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Abstract

A mass conserving, diffused interface, coupled Lattice Boltzmann-level set scheme is proposed and numeri-
cally studied for the simulation of high density and viscosity ratio multiphase flows. The approach is based
on the pressure evolution formulation of the lattice Boltzmann equation, which is then coupled with the level
set equation to capture a diffused level set function. Multiple relaxation time collision and isotropic force
discretization techniques are employed to further reinforce the stability and accuracy of the LBM solver and
a monolithic approach is employed to convect the level set function with minimal computations to preserve
a smooth density profile. We present extensive investigations for numerical accuracy through performing
benchmark simulations for rising bubble problems. It is observed that the proposed scheme is successful
in producing accurate results as compared to those from high precision 2D finite element solutions in [5],
offering a remarkable improvement in mass conservation and characteristic benchmark quantities upon our
previous sharp interface coupled model described in [17]. Moreover, parallel scalability of the coupled LB
scheme is shown to be preserved through performing efficient CPU- and GPGPU-based computations.

Keywords Rising bubbles; Lattice Boltzmann method; Level set method; High density ratio; GPGPU;
Multiple relaxation time

1 Introduction

The Lattice Boltzmann Method (LBM) is widely known for its capability to facilitate capturing delicate
transport phenomena, as well as its explicit structure of solution which allows for being efficiently accelerated
on modern multi and many core compute architectures. Such desirable properties have in particular motivated
researchers to export the methodologies, previously employed in the single- and multiphase solutions of the
Navier-Stokes equations, to the framework of the LBM. A number of schemes are thus proposed with regards
to the multiphase flow problems to bring the explicit realization of the interface capturing, as in the level
set or volume of fluid methods, along to the lattice Boltzmann formulation as in [12, 17, 18]. Consequently,
the computationally complex free energy or chemical potential description in conventional multiphase LB
models are avoided.

Being one of the most established and conventional multiphase LB model for high density ratios, the chemical
potential model, introduced by Lee an Liu [10], consists of solving two sets of LB equations; namely the lattice
Boltzmann equation (LBE) for pressure and velocity based on the diffused chemical potential view of the
interface forces, and the LBE for the order parameter which is derived from the Cahn-Hilliard equation
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for the concentration (density) profile. While the method is known to be stable for high density ratios, the
computational demand goes excessively beyond that of the early, weakly stable Shan-Chen or colour-fluid
LB models, since a second DnQm LBE has to be solved over the entire domain while both LBEs require
spatial discretizations of force terms in all lattice directions. In addition, calculation of the chemical potential
terms requires third and forth derivatives of the concentration profile, which subsequently implies having a
high lattice resolution in the vicinity of the interface.

As a remedy to circumvent such high computational and numerical demands, one could re-design the LB
method to solve for the pressure and velocity field and let a second differential equation capture the interface
in a coupled fashion, which is analogous to that done in the multiphase Navier-Stokes framework. Examples
are the works of Thomess et al. [18], Mehravarn [12] and Safi [17] using the level set equation and the work
of Janssen et al. [7] using the volume of fluid technique.

While the coupled method of Thommes et al. is restricted to small viscosity differences, the early one-fluid
model of Mehravaran and Hannani lacks isotropy and stability in force discretization and fails to repeat
benchmark results for high density ratio problems. Recently, Safi and Turek [17] showed that the stability
and accuracy of the one-fluid scheme could be profoundly enhanced by applying a consistent discretization
to the interface forces as demonstrated for rising bubble benchmarks under high density and viscosity ratios.
Moreover, the attained GPU-based parallel performances were shown to be significantly higher than those
reported by similar implementations using the chemical potential LB models.

Nevertheless, derivation of the pressure in [17] is still based on the linear ideal gas equation of state (EOS)
for a virtual fluid of density ρ̄ = 1, which limits the application of the method to slight dynamic pressure
gradients, as also discussed by Mahravaran [12]. Additionally, coupled signed distance level set methods are
generally associated with non-negligible mass losses of the bubble, which mainly occur during the course of
reinitializing the level set function. Finally, the brute-force level set reinitialization employed in [17], although
showed to be computationally superior to other schemes, becomes confusing to implement and realize when
being applied to complex, bubbly flows which generally consist of multitudes of bubbles colliding and,
possibly, merging together.

