FEM Techniques for Incompressible Flow Problems with Time-Dependent Interfaces

Stefan Turek
Institut für Angewandte Mathematik, Univ. Dortmund
http://www.mathematik.uni-dortmund.de/LS3
http://www.featflow.de

Liquid - (rigid) solid interfaces
[Liquid - (elastic) solid interfaces]
[Liquid - gas interfaces]
[Liquid - liquid interfaces]
Fluid - (Rigid) Solid Interfaces

1. Sedimentation (e.g. sand flow in river)
2. Suspensions (fluidized beds)
3. Lubricated transport (e.g. coal slurries in water)
4. Hydraulic fracturing (separation process using cyclones)
5. Gas-liquid reactors (fragmentation/coalescence)
6. ...

Aim: Exploit the high efficiency of operator-splitting techniques for highly (!!!) time-dependent configurations in FeatFlow

How far can we come with "simple Mathematics" ??
Consider flow of N **solid particles** in a fluid with density ρ and viscosity μ. Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, and by $\Omega_p(t)$ the domain occupied by the particle p at time t:

Fluid flow is modelled by the **Navier-Stokes equations** in $\Omega_f(t)$

$$
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \cdot \mathbf{\sigma} = \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0
$$

where $\mathbf{\sigma}$ is the total stress tensor in the fluid phase, which is defined as:

$$
\mathbf{\sigma}(X, t) = -p \mathbf{I} + \mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right]
$$
Motion of particles is described by the \textbf{Newton-Euler equations}, i.e., the \textbf{translational velocities} U_p and \textbf{angular velocities} ω_p of the p-th particle satisfy

\begin{align*}
M_p \frac{dU_p}{dt} &= F_p + F'_p + (\Delta M_p) \, g , \\
I_p \frac{d\omega_p}{dt} + \omega_p \times (I_p \omega_p) &= T_p
\end{align*}

with M_p the mass of the p-th particle ($p = 1, \ldots, N$); I_p the moment of inertia tensor of the p-th particle; ΔM_p the mass difference between the mass M_p and the mass of the fluid occupying the same volume.
Model for Particle Motion (II)

F_p and T_p are the **hydrodynamical forces** and the **torque** at mass center acting on the p-th particle

\[
F_p = - \int_{\Gamma_p} \sigma \cdot n_p \, d\Gamma_p, \quad T_p = - \int_{\Gamma_p} (X - X_p) \times (\sigma \cdot n_p) \, d\Gamma_p
\]

and F'_p are **collision forces**.

X_p is the position of the center of gravity of the p-th particle;
$\Gamma_p = \partial \Omega_p$ the boundary of the p-th particle;
n_p is the unit normal vector on the boundary Γ_p.
No-slip boundary conditions at interface Γ_p between particles and fluid, i.e., for any $X \in \Gamma_p$, the velocity $u(X)$ is defined by:

$$u(X) = U_p + \omega_p \times (X - X_p)$$

The position X_p of the p-th particle and its angle θ_p are obtained by integration of the kinematic equations:

$$\frac{d X_p}{dt} = U_p, \quad \frac{d \theta_p}{dt} = \omega_p$$
Coupling between Fluid and Particle

1. Implicit coupling (”Distributed Lagrange Multiplier/Fictitious Domains”)

 Idea: Calculate the fluid on the complete fluid-solid domain; the solid domain is constrained to move with the rigid motion; mutual forces between solid and fluid are cancelled.

 - **Body-force-DLM** *(Glowinski, Pan, Hesla, Joseph and Périaux (1999))*: the constraint of rigid-body motion is represented by \(\mathbf{u} = \mathbf{U} + \omega \times \mathbf{r} \)
 - **Stress-DLM** *(Patankar, Singh, Joseph, Glowinski and Pan (2000))*: the constraint of rigid-body motion is represented by a stress field just as there is pressure in fluid

2. Explicit coupling

 \(t^n \) fluid \(\rightarrow \) \(t^n \) force on solid \(\rightarrow \) \(t^{n+1} \) solid \(\rightarrow \) \(t^{n+1} \) fluid \(\ldots \)

 - **FVM-fictitious domain methods** *(Duchanoy and Jongen (2003))*
 - **FEM-fictitious boundary methods** *(Turek, Wan and Rivkind)*
1. **Eulerian approach**: fixed meshes!
 Use a ”fixed” mesh that covers the whole domain where the fluid may be present.
 - The distributed Lagrange multiplier/fictitious domain method
 - **FEM-fictitious boundary method**
 - FVM-fictitious domain method

2. **Lagrangian approach**: moving meshes!
 Based on a moving mesh which follows the motion of the fluid boundary.
 - Fat boundary method (*Maury* (2001))
The ‘Fictitious Boundary Method’

1. Describe fine-scale geometrical structures and time-dependent objects via (level-dependent) inner ”boundary points”!

2. Use projectors onto the ”right” b.c.’s in iterative components!

Computational mesh (can be) independent of ‘internal objects’
How to Calculate (Surface) Forces?

