
A NUMERICAL INVESTIGATION OF FLOWS OFSHEAR-THINNING FLUIDS WITH APPLICATIONS TO BLOODRHEOLOGYJAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKAbstra
t. We provide a new solver for the 
ow of power-law 
uids thatextends a solver developed by S. Turek (see [18℄) for the Navier-Stokes 
uid.This solver is 
onvenient to simulate eÆ
iently both steady and unsteady 
owsof shear-dependent 
uids in a 
omplex geometry. To illustrate the ability ofthe solver, two spe
i�
 problems were 
hosen. First, we study steady 
ows ofpower-law 
uids in 
orrugated 
hannels, and 
arry out qualitative 
omparisonswith real experiments. The attention is paid to the dependen
es of fri
tion fa
-tor and dimensionless normal stress amplitude on the aspe
t ratio (amplitudeversus wavelength of the sinusoidal 
hannel) and to the o

urren
e of se
-ondary 
ows. We show that the aspe
t ratio is not a sensible non-dimensionalnumber in this geometry. Se
ondly, we simulate unsteady (pulsatile) 
ows ofthe power-law 
uid (i.e. blood under 
ertain 
ir
umstan
es) in the presen
eof stenosis and we obtain a very good 
oin
iden
e with re
ent numeri
al stud-ies. The des
ription of numeri
al s
heme and theoreti
al ba
kground are alsooutlined. 1. Introdu
tionThere are many engineering problems whi
h lead to the investigation of the 
owof both Newtonian and non-Newtonian 
uids in 
omplex geometry. To be morespe
i�
, we 
an name the area of biome
hani
al engineering studying blood 
owin arteries and other blood vessels or the area of 
hemi
al and pro
ess engineeringstudying 
ows in porous media. Periodi
ally 
onstri
ted tubes or 
hannels with
orrugated walls are used to model the 
onverging and diverging nature of porousmedia or blood vessels. In all these 
ases, we 
an observe a periodi
 
onstri
tionof the 
ow 
hannel or a periodi
 
hange of the 
ow dire
tion. The simplest modelfor su
h geometry used in many experiments and simulations is a periodi
ally 
on-stri
ted tube or in two dimensions a 
hannel with 
orrugated walls (see Figure 1).Shear-dependent 
uids, as a signi�
ant 
lass of non-Newtonian models, are de-�ned by a polynomial dependen
e of the (generalized) vis
osity on the modulusof the symmetri
 velo
ity gradient. If this vis
osity fun
tion is in
reasing, the
orresponding 
uids are 
alled shear thi
kening, while 
uids, where the vis
osityde
reases for in
reasing shear rate are named shear thinning 
uids. The latter hasbroad appli
ations in engineering pra
ti
e; we 
an �nd them in 
hemi
al engineer-ing (
f. [16℄), geology (
f. [2, 12℄), blood rheology (see [23℄), gla
iology (
f. [8℄), it
an also be used to model boundary layer type of behavior (see [13, 14℄).This resear
h was supported by the Grant Agen
y of the Cze
h Republi
, grant No.201/96/0228 and by CEZ:J13/9811320007. 1