In this paper we propose to improve upon the coupled one-fluid approach of our previous work, through
adopting the idea of diffused or pressure description of the interface forces as first proposed by He et al.
[3] which takes the non-ideal part of the pressure into account and solves a pressure evolution LBE. The
complex chemical potential form of the surface tension forces is then replaced with its conventional curvature-
based definition. As opposed to the chemical potential LB models, a mass conserving level set equation is
solved to capture a diffused interface which behaves similar to the concentration parameter in the Cahn-
Hilliard equation, yet at much lower computational cost. This implies that the solution of a second LBE for
resolving the concentration is avoided, while the additional computational effort brought by solving the level
set equation is moderate and we show that only minimal implicit reinitializations are sufficient for accurate
advection of the level set function.

As in our previous work we make use of multiple relaxation time collisions on the LBM side and employ
robust force discretizations so as to guarantee the stability and isotropy of the solution. The accuracy of the
solutions is then evaluated through performing benchmark comparisons against high precision finite element
solutions of the Navier-Stokes equations coupled with level set methods for rising bubbles under moderate and
high density and viscosity differences. As preserving the nice scalability of the algorithm is an indispensable
part of any new LB-based model, we briefly point out the specific computational demands associated with
the coupled algorithm and suggest parallel implementation outlines, particularly for many-core GPGPU
architectures.

The rest of the paper is organized as follows; we present the derivation and discretization of the coupled
pressure evolution LB model in section 2. Section 3 gives a brief overview of the special treatments for
GPGPU implementation of the coupled scheme. The numerical results and validations for rising bubbles are
then provided in section 4. Section 5 discusses the achieved parallel computational performances. Finally,
the paper is closed with conclusions and discussions in section 6.
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2 Pressure evolution coupled LB-level set scheme

At the presence of an external force F , the lattice Boltzmann equation in two dimensions with nine discrete
velocities ek, k = 0, ..., 8, describes the transport of the distribution functions fk as [4]

∂fk
∂t

+ ek.∇fk =
∑
j

Λk,j(fj − feqj (ρ,u)) +
(ek − u) · F

ρc2s
feqk (1)

in which the equilibrium state feqk is a function of density and velocity and is given by Maxwell equation as

feqk (ρ,u) = ωkρ

[
1 +

ek · u
c2s

+
[ek · u]

2

2c4s
+

[u · u]

2c2s

]
. (2)

In equations (1) and (2), cs = 1/
√

3 is the lattice speed of sound and ρ and u are the fluid density and ve-
locity, respectively. Different moments of the distribution functions are then relaxed towards their respective
equilibrium states in a multiple relaxation time fashion, i. e. Λ = M−1Λ̂M, where M is the transformation
matrix

M =



1 1 1 1 1 1 1 1 1
−4 −1 2 −1 2 −1 2 −1 2

4 −2 1 −2 1 −2 1 −2 1
0 1 1 0 −1 −1 −1 0 1
0 −2 1 0 −1 2 −1 0 1
0 0 1 1 1 0 −1 −1 −1
0 0 1 −2 1 0 −1 2 −1
0 1 0 −1 0 1 0 −1 0
0 0 1 0 −1 0 1 0 −1


. (3)

and Λ̂ is a diagonal relaxation matrix as in [2]

Λ̂ = diag{0, s1, s2, 0, s3, 0, s3, 1/τ, 1/τ}. (4)

The relaxation time τ depends on the kinematic viscosity through ν = (τ − 0.5)/3. The parameters s1, s2
are typically set to 1.0 and s3 is chosen in the range 0.3 < s1 < 0.5 as suggested in [17] for rising bubble
problems.