Hydrodynamic forces and torque acting on the i-th particle:

$$ F_i = - \int_{\partial P_i} \sigma \cdot n_i \, d\Gamma_i, \quad T_i = - \int_{\partial P_i} (X - X_i) \times (\sigma \cdot n_i) \, d\Gamma_i $$

Reconstruction of the shape is only first order accurate
⇒ local grid adaptivity or alignment
⇐ ”only” averaged/integral quantities are required

But: The FBM can only decide ”INSIDE” or ”OUTSIDE”

‘Replace the surface integral by a volume integral’
Define auxiliary function α as

$$
\alpha_p(X) = \begin{cases}
1 & \text{for } X \in \Omega_p \\
0 & \text{for } X \in \Omega_f
\end{cases}
$$

Remark: $\nabla \alpha_p = 0$ everywhere except at wall surface of the particles, and equal to the normal vector n_p defined on the global grid:

$$
n_p = \nabla \alpha_p
$$

Force acting on the wall surface of the particles can be computed by

$$
F_p = - \int_{\Gamma_p} \sigma \cdot n_p \, d\Gamma_p = - \int_{\Omega_T} \sigma \cdot \nabla \alpha_p \, d\Omega_T
$$

with $\Omega_T = \Omega_f \cup \Omega_p$ (analogously for the torque)
Evaluation of Force Calculations

LEVEL 6 \(\approx\) 280,000 elements
LEVEL 6 \(\approx\) 150,000 elements

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>ch. mesh I</th>
<th>ch. mesh II</th>
<th>ch. mesh I</th>
<th>ch. mesh II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.5529+01</td>
<td>0.5569+01</td>
<td>0.1216-01</td>
<td>0.2443-03</td>
</tr>
<tr>
<td>4</td>
<td>0.5353+01</td>
<td>0.5575+01</td>
<td>0.1074-01</td>
<td>0.0014-01</td>
</tr>
<tr>
<td>5</td>
<td>0.5427+01</td>
<td>0.5572+01</td>
<td>0.6145-02</td>
<td>0.0812-01</td>
</tr>
<tr>
<td>6</td>
<td>0.5501+01</td>
<td>0.5578+01</td>
<td>0.9902-02</td>
<td>0.1020-01</td>
</tr>
</tbody>
</table>

\[C_d = 0.55795+01\]
\[C_l = 0.10618-01\]

LEVEL 4 \(\approx\) 150,000 elements

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>(C_d)</th>
<th>(C_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.55201+01</td>
<td>0.1057-01</td>
</tr>
<tr>
<td>3</td>
<td>0.55759+01</td>
<td>0.1036-01</td>
</tr>
<tr>
<td>4</td>
<td>0.55805+01</td>
<td>0.1041-01</td>
</tr>
</tbody>
</table>
The algorithm for $t^n \rightarrow t^{n+1}$ consists of the following 4 substeps:

1. Fluid velocity and pressure: $NSE(u_{f}^{n+1}, p^{n+1}) = BC(\Omega_{p}^{n}, u_{p}^{n})$
2. Calculate hydrodynamic forces: F_{p}^{n+1}
3. Calculate velocity of particles: $u_{p}^{n+1} = g(F_{p}^{n+1})$
4. Update position of particles: $\Omega_{p}^{n+1} = f(u_{p}^{n+1})$

→ Required: efficient calculation of hydrodynamic forces!
→ Required: efficient treatment of particle interaction (?)
→ Required: fast (nonstationary) Navier-Stokes solvers (?)
Numerical Examples

‘One particle in a rotating circular container’

$$\Omega = 0.01$$

$$R_{\Omega} = 2.0, \quad R_p = 1.0$$
Numerical Examples

‘One particle in a rotating circular container’