2 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREK
Figure 1. Flow in porous media and model 
ow in 
orrugated 
hannelsThe obje
tive of the �rst two paragraphs is to re
all that there is a large num-ber of engineering problems that require better understanding of 
ows of non-Newtonian (in parti
ular power-law) 
uids in a real (i.e. 
omplex) geometry. Theseare the areas, where numeri
al simulations produ
ed by an e�e
tive solver 
an helpsigni�
antly.Thus, the aim of this paper is to present a numeri
al 
ode that would be 
om-petitive to study adequately various 
omplex 
ows from engineering appli
ationsmentioned above. For the Navier-Stokes equations su
h a solver has been developedby Stefan Turek, see [18℄. The main advantages of this 
ode are� simple and stable spatial dis
reization by ~Q1=Q0 non
onforming �nite ele-ments on quadrilateral meshes� adaptive stabilization te
hniques for the 
onve
tive term (upwinding or stream-line di�usion)� Multilevel Pressure S
hur Complement te
hniques for treating the saddlepoint problems� fast and robust multigrid solver for linear problems� adaptive �xed-point defe
t 
orre
tion s
hemes for nonlinear parts� fra
tional step �-s
heme for time dis
retization with adaptive sele
tion of thetime step for the nonstationary 
owsThe solver makes it possible to 
onsider non-linear models for stress.We show in this paper that su
h solver 
an be extended (modi�ed) to be appli
a-ble also to the various kinds of 
uids with non-
onstant (shear-dependent) vis
osity.For the numeri
al experiments, we 
onsider only the power-law types of vis
osityfun
tions. However, we wish to underline that we 
an in
lude an arbitrary formof the vis
osity fun
tion into the 
ode without having any signi�
ant growth of
omputational e�ort, and in fa
t, this enlargement of the 
ode is a re
ent proje
t(see also http://www.featflow.de).For this presentation, we 
hoose two problems, one for steady, the se
ond forunsteady motions. Both problems 
an be viewed as a �rst attempt in understandingof blood 
ows, as explained later.The �rst problem deals with 
ows in 
orrugated 
hannels (see Fig. 1). Thishas been motivated by an experimental investigation of R. C. Yalaman
hili [21,22℄ where the experiments in 
hannels with 
orrugated walls were performed forthe 
uid 
onsisting of 60% water, 40% gly
erine with added 0ppm, 500ppm or2000ppm polya
rylamide. Su
h a 
uid exhibits non-zero normal stress di�eren
esbut has 
onstant vis
osity in range of shear-rate they measured. It means that thematerial is a vis
oelasti
, non shear-thinning 
uid. Therefore, we 
an verify our



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 3numeri
al simulations with the measured experimental data only qualitatively. Wehave found (see se
tion 3) very good 
orresponden
e between the numeri
al resultsand experimental data from [21℄, that are 
aused by the geometry of the domain.It mainly 
on
erns the stru
ture of the velo
ity �eld, the lo
ation of maximumvelo
ity amplitude, the length of a

eleration zone, eddies forming se
ondary 
ows,et
. For the experiments a 
hannel with two sinusoidal plates was used. Then,it is reasonable to 
onsider two dimensional domain for numeri
al simulations. In
oin
iden
e with [21℄, we have also observed that aspe
t ratio1 a� , where a is theamplitude and � is the wavelength of the 
hannel os
illations, 
annot be used as agood measure even for power-law 
uids; for two di�erent 
hannels with the sameaspe
t ratio we have observed di�eren
es in the stru
ture of 
orresponding 
ows,see Fig. 8.The se
ond problem, analyzed here, deals with the pulsatile 
ow in 
hannelswith stenosis, and we 
ompare our results with those presented in [17℄, where detail
omparison with previous experimental and numeri
al studies is dis
ussed, andwhere also the importan
e of su
h numeri
al simulations is 
lari�ed.We wish to re
all that the simulation of blood 
ow in a 
ardiovas
ular system is
hallenging, 
learly very important, and not yet satisfa
torally answered problem,whi
h is be
ause of many properties of blood that need to be 
onsidered, and makesthe modeling of blood 
ow very 
ompli
ated. From the basi
 features we 
an name:1. 3D 
ow in 
omplex geometry2. 
omplex rheologi
al behavior of blood3. pulsativity of the 
ow and 
onsequently pulsativity of the walls4. inelasti
 permeable walls5. di�erent deformability of the red 
ells at di�erent shear rates, et
.From this point of view, our numeri
al experiments 
an be 
onsidered as oneof the preliminary steps in simulating blood 
ow. However, there are just few
al
ulations involving a 
ompli
ated geometry and nonlinear 
uid, thus this paperaims to fo
us on this la
unae.In the next se
tion we des
ribe the analyzed model, 
ompleted by boundary
onditions and the 
onstitutive formulae for the vis
ous part of the stress tensor.We also present, in brief, known theoreti
al results 
on
erning the existen
e of weaksolution and its uniqueness and regularity, and give a des
ription of used numeri
als
heme for the Navier-Stokes equations. A big advantage of this s
heme is its \easy"modi�
ation for shear-dependent 
uids whi
h is presented here for the �rst time.Se
tion 3 
ontains numeri
al results, their 
omparison and analysis for the 
ows in
orrugated 
hannels, while se
tion 4 is devoted to pulsatile 
ows in 
hannels withstenosis. Con
lusions form the �nal part of the paper.2. Equations and numeri
al methodsWe 
onsider both, steady and unsteady motions of an in
ompressible 
uid in atwo-dimensional domain 
. Su
h a 
ow is governed by the following equationsdiv~v = 0;(2.1) %��~v�t + 2Xj=1 vj �~v�xj� = � gradp+ divTE + %~f;(2.2)1Here, the aspe
t ratio has di�erent meaning than in FEM or multigrid where it is the quotientbetween (lo
al) length and width of quadrilaterals whi
h is essential for the numeri
al behavior.