For flows involving multiple phases, the diffused interface formulation of the LBE requires the force on the
right hand-side of the LBE to account for the non-ideal effects emerging in the vicinity of the interface as
well as for the interfacial surface tension forces as proposed by He et al. [3]

F = ∇(ρc2s − P ) + Fs + G (5)

where G is the gravity force and P represents the total pressure which is the sum of dynamic and thermo-
dynamic pressures. In [3] the following form of surface tension force Fs is adopted

Fs = ργ∇∇2ρ (6)

where γ is related to the interface thickness ε and the surface tension coefficient σ. Li and Liu [10] later
proposed a modified form which transfers the chemical potential from of the thermodynamics pressure to
the surface tension and leaves P to account for the dynamic pressure only, such that the total force takes
the following form



4

F = ∇(ρc2s − P )− C∇µ+ G (7)

where the chemical potential µ is a function of the concentration C as well as its Laplacian ∇2C. The con-
centration C is then solved using a second LBE for the Cahn-Hilliard equation which requires the thermo-
dynamics part of the pressure. It is obvious that both equations (6) and (7) need three successive derivatives
of the density profile. Furthermore, the second LBE in [10] will also require the forth derivative of C so as to
recover the diffusion term of the Cahn-Hilliard equation. Such multilayer approximations, not only leads to
more computational complexity but also requires higher lattice resolutions near the interface to provide an
adequately smooth density profile for numerical integration. In the present work, however, we aim to couple
the LBM with the level set scheme and need not to involve any thermodynamic correlation. Consequently,
the pressure P in equation 5) is considered to be the dynamic pressure while we propose to replace the
chemical potential form of the interface force with its classical curvature-based approximation

Fs = −σκδn (8)

where δ is the Dirac delta function and κ and n are the mean curvature and normal vector to the interface,
respectively. We will see later in this section that in order to obtain κ, one only needs the second derivative
of a diffused level set function, hence removing the extra regularity and complexity imposed by equation (6)
or (7).

In order to diminish the adverse numerical effect of the steep density changes ∇ρ arising in equation (5), He
et al. suggested to convert the mass and momentum LBE (1) into a pressure evolution equation using the
following transformation

gk = fkc
2
s + (P − ρc2s)ωk. (9)

Taking the total derivative Dt = ∂t · ∇ of gk and inserting the force term, one ends up with the following
equation for the evolution of the pressure distribution function gk

∂gk
∂t

+ ek.∇gk =
∑
j

Λk,j(gj − geqj ) + (ek − u) ·
[
∇ρc2s(Γk(u)− ωk) + (Fs + G)ωk

]
(10)

where Γk(u) = feqk /ρ and geqk = feqk c
2
s+(P −ρc2s)ωk. We note that ∇P is eliminated from the right hand-side

as ∇P ∼ O(Ma2) and hence the term (ek − u) · ∇P is reduced to O(Ma3) [9]. Applying backward Euler
and trapezoidal rule for time integration of the collision and forcing terms, respectively, we have

gk(x + ek∆t, t + ∆t) = gk(x, t) −
∑
j

Λk,j(gj(x, t) − geqj (x, t)) − ∆t

2
SUk (x, t) +

∆t

2
SCk (x + ek∆t, t + ∆t)

(11)

with central and upwind forcing terms, SCk and SUk defined as

SUk = (ek − u) ·
[
∇Uρc2s(Γk(u)− ωk) + (Fs + G)ωk

]
(12)

SCk = (ek − u) ·
[
∇Cρc2s(Γk(u)− ωk) + (Fs + G)ωk

]
(13)

and ek · ∇C , ek · ∇B are central and upwind differencing in the lattice direction k, as defined for any scalar
φ [10]
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ek · ∇Cφ = (φ(x+ ek∆t)− φ(x− ek∆t))/2

ek · ∇Uφ = (−φ(x+ 2ek∆t) + φ(x+ ek∆t)− φ(x))/2.
(14)

Equation (11) could then be rendered to an explicit form

ḡk(x+ ek∆t, t+∆t) = ḡk(x, t)−
∑
j

Λk,j(ḡj(x, t)− ḡeqj (x, t))−∆tSAve(x, t) (15)

where SAve = (SU + SC)/2 and the following transformations are used

ḡk = gk −
∆t

2
SCk (16)

and

ḡeqk = geqk −
∆t

2
SCk . (17)

In order to track the interface, the second LBE in [3] or [10] is replaced here with a convection equation for
a phase-field level set function ψ as originally suggested by Olsson [14],

∂tψ + u · ∇ψ = 0. (18)