<table>
<thead>
<tr>
<th>viscosity ν</th>
<th>Terminal angular velocity ω_p</th>
<th>Time reaching the steady state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.0099185</td>
<td>7000.0</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0099989</td>
<td>600.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0099998</td>
<td>60.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0099999</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Numerical Examples

‘One ellipse falling in an (infinite) channel’
Numerical Examples

‘Viscous flow around a moving airfoil’ (Glowinski)

[Graphs and images depicting numerical examples related to viscous flow around a moving airfoil]
Numerical Examples

‘(Prototypical) Heart Valve’

Velocity \((A_0 = 0.925) \)

Velocity \((A_0 = 1.250) \)

Inlet velocity \(U = 9.828(A_0 + \sin(\frac{1.85}{\pi}t)) \)

(a) angle

(b) angular velocity
Numerical Examples

‘Kissing, Drafting, Thumbling’
Numerical Examples

‘Impact of heavy balls on 2000 small particles’

\[\rho_f = 1, \, \rho_{bd} = 2, \, \rho_{sp} = 1.1 \]

\[\rho_f = 1, \, \rho_{bd} = 2, \, \rho_{sp} = 2 \]

\[\rho_f = 1, \, \rho_{bd} = 2, \, \rho_{sp} = 20 \]
Collision Models

Theoretically, it is impossible that smooth particle-particle collisions take place in finite time in the continuous system since there are repulsive forces to prevent these collisions in the case of viscous fluids.

In practice, however, particles can contact or even overlap each other in numerical simulations since the gap can become arbitrarily small due to unavoidable numerical errors.

\[
|\vec{F}_{ij}'| = \begin{cases}
0 & \text{if } d_{ij} \geq R_i + R_j + \rho, \\
\frac{d_{ij}}{\epsilon} & \text{if } d_{ij} = R_i + R_j.
\end{cases}
\]
Repulsive Force Collision Model

- Handling of small gaps and contact between particles
- Dealing with overlapping in numerical simulations

For the particle-particle collisions (analogous for the particle-wall collisions), the repulsive forces between particles read:

\[
F_{i,j}^P = \begin{cases}
0 & \text{for } d_{i,j} > R_i + R_j + \rho \\
\frac{1}{\epsilon_p} (X_i - X_j)(R_i + R_j + \rho - d_{i,j})^2 & \text{for } R_i + R_j \leq d_{i,j} \leq R_i + R_j + \rho \\
\frac{1}{\epsilon_p} (X_i - X_j)(R_i + R_j - d_{i,j}) & \text{for } d_{i,j} \leq R_i + R_j
\end{cases}
\]

The total repulsive forces exerted on the \(i\)th particle by the other particles and the walls can be expressed as follows:

\[
F'_i = \sum_{j=1, j \neq i}^{N} F_{i,j}^P + F_i^W
\]
Numerical Examples

‘Fluidization/Sedimentation of many particles’
The complete algorithm $/\left(t_n \rightarrow t_{n+1}\right)$ for the coupled fluid-solid system can be summarized as follows:

1. Given the position and velocity of the particles at time t_n.
2. Set the fictitious boundary and its boundary condition for the fluid.
3. Solve the fluid equations to get the fluid velocity and the pressure.
4. Calculate the hydrodynamic forces acting on every particle.
5. Calculate the motion of the solid particles.
6. Check if collision happens and calculate collision forces.
7. Update the particle position and velocity by the collision forces.
8. Return to the first step ($n \rightarrow n + 1$) and advance to the next time step.
Efficient Data Structures

$L_3 \approx 220,000 \text{ elements} \approx 1,100,000 \text{ d.o.f.s}$

$L_4 \approx 880,000 \text{ elements} \approx 4,400,000 \text{ d.o.f.s}$

$L_5 \approx 3,530,000 \text{ elements} \approx 17,600,000 \text{ d.o.f.s}$

DEC/COMPAQ EV6, 833 MHz

<table>
<thead>
<tr>
<th>CPU (s)</th>
<th>‘brute force’</th>
</tr>
</thead>
<tbody>
<tr>
<td>#PART</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 10</td>
</tr>
<tr>
<td>items</td>
<td>L=3</td>
</tr>
<tr>
<td>NSE</td>
<td>17</td>
</tr>
<tr>
<td>Force</td>
<td>5</td>
</tr>
<tr>
<td>Particle</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>
Efficient Data Structures

