see figure 19 and 20.

vertical displacement

L L L L L
76 7.65 7.7 7.75 78 7.85 79
time[s]

Fig. 13. Frequency of oscillations of the rear mass for velocity 168@/s for the described
numerical set up isc 9Hz
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Fig. 14. Snapshots of the vertical displacement of the rear mass mékimum amplitude
~ 17.0 and frequency: 4.5Hz and velocity 80enny’s.

Fig. 15.Zoomed snhapshots of the deformed beam for velocityr8aGs.
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Fig. 17.Snapshots of the vertical displacement of the rear massfocity 1080nny's.
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Fig. 20.Zoomed snapshots for the deformed beam.

7 Summary and future developments

We presented a general ALE formulation of fluid-structurteriaction problems suitable for
applications with finite deformations of the structure aauhinar viscous flows. The resulting
discrete nonlinear systems arise from the finite elemewmtetization by using the high or-
derQ,P; FEM pair which are solved monolithically via discrete Newfteration and special
Krylov space and multigrid approaches. We applied the Bac#viEuler, Crank Nicholson,
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Fractional-Ste-scheme and a new modified Fractional-Séepeheme for time discretiza-
tion which are numerically examined for several prototgptzenchmark configurations.

Results have been given that are obtained from a rigid ogtindlaminar flow. The structure
consists of a thin elastic beam attached to the cylinderchvisi identified by the center of the
cylinder with one grid point. This point constraint effeety fixes the position of the cylinder
axis, but still allows the free rotation around this point.tAe trailing end of the beam a rear
mass is attached. We simulated two cases corresponding thittkness of the beam to be
Immand 004mm respectively. Additionally, we present numerical stsdia different mesh
types. Numerical results are provided for all time stepgolgemes which show very repro-
ducible symmetrical two—dimensional swiveling motionee$e numerical tests show that the
solution is independent of the mesh type and mesh refineraeeit IPreliminary results for
the experimental benchmark configuration are shown to seguhlitative behavior of the
elastic beam for a high velocity profile fluid. The next steggarding better efficiency of the
solvers include the development of improved multigrid sady for instance of global pressure
Schur complement type [6], and the combination with paraligh performance computing
techniques in future, particularly towardd 8onfigurations.
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