In a gas-liquid multiphase system, the function ψ gets the values of ψ = 0 inside the gas and ψ = 1 on the
liquid side, while ψ = 0.5 represents the interface location. For a single circular gas bubble surrounded by
the liquid, the level set function could be initialized as,

ψ = 1− 1

1 + ed/ε
(19)

where d is the signed distance from the interface Γ . In order to preserve a smooth profile of ψ while it is
convected, one may add an artificial diffusion along with a balancing compression to the right hand side of
equation (18). Eventually, we propose to employ the following monolithic equation

∂tψ + u · ∇ψ = −∇ · (εψ(1− ψ)n) + ε∇2ψ (20)

where the interface thickness ε calibrates both the numerical diffusion and compression. This differs from
the method suggested in [14], where ε controls the diffusion term only and the reinitialization is carried out
iteratively via solving a second PDE with small virtual time steps. On the other hand, assuming the same
time and length scale for the level set equation as for the LBE, and considering the very small time steps
of the LBE, a mere single iteration of equation (20) suffices to keep the smooth profile of ψ and preserve a
constant interface thickness. The very small time steps also suggest that one could treat both the convective
term and the right-hand side of equation (20) explicitly, applying the backward Euler rule in time

ψ(x, t+∆t) = ψ(x, t) +∆t [−u(x, t) · ∇ψn(x, t)]−∇ · (εψ(x, t)(1− ψ(x, t))n) + ε∇2ψ(x, t). (21)

The small coefficient ε could be chosen as a function of the physical resolution h of the problem as also
suggested in [14]

ε =
hα

2
(22)
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where the exponent α is chosen to be close to 1. We will discuss in the next section that the value of α could
be adjusted to achieve minimum mass loss as the solution proceeds in time.

To discretize the convective term u · ∇ψ, we use the weighted essentially non-oscillatory (WENO) scheme
which extends the first-order upwind differencing to fifth-order spatial accuracy based on the smoothest
possible interpolation of the level set function (see [15]).

Having the updated values of ψ, the fluid properties could finally be obtained based on the diffused level set
function {

ρ(ψ) = ρg + (ρl − ρg)ψ
µ(ψ) = µg + (µl − µg)ψ

(23)

where the subscripts g and l stand for the gas and liquid properties, respectively. The interface curvature κ
and normal vector n could also be determined as functions of ψ

n(ψ) =
∇ψ
|∇ψ|

, κ(ψ) = ∇ · n = ∇ ·
(
∇ψ
|∇ψ|

)
. (24)

Choosing the diffused Dirac delta as δ = |∇ψ|, and using equations (8) and (24), Fs is reduced to

Fs = −σ∇ψ∇ ·
(
∇ψ
|∇ψ|

)
. (25)

Our numerical experiments show that applying the central differencing along the main X and Y directions
would suffice for evaluating ∇ψ in equation (24), provided that the surface tension force is much smaller than
the pressure forces due to the relatively small values of σ. The fluid pressure and the velocity are obtained
using the moments of the distribution function ḡk

ρu =
∑
k

ei,kḡk +
∆t

2
Fs , P =

∑
k

ḡk +
∆t

2
u · ∇C(ρc2s − P ). (26)

Eventually, the overall algorithm for the coupled scheme looks like the following:

1. Calculate the directional derivatives of the density as well as the interface normal and its curvature;

2. Calculate the force terms based on equations (12) and (13) and equation (25);

3. Perform collision and streaming to update ḡk using LB equation (15);

4. Solve the monolithic level set equation (21) to convect ψ and update the density ρ;

5. Having the new density ρ and the new ḡk, calculate velocity and pressure using equation (26).

3 GPGPU considerations

Efficient techniques for extracting the maximum power of GPGPUs for LBM solvers have been widely
discussed in the literature. Optimized implementations for 2D and 3D single phase problems could be found
in the works of Kuznik et. al [8] and Obrecht et. al [13] as well as for two phase LBM solvers in [6] and [11],
which are mostly based on the early colour-fluid or Shan-Chen models for low density ratio systems.