$L3 \approx 220,000\ elements \approx 1,100,000\ d.o.f.s$
$L4 \approx 880,000\ elements \approx 4,400,000\ d.o.f.s$
$L5 \approx 3,530,000\ elements \approx 17,600,000\ d.o.f.s$

DEC/COMPAQ EV6, 833 MHz

<table>
<thead>
<tr>
<th>CPU (s)</th>
<th>‘brute force’</th>
<th>‘improved’</th>
</tr>
</thead>
<tbody>
<tr>
<td>#PART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>items</td>
<td>L=3</td>
<td>L=4</td>
</tr>
<tr>
<td>NSE</td>
<td>17</td>
<td>88</td>
</tr>
<tr>
<td>Force</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Particle</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>114</td>
</tr>
</tbody>
</table>

Next: Efficient flow solver (for small Δt) ??
‘Re-interpretation of Navier-Stokes solvers (Chorin, Van Kan, Uzawa, etc.) as ”incomplete solvers” for discrete saddle-point problems’

LOCAL MPSC (‘Multilevel Pressure Schur Complement’):
‘Fully coupled Newton-like solver as outer nonlinear procedure’
‘Solve ”exactly” on ”subsets/patches” and perform an outer Block–Gauß-Seidel/Jacobi iteration as smoother’
⇒ For (quasi-) stationary flow with ”large” time steps

GLOBAL MPSC (‘Multilevel Pressure Schur Complement’):
‘Outer (multigrid) decoupling of velocity and pressure’
‘Newton/Multigrid solver for all scalar subproblems’
⇒ For highly nonstationary flow
Key Ideas of GLOBAL MPSC Approaches:

\[
\begin{bmatrix}
S & kB \\
B^T & 0
\end{bmatrix}
\begin{bmatrix}
u \\
p
\end{bmatrix}
=
\begin{bmatrix}
g \\
0
\end{bmatrix}
\iff
B^T S^{-1} B p = \frac{1}{k} B^T S^{-1} g
\]

\[
u = S^{-1} (g - kB p)
\]

⇒ Preconditioned Richardson scheme for scalar problems:

\[
p^l = p^{l-1} - C^{-1} (A p^{l-1} - b)
\]

\[
= p^{l-1} - C^{-1} (B^T S^{-1} B p^{l-1} - \frac{1}{k} B^T S^{-1} g)
\]

⇒ Choice of (global) PSC preconditioner \(C^{-1}\):

\[
C^{-1} = \sum \alpha_i \tilde{C}_i^{-1} \quad (\approx [B^T S^{-1} B]^{-1}) , \quad S := \alpha M + \theta_1 \nu k L + \theta_2 k N (\tilde{U})
\]

‘GOOD’ SMOOTHER FOR SCALAR PROBLEM \(A := B^T S^{-1} B\)?
‘Additive’ GLOBAL PSC Preconditioners:

\[C^{-1} = \alpha_R P^{-1} + \alpha_D M_p^{-1} \]

Complete GLOBAL PSC Basic Iteration:

\[p^l = p^{l-1} - \left[\alpha_R P^{-1} + \alpha_D M_p^{-1} \right] \left(B^T S^{-1} B p^{l-1} - \frac{1}{k} B^T S^{-1} g \right) \]

Realization of 1 ”Discrete Projection” step:

\[S\tilde{u} = g - kBp^n \quad \text{(Burgers problem with } p^n \text{ and } u^n \text{ given)} \]

\[f_p := \frac{1}{k} B^T \tilde{u} \quad [= \frac{1}{k} B^T S^{-1} g - B^T S^{-1} Bp^n = \text{Residual } (p^n)] \]

\[Pq = f_p \quad (\sim \text{‘Pressure-Poisson’}) \]

\[\Rightarrow p^{n+1} = p^n + \alpha_R q + \alpha_D M_p^{-1} f_p \]
Key Ideas of GLOBAL MPSC (cont.):

REACTIVE PRECONDITIONER \((\nabla \cdot I \nabla)^{-1}\):
- explicit calculation of \(P := B^T M^{-1} B \Rightarrow \tilde{Q}_1/Q_0\): 5 (2D)/7 (3D)
- P ‘exact’ discrete PSC preconditioner for \(\Delta t \to 0\)

DIFFUSIVE PRECONDITIONER \((\nabla \cdot \Delta^{-1} \nabla)^{-1}\):
- explicit calculation of \(B^T L^{-1} B\) impossible (\(L^{-1}\) full !!!)
- However: \(\nabla \cdot \Delta^{-1} \nabla \sim I \Rightarrow B^T L^{-1} B \sim M_p\)

CONVECTIVE PRECONDITIONER \((\nabla \cdot (u \cdot \nabla)^{-1} \nabla)^{-1}\):
- discrete construction \(\rightarrow\) ILU ???
- continuous construction \(\rightarrow\) \(\nabla \cdot (\beta \cdot \nabla)^{-1} \nabla \sim ???\)
- new techniques...
Lift-Off for Circle

Velocity \((d_w = 0.1)\)

Velocity \((d_w = 1.0)\)

\[y \text{ of center of ball} \]
Lift-Off for Ellipse

Velocity ($d_w = 0.4$)
Velocity ($d_w = 1.8$)

y of center of ellipse
Current Aim (Dan Joseph)

\[\rho_s = 1.16315 \]

(a) y of center of ball
(b) x of center of ball

\(\rho_s = 1.16315 \) moving frame
Challenges

- Adaptive time-stepping + dynamical adaptive grid alignment
- (Better) Collision models/Repulsive forces
- Coupling with turbulence models
- Modelling of Break-up/Coalescence phenomena
- Deformable particles/fluid-structure interaction
- Analysis of viscoelastic effects
- Benchmarking and experimental validation for "many" particles
- "1.000.000" particles...
Concepts for Adaptive Meshing

1) macro-oriented adaptivity

2) (patchwise) ‘deformation’ adaptivity

3) (patchwise) ‘local’ adaptivity
Example for Deformed Mesh
Grid deformation preserves the (local) logical structure of the grid.
R-Adaptivity

1. **location based methods:**
 - Winslow’s method
 - Brackbill’s and Saltzman’s method
 - harmonic mapping

 disadvantages:
 (a) non-linear problems (demanding)
 (b) interaction of monitor function and grid not clear

2. **velocity based methods:**
 - MMPDE/GCL (Cao, Huang, Russell)
 - Deformation method (Liao et al.)

 advantages:
 (a) (several) Laplace problems on fixed mesh (fast)
 (b) monitor function “directly” from error distribution
 (c) mesh tangling prevented
Deformation Method (Moser/Liao)

idea: construct transformation \(\phi, x = \phi(\xi, t) \) with \(\det \nabla \phi = f \)
\(\Rightarrow \) local mesh area \(\approx f \)

1. compute monitor function \(f(x, t) > 0, f \in C^1 \) and
\[
\int_{\Omega} f^{-1}(x, t) \, dx = |\Omega| \quad \forall t \in [0, 1]
\]
Deformation Method (Moser/Liao)

idea: construct transformation $\phi, x = \phi(\xi, t)$ with $\det \nabla \phi = f$

\Rightarrow local mesh area $\approx f$

1. compute monitor function $f(x, t) > 0, f \in C^1$ and

$$\int_{\Omega} f^{-1}(x, t) \, dx = |\Omega| \quad \forall t \in [0, 1]$$

2. solve $(t \in (0, 1])$

$$\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \bigg|_{\partial \Omega} = 0$$
idea: construct transformation \(\phi, x = \phi(\xi, t) \) with \(\det \nabla \phi = f \)

\[\Rightarrow \text{local mesh area} \approx f \]

1. compute monitor function \(f(x, t) > 0, f \in C^1 \) and

\[\int_{\Omega} f^{-1}(x, t) \, dx = |\Omega| \quad \forall t \in [0, 1] \]

2. solve \((t \in (0, 1])\)

\[\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \bigg|_{\partial \Omega} = 0 \]

3. solve the ODE system

\[\frac{\partial}{\partial t} \phi(\xi, t) = f\left(\phi(\xi, t), t \right) \nabla v\left(\phi(\xi, t), t \right) \]

new grid points: \(x_i = \phi(\xi_i, 1) \)
Dynamic Mesh Deformation
Fluid - (Elastic) Solid Interfaces

\[\chi^s : \Omega^s \times [0, T] \mapsto \Omega^s_t \]
\[u^s = \chi^s(X, t) - X, \quad v^s = \frac{\partial u^s}{\partial t} \]
\[F = I + \nabla u^s, \quad J = \det F \]

Structure part

\[\chi^f : \Omega^f \times [0, T] \mapsto \Omega^f_t \]
\[u^f = \chi^f(X, t) - X \]
\[\nu^f : \Omega^f_t \times [0, T] \mapsto \mathbb{R}^n \]