For multiphase LB models based on the chemical potential or coupled level set schemes aimed at high density
ratio systems, however, a significant increase in the computational workload emerges during the evaluation
of the force term. This is because the force discretizations in the form of averaged and central directional
derivatives are essential elements of such models. In the current coupled model using the D2Q9 stencil, this
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means that one has to calculate 8 central and 8 upwind directional derivatives. For the chemical potential
LB model of Lee and Liu [10] one has to add to this a second group of 16 differencings for ∇µ, along with 8
differencings for ∇P for the second LBE. An immediate, yet naive, implementation pattern will then be to
launch a kernel to read the distribution functions, calculate 16 values and write them back to the memory.
On the other hand, the most effective strategy to prevent performance losses in GPU-based implementations
is to keep the unnecessary reads and writes at the lowest possible level, as the memory accesses account
for the majority of the computational time in memory-bound algorithms, e. g. LBM. Therefore, instead
of launching a kernel for the calculation of the force terms, we instead evaluate them on-the-fly inside the
kernel for collision and streaming, where the distribution functions are already retrieved from the memory.
Consequently, the averaged or central forms of the force will be available right before the collision step and
only the weighted summed forces in the X and Y directions are saved to the memory to be used later in an
individual kernel for updating velocity and pressure. Thanks to the vastly extended computational resources
(e. g. shared memory size) per streaming multiprocessor (SM) in the modern Kepler GPGPUs, one could
be sure that the inclusion of force computations alongside the collision and streaming would not impose a
severe obstruction on the instruction throughput of the kernel.

4 Results

4.1 Test case definition

In order to provide a comprehensive measure of the numerical accuracy of the presented multiphase LB
schemes, we pick the well-established rising bubble benchmarks introduced by Hysing et al. [5], where two
distinct rising bubble test cases are introduced and the incompressible multiphase Navier-Stokes equations
coupled with the level set equation are solved using the finite element method. The problem configuration
is illustrated in figure 1. The no-slip boundary condition is applied on the horizontal walls using the second
order bounce-back scheme [19], while we impose periodic boundary conditions on the vertical boundaries
which is almost identical, in this particular case, to assuming the slip boundary condition (u · n = 0) as in
[5].

At T = 0 the initially static bubble is allowed to rise due to the gravity force G = g(ρ(φ)− ρl), acting only
upon the bubble. A summary of the specific inputs for the two test cases are given in LBM units in table 1,
while the corresponding macroscopic values could be found in [5].

Table 1: Physical parameters and dimensionless numbers for test case 1 and 2, applied to static and rising
bubble

test case ρl ρg µl µg Re Eo ρl/ρg µl/µg
Test case 1 10 1 0.1 0.01 35 10 10 10
Test case 2 250 0.25 2 0.02 35 125 1000 100

The surface tension coefficient σ and the the gravity g are calculated in accordance with the desired values
for the non-dimensional Eo and Re numbers

Eo =
4ρlg(r0L)2

σ
(27)

Re =
ρ1
√
g(2r0L)3/2

µl
(28)
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Fig. 1: Initial configuration and boundary conditions for the rising bubble problem [5]

where r0 is the bubble radius as a fraction of 1 and L is the number of lattice cells covering the X dimension
of the domain. Additionally, in order to have a consistent accordance with the time measurement in [5], we
use the following equation to calculate the macroscopic time

T = t

√
g

g0L
(29)

were g0 = 0.98 is the macroscopic gravity used in [5] and t is the time in LB units (iteration number). We
note that the value of the phase densities has to be chosen with care, i. e. a large density leads to a very
small physical time step according to equations (27) and (29) and hence implies a large number of lattice
iterations to reach a certain physical time. On the other hand, choosing a small liquid density for the second
test case leads to excessively large time steps, very small relaxation time inside the bubble and eventually
high Mach numbers which in turn undermines the accuracy of the LBM.