Fluid part

Reference configuration

Current configuration
Governing Equations

structure part

\[\frac{\partial \mathbf{v}^s}{\partial t} = \text{div}(J \sigma^s \mathbf{F}^{-T}) + \mathbf{f} \quad \text{in } \Omega^s \]

\[\det(I + \nabla \mathbf{u}^s) = 1 \quad \text{in } \Omega^s \]

\[\mathbf{u}^s = 0 \quad \text{on } \Gamma^2 \]

\[\sigma^s \mathbf{n} = 0 \quad \text{on } \Gamma^3 \]

fluid part

\[\frac{\partial \mathbf{v}^f}{\partial t} + (\nabla \mathbf{v}^f) \mathbf{v}^f = \text{div} \sigma^f + \mathbf{f} \quad \text{in } \Omega^f \]

\[\text{div } \mathbf{v}^f = 0 \quad \text{in } \Omega^f \]

\[\mathbf{v}^f = \mathbf{v}_0 \quad \text{on } \Gamma^1 \]

\[\sigma^f \mathbf{n} = \mathbf{t} \quad \text{on } \Gamma^1 \]

interface conditions

\[\mathbf{v}^f = \mathbf{v}^s \quad \text{on } \Gamma_0 \]

\[\sigma^f \mathbf{n} = \sigma^s \mathbf{n} \quad \text{on } \Gamma_0 \]
Fully Coupled Formulation

\[\frac{\partial u}{\partial t} = \begin{cases} v & \text{in } \Omega^s \\ \Delta u \text{ “mesh deformation operator”} & \text{in } \Omega^f \end{cases} \] \quad (1)

\[\frac{\partial v}{\partial t} = \begin{cases} -(\nabla v) F^{-1} (v - \frac{\partial u}{\partial t}) + \frac{1}{J} \nabla \cdot (-J p^f F^{-T} + J \sigma^f F^{-T}) & \text{in } \Omega^f \\ \frac{1}{J \beta} \nabla \cdot (-J p^s F^{-T} + J \sigma^s F^{-T}) & \text{in } \Omega^s \end{cases} \] \quad (2)

\[0 = \begin{cases} \nabla \cdot (J u F^{-T}) & \text{in } \Omega^f \\ J - 1 & \text{in } \Omega^s \end{cases} \] \quad (3)

\[\downarrow \]

Sequence of discrete saddle point problems

\[
\begin{pmatrix}
\frac{M}{2} \frac{\partial N_1 + S^s + S^f}{\partial u_h} + k \frac{\partial B}{\partial u_h} p_h + \frac{k}{2} M^s & \frac{k}{2} M^s & 0 \\
\frac{k}{2} M^f & \frac{1}{2} \frac{\partial N_2}{\partial v_h} & k B \\
B^T + \frac{\partial B f T}{\partial u_h} v_h & B^f T & 0
\end{pmatrix}
\]
Fully Coupled Formulation

\[\frac{\partial u}{\partial t} = \begin{cases} v & \text{in } \Omega^s \\ \Delta u \text{ “mesh deformation operator”} & \text{in } \Omega^f \end{cases} \]
\[\frac{\partial v}{\partial t} = \begin{cases} -(\nabla v)^T(F^{-1}(v - \frac{\partial u}{\partial t}) + \frac{1}{J} \nabla \cdot (-\beta p^f F^{-T} + \sigma^f F^{-T})) & \text{in } \Omega^f \\ \frac{1}{J\beta} \nabla \cdot (-\beta p^s F^{-T} + \sigma^s F^{-T}) & \text{in } \Omega^s \end{cases} \]

\[0 = \begin{cases} \nabla \cdot (J v F^{-T}) & \text{in } \Omega^f \\ J - 1 & \text{in } \Omega^s \end{cases} \]

\[\downarrow \]

Sequence of discrete saddle point problems

\[\begin{bmatrix} S_{uu} & S_{uv} & 0 \\ S_{vu} & S_{vv} & kB \\ c_u B_s^T & c_v B_f^T & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ p \end{bmatrix} = \begin{bmatrix} f_u \\ f_v \\ f_p \end{bmatrix} \]
Discretization in Space and Time