To measure the bubble velocity Uc and its centroid position Xc, the following equations are used

Uc =

∫
Ωb

u dx∫
Ωb

1 dx

Xc =

∫
Ωb

xdx∫
Ωb

1dx

where Ωb represents the area inside the bubble. Additionally, the bubble deformation degree is described by
the circularity  defined as

 =
Pa
Pb

=
perimeter of area-equivalent circle

perimeter of bubble
=
πda
Pb
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4.2 Calibrating the interface thickness ε

As discussed in section 2, the choice of the interface thickness ε calibrates the amount of reinitialization and
hence directly affects the conservation of mass inside the bubble, as well as its deformation rate. Figure 2
shows the effect of different values of α in equation (22), on the temporal value of the bubble mass and its
circularity in test case 1 using a lattice resolution of 1/h = 320. One could see that small values of α (i. e.
larger ε) cause an adverse expansion in the initial course of rise. On the other hand, for α = 1, the bubble
undergoes an non-physical compression in the early iterations. Both expansion and compression effects mean
that the bubble undergoes large variations of mass as apparent in figure 2(a), which has a subsequent impact
on the bubble shape as reflected in the bubble circularity in figure 2(b),(c). One also should note that
assuming α > 1 leads to a too small interface thickness where the variation of ψ is not smooth enough to
resolve the interface gradients and results in early divergence of the solution. A favourable compromise is
thus obtained for α = 0.87 where the total mass change is less than 0.15%. Therefore, we apply α = 0.87
in all simulations presented in this paper. Figure 2(a) also shows how effective the present level set function
preserves the mass as compared to the variation of mass using the signed distance level set function in [17].
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Fig. 2: Effect of choosing α on the solution of test case 1; (a) bubble area, (b) bubble circularity, (c) bubble
circularity enlarged view
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4.3 Test case 1

Choosing the Eo number to a relatively low value of Eo = 10 in the first test case means that the surface
tension effects are dominating the inertial ones. Considering a moderate Re number of Re = 35, the circular
bubble is expected to evolve into an ellipsoid [1]. Figure 3 shows the time-lapsed evolution of the bubble
interface using the current pressure evolution coupled LBM-level set and the one-fluid coupled scheme in
[17], along with the reference finite element solution of the FeatFlow package in [5]. All methods use the
same grid spacing of h = 1/320. From a qualitative perspective, one could see that both coupled schemes are
successful in retrieving the expected bubble shape in different time stamps. Figure 4 also depicts the effect
of using different resolutions on the interface shape at T = 3.
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Fig. 3: Time evolution of the bubble shape for test case 1
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Fig. 4: Bubble interface shape at T = 3 for test case 1 on different lattice levels
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Figures 5 shows the convergence trend in the solution using the present coupled scheme, for the centroid
position, rising velocity and circularity of the bubble up to the nearly steady state time of T = 3. Figure 6
further presents the convergence behaviour of the L1, L2 and Lmax norm of error in the rising velocity with
reference to 1/h = 640, integrated over NTS = 480 time steps as

L1 error : ||e1|| =
∑NTS

t=1 |qt−qt,ref |∑NTS
t=1 |qt,ref |

L2 error : ||e2|| =
(∑NTS

t=1 |qt−qt,ref |
2∑NTS

t=1 |qt,ref |
2

)1/2
Lmax error : ||e∞|| = maxt|qt−qt,ref |

maxt|qt,ref |

These errors are then calculated for the lattice sizes of 1/h = 40, 80, 160, 320. One could see that a nearly
second order of convergence is preserved on most lattice levels. The relatively lower convergence order for
1/h = 40 is most likely caused by the lack of resolution in the post processing stage of calculating the
mean bubble velocity. Finally, the obtained solutions using different schemes are compared in figures 7 for
1/h = 320, revealing a closer agreement between the pressure evolution formulation and the benchmark
data, as more discernible in the circularity diagram of figure 7(a)
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Fig. 5: Temporal values of bubble metrics on different grid levels using the pressure evolution coupled
LB-level set scheme.
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Fig. 6: Error convergence behaviour for rising velocity in test case 1
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Fig. 7: Temporal values of bubble quantities in test case 1 using the the one-fluid in [17] and the pressure
evolution coupled LB-level set schemes along with the finite element FeatFlow solution in [5]