Discretization in space: FEM $Q_2/Q_2/P_1$

Discretization in Space:

\[U_h = \{ \mathbf{u}_h \in [C(\Omega_h)]^2, \mathbf{u}_h|_T \in [Q_2(T)]^2 \forall T \in T_h, \mathbf{u}_h = \mathbf{0} \text{ on } \Gamma_1 \}, \]

\[V_h = \{ \mathbf{v}_h \in [C(\Omega_h)]^2, \mathbf{v}_h|_T \in [Q_2(T)]^2 \forall T \in T_h, \mathbf{v}_h = \mathbf{0} \text{ on } \Gamma_2 \}, \]

\[P_h = \{ p_h \in L^2(\Omega_h), p_h|_T \in P_1(T) \forall T \in T_h \}. \]

Discretization in time: Crank-Nicolson scheme with adaptive time-step selection
Solution of the Nonlinear Problem

compute the Jacobian matrix via divided differences

\[
\frac{\partial \mathcal{R}}{\partial X}_{ij}(X^n) \approx \frac{\mathcal{R}_i(X^n + \varepsilon e_j) - \mathcal{R}_i(X^n - \varepsilon e_j)}{2\varepsilon},
\]

solve for \(\dot{X} \)

\[
\left[\frac{\partial \mathcal{R}}{\partial X}(X^n) \right] \dot{X} = \mathcal{R}(X^n)
\]

adaptive line search strategy

\[X^{n+1} = X^n + \omega \dot{X} \quad \omega \text{ such that } f(\omega) = \mathcal{R}(X + \omega \dot{X}) \cdot X \downarrow \]

BiCGStab/GMRes(m) with ILU(k) preconditioner or multigrid for the linear problems
Multigrid Solver

standard geometric multigrid approach

smoother by local MPSC-Ansatz (Vanka-like smoother)

\[
\begin{bmatrix}
 u^{l+1} \\
 v^{l+1} \\
 p^{l+1}
\end{bmatrix} =
\begin{bmatrix}
 u^l \\
 v^l \\
 p^l
\end{bmatrix} - \omega \sum_{\text{Patch } \Omega_i} \begin{bmatrix}
 S_{uu|\Omega_i} & S_{uv|\Omega_i} & 0 \\
 S_{vu|\Omega_i} & S_{vv|\Omega_i} & kB|\Omega_i \\
 c_u B_s^T|\Omega_i & c_v B_f^T|\Omega_i & 0
\end{bmatrix}^{-1} \begin{bmatrix}
 \text{def}_{u}^l \\
 \text{def}_{v}^l \\
 \text{def}_{p}^l
\end{bmatrix}
\]

full inverse of the local problems by optimized LAPACK (39 × 39 systems)

alternatives: simplified local problems (3 × 3 systems) or ILU(k)

combination with GMRES/BiCGStab methods possible

full Q_2 and P_1^{disc} prolongation P, restriction by $R = P^T$

fast, robust and efficient Q_2 multigrid solvers available
Current Status

Discretization

✓ monolithic, fully coupled FEM (Q_2/P_1) for **viscous incompressible fluid** and **incompressible** or **compressible hyperelastic structure**

✓ fully implicit 2nd order discretization in time (Crank-Nicolson, Fractional θ-step)

Solver

✓ Newton-like method for the coupled system (Jacobian matrix via divided differences)

✓ **multigrid method** with Vanka-like smoother, preconditioned Krylov space ($\text{ILU}(k)/\text{GMRES}(m)$) or combination of both

Further improvements

☐ adaptive time step control

☐ dynamically space-adapted mesh aligned with the structure (→ **deformation method**)

☐ smoothers robust with respect to anisotropy

☐ global MPSC/Discrete Projection solvers

☐ accurate + robust + non-oscillatory stabilization for convection
Fluid-Structure Interaction Benchmark

- based on the successful DFG flow around cylinder
- realistic materials
 - incompressible Newtonian fluid, laminar flow regime
 - elastic solid, large deformations (compressible + incompressible)
- setup with simple periodic oscillations + reasonable deformations
- computable configuration \Rightarrow laminar flow, reasonable aspect ratios
- validation by experiments (Erlangen)
Computational Domain

domain dimensions

\[H = 0.41 \]

\[L = 2.2 \]

\[h = 0.02 \]

\[l = 0.35 \]

\[(0, 0) \]

detail of the submerged structure

\[B \]

\[C \]

\[r = 0.05 \]

\[l = 0.35 \]

\[(0.6, 0.19) \]

\[h = 0.02 \]

\[A(t = 0) = (0.6, 0.2), \quad B = (0.15, 0.2), \quad C = (0.2, 0.2) \]
Inflow

Parabolic velocity profile is prescribed at the left end of the channel

\[
v_f(0, y) = 1.5 \frac{y(H - y)}{(H/2)^2} = 1.5 \frac{4.0}{0.1681} y(0.41 - y),
\]