Lastly, one may question the accuracy of the surface tension description used by He et al. [3] given in equation
(6) along with the total pressure, compared to the present formulation in equation (8) with the dynamic
pressure. To this end and since the surface tension effects are dominating in our first test case, the temporal
circularity and rising velocity arising from both equations are presented in figure 8 for test case 1. One could
readily observe that deviations from the benchmark data obtained by equation (6) start to become apparent
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as the bubble tries to retrieve its circular shape for T > 1.5. Such a discrepancy is partly due to the extra
regularity required by the third derivative of the concentration in (6), but to a greater extent brought by
the steep variations of the total pressure involved in the formulation of He et al. [3] as depicted in figure 9.
In fact the highly non-monotonic changes of the thermodynamic part of the pressure, shown in figure 9(b),
causes considerable discretization error near the interface and leads to erroneous prediction of the bubble
quantities.
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Fig. 8: Temporal values of bubble circularity (a), and rising velocity (b), using different descriptions of
surface tension force along with the benchmark solution in [5]
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et al. formulation, and the dynamic pressure (Pdyn) using the the present formulation, (b) the difference
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4.3.1 Test case 2

The problem configuration of the second test case becomes more numerically demanding as the density
and viscosity ratios are increased to 1000 and 100, respectively. Moreover, by increasing the Eo number to
Eo = 125 the bubble is allowed to exhibit more pronounced deformations since inertial effects take over the
surface tension forces which typically tend to retain the bubble shape.

Figure 10 illustrates the temporal evolution of the bubble interface as it rises, produced with both the one
fluid and the pressure evolution coupled schemes along with those predicted by finite element solutions
of FeatFlow in [5]. All simulations are carried out on a grid resolution of 1/h = 320. One could see that
both methods reproduce the general bubble deformation pattern which eventually gives rise to a cap-shaped
bubble with two trailing filaments (in case of LBM) or satellite bubbles (in case of FeatFlow). As contrary
to the pressure evolution method, the one-fluid approach coupled with a sharp interface level set module
predicts much thinner trailing filaments. It must be noted that unlike the LBM simulations, the finite
element solution predicts the evolution of the trailing filaments into satellite bubbles. We emphasise that
such a spin-off phenomena could not be physically verified since level set-based methods do not generally take
into account the small-scale effects pertained to the chemical potential field in the vicinity of the interface.
Consequently, the data provided in [5] for T > 2 are not considered as reference solutions.

Similar to the test case 1, a rather quantitative insight into the solutions is provided in figure 12 for bubble
circularity, centroid position and rising velocity on different grid levels. We note that the sudden jump of
the circularity values given by FeatFlow solutions points to the spin-off moment. A comparison of the rising
velocity in figure 14 to those in figures 7 of test case 1 reveals that the bubble velocity in test case 2 attains
two extreme values instead of one. The emergence of the second peak is believed to be due to the reduced drag
force as the bubble sheds the trailing filaments and becomes more streamlined around T = 2. Consequently,
the relatively stronger dependence of the diffused level set scheme on the lattice quality prevents the method
to acquire the second peak even up to 1/h = 160. Such an effect could be also noticed in figure 11 for
the convergence of the terminal bubble shape, where the pressure evolution method requires a resolution of
1/h = 320 to develop a deformation similar to that of a sharp interface solution.

Another key feature of the proposed scheme is the mechanism therein to resolve the pressure, as reflected
in the temporal values of the rising velocity using the pressure evolution and one-fluid coupled schemes in
figure 13. For relatively coarse lattices, e. g. 1/h = 80, the one-fluid method shows overshoots in the rise
velocity during the early times of rising as well as large deviation from the converged solutions for the entire
course of rise. The primary reason behind such deviations is the limited accuracy of the one-fluid approach
in resolving large pressure gradients. Instantaneous steep changes in the pressure often emerge around the
stagnation point just above the bubble as it rises in the surrounding stationary liquid. In fact the ideal
gas EOS used in [17] is expected to function accurately only for moderate pressure gradients. In contrast,
the pressure evolution method removes the ideal gas contribution through defining the new distribution
function in equation (9) and solves the LBE for the non-ideal part of the pressure. Consequently, one could
observe a closer agreement between the converged solutions of the pressure evolution scheme and those of
the benchmark data up to T = 1.5 in figure 14, which becomes more prominent for the rising velocity as in
figure 14(c).
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Fig. 10: Time evolution of the bubble in test case 2 for 1/h = 320 using (a) pressure evolution LB-levelset
(b) one-fluid LB-level set (c) FeatFlow [5].
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Fig. 11: Bubble interface shape at T = 3 for test case 2 on different lattice levels.
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Fig. 12: Temporal values of bubble quantities in test case 2 using the pressure evolution coupled LB-level
set scheme.
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Fig. 13: Bubble rising velocity on different lattice levels (a), and the enlarged view (b). Solid lines refer to
the pressure evolution scheme while dashed lines refer to the one-fluid coupled method.
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Fig. 14: Temporal values of bubble metrics in test case 2 using different coupled schemes. The lattice
resolutions is 1/h = 640
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4.4 Computational performance

We use two distinct workstations for performing the parallel implementations; the parallel CPU code runs on
a compute machine with Intel Xeon E5-2670 CPU having 32 processor cores at 2.60 GHz and peak memory
bandwidth of 51 GB/sec. For GPGPU-based computations, we make use of another workstation equipped
with a nVIDIA Kepler K20Xm GPU. It has 14 streaming multiprocessors (192 processor cores each) and
a peak memory bandwidth of 250 GB/sec. The parallel shared memory The CPU code is based on the
optimized parallel implementation described in [16] using OpenMP shared memory directives. The GPU
code is compiled with nVIDIA’s nvcc compiler under CUDA 6.0, where full optimization flags for both CPU
and GPU codes are activated.

A weak scaling of the computational performance is given in figure 15 for both CPU and GPGPU implemen-
tations. One could notice that for sufficiently large problem sizes, almost one order of magnitude speed up is
gained over the CPU implementation for both schemes. Another noteworthy observation is that the parallel
CPU-based pressure evolution code offers 20-40% higher performances for small to moderate problem sizes
as compared to that of the CPU-based one-fluid approach. Such a discrepancy is due to the fact that the
brute force reinitialization method used for the one-fluid approach is computationally expensive when im-
plemented on CPU, while monolithic reinitializations of the pressure evolution method remove the need to
carry out re-distancing computations. However, re-distancing computations could be efficiently implemented
on GPU as described in [17] or could become affordable on CPU as the problem size increases and parallel
scaling and memory bandwidth usage improves. This could be seen clearly in the CPU- and GPU-based
performances of the one-fluid method as they start to take over those of the pressure evolution methods for
large problem sizes. Nevertheless, at an expense of less than 20% performance loss, one could obtain a more
accurate pressure resolution while benefiting from a flexible reinitialization which is compatible to arbitrary
shape changes and boundary conditions.

Fig. 15: Computational performance for various problem sizes using the two coupled schemes on CPU and
GPGPU

5 Summary and conclusions

A diffused interface coupled LB-level set method for multiphase flow simulation was proposed and its numer-
ical accuracy and efficiency were investigated for two benchmark problems of rising bubbles under moderate
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to large density and viscosity ratios. By comparing the temporal quantities of the rising bubble to those of
the reference solutions in [5] we show that the scheme provides promising accuracy and is able to handle com-
plex bubble deformations. By combining the diffused interface capturing along with the pressure evolution
LBE, a consistent coupled method is obtained where the pressure resolution is enhanced as compared to the
coupled one-fluid approach and a higher accuracy with regards to benchmark data is achieved. Moreover, the
employed mass conserving level set is reinitialized with minimal computational effort and provides flexibility
for capturing more rigorous bubble deformations at a very negligible mass loss without the need to perform
re-distancing computations or iterative PDE-based reinitializations. Yet, the computational performance of
the coupled scheme is shown to be competitive to that of the previous one-fluid approach while the de-
sired scalability of general LBM solvers is preserved as shown in the efficient parallel CPU and GPUGPU
implementations.

The authors believe that a major improvement upon the present models could be achieved by employing
adaptive mesh refinement (AMR) techniques to enhance the accuracy in resolving the pressure variations
across the interface. This leads to higher accuracies for relatively less number of lattice points and saves
considerable time and costs in the simulation if implemented efficiently on GPGPUs. In addition, in the case
of less critical density ratios and hence more moderate pressure variations, one could improve the interface
capturing quality by restricting AMR techniques to the level set grid only, as its underlying grid could be
different than that for the LBE part. Early results in this regard are promising and are subject to our future
publications.
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