Outflow

Condition can be chosen by the user, assuming zero reference pressure (stress free or do nothing)

Interface

Condition on \(\Gamma_t^0 \) is \(v^f = v^s \) and \(\sigma^f n = \sigma^s n \)

Otherwise

The no-slip condition is prescribed for the fluid on the other boundary parts. i.e. top and bottom wall and cylinder

Initial

Condition (suggestion)

Zero velocity in the fluid and no deformation of the structure + smooth increase of the inflow profile
Quantities of Interest

the position \(A(t) = (x(t), y(t)) \) of the end of the structure

pressure difference between the points \(A(t) \) and \(B \)

\[
\Delta p^{AB}(t) = p^B(t) - p^A(t)(t)
\]

forces exerted by the fluid on the whole body, i.e. lift and drag forces acting on the cylinder and the structure together

\[
(F_D, F_L) = \int_S \sigma n dS = \int_{S_1} \sigma^f n dS + \int_{S_2} \sigma^f|s n dS x = \int_{S_0} \sigma n dS
\]

frequency and maximal amplitude

compare results for one full period and 3 different levels of spatial discretization \(h \) and 3 time step sizes \(\Delta t \)
Suggested Material Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>polybutadiene & glycerine</th>
<th>polypropylene & glycerine</th>
</tr>
</thead>
<tbody>
<tr>
<td>density (\rho^s) ([10^3 \text{ kg/m}^3])</td>
<td>0.91</td>
<td>1.1</td>
</tr>
<tr>
<td>Poisson ratio (\nu^s)</td>
<td>0.5</td>
<td>0.42</td>
</tr>
<tr>
<td>shear modulus (\mu^s) ([10^6 \text{ kg/m}^s])</td>
<td>0.53</td>
<td>317</td>
</tr>
<tr>
<td>density (\rho^f) ([10^3 \text{ kg/m}^3])</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>kinematic viscosity (\nu^f) ([10^-3 \text{ m}^2/s])</td>
<td>1.13</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Some material combinations

<table>
<thead>
<tr>
<th>parameter</th>
<th>test 1</th>
<th>test 2</th>
<th>test 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>density (\rho^s) ([10^3 \text{ kg/m}^3])</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Poisson ratio (\nu^s)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>shear modulus (\mu^s) ([10^6 \text{ kg/m}^s])</td>
<td>0.5</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>density (\rho^f) ([10^3 \text{ kg/m}^3])</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>kinematic viscosity (\nu^f) ([10^-3 \text{ m}^2/s])</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Suggested parameter settings for the tests
Test 1: Incompressible

\[\rho^s = 1 \times 10^3 \quad \nu^s = 0.5 \quad \mu^s = 0.5 \times 10^6 \quad \rho^f = 1 \times 10^3 \quad \nu^f = 1 \times 10^3 \]
Test 2: Compressible (realistic)

\[\rho^s = 0.8 \times 10^3 \quad \nu^s = 0.4 \quad \mu^s = 100.0 \times 10^6 \quad \rho^f = 1 \times 10^3 \quad \nu^f = 1 \times 10^3 \]
Test 2a: Compressible (numerical)

\[\rho^s = 0.8 \times 10^3 \quad \nu^s = 0.4 \quad \mu^s = 0.5 \times 10^6 \quad \rho^f = 1 \times 10^3 \quad \nu^f = 1 \times 10^3 \]
Challenges and Problems

Coupled (‘monolithic’) + fully implicit FEM discretization → YES
Efficient coupling/decoupling strategies for solver → YES (?)
Adaptive meshing/Error control of user-specific quantities → YES (???)

→ Prototypical for (multiphase) flow problems?
Challenges and Problems

- Coupled (‘monolithic’) + fully implicit FEM discretization → YES
- Efficient coupling/decoupling strategies for solver → YES (?)
- Adaptive meshing/Error control of user-specific quantities → YES (???)

→ Prototypical for (multiphase) flow problems ?

But: Problems with large deformations ? Remeshing of solid interfaces ?

Similar techniques (implicit reconstruction, accurate and oscillation-free transport solvers) as for multiphase flow ?