4 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKwhere ~v = (v1; v2) is the velo
ity ve
tor, % is the 
onstant density of the 
uid, p isthe pressure �eld, ~f = (f1; f2) is the �eld of body for
es per mass unit and TE isthe vis
ous part of the stress tensor.We deal with a vis
ous 
uid, whi
h is modeled by2TE = 2�(jDj2)D;(2.3)whereD = 12�r~v+(r~v)T � is the symmetri
 part of the velo
ity gradient. Sin
e themodulus of D 
orresponds in vis
ometri
 
ows to shear rate, the 
uids undergoing(2.3) are 
alled the 
uids with shear-dependent vis
osity. Numeri
al tests wereperformed for the simple power-law model with two parameters " and � in theform �(jDj2) = 2�0 ("+ jDj)��;(2.4)where " > 0, � 2 [0; 1℄ and �0 is given vis
osity 
onstant. Tests were made for ~f = 0and the value �0% = 0:042 
m�2 s�1 and ~f = 0. The Reynolds number Re = V0L%�0 isbased on the 
hannel width L and on the maximum of the in
ow velo
ity V0. In thesequel we use the non-dimensionalized form of equations (2.2) with the vis
osity �de�ned by � = �%V0L .For the sake of 
ompleteness, we brie
y des
ribe in this se
tion the numeri
almethods used in Feat
ow 
ode, together with the modi�
ations of this solver neededto in
lude nonlinear vis
ous (expli
itly given) fun
tion �(jDj2) into the program.Some other numeri
al approa
hes 
an be found for example in [1, 4, 5, 9, 16℄.2.1. An overview of the theoreti
al results. Before 
oming to the �nite ele-ment dis
retizations, we present a brief summary of theoreti
al results regardingmainly the existen
e of weak solutions, its uniqueness and regularity for Diri
h-let boundary 
onditions. We restri
t ourselves to steady 
ows, and we refer theinterested reader to [11℄, se
tion 5.1-5.4, where the evolutionary model with thespa
e-periodi
 boundary 
onditions has been analyzed. The extension of the re-sults to more realisti
 boundary 
onditions is in pro
ess.We will use the standard notation: for p 2 [1;1℄; k = 1; 2; :::; we denote Lp(
)and W k;p(
) the Lebesgue and Sobolev spa
es with the norms jj � jjp and jj � jjk;p. ByVp we denote the 
losed subspa
e of fun
tions from W 1;p(
) satisfying div~v = 0 in
 and ~v = 0 at �
. The spa
e of symmetri
 matri
es of the type 2 by 2 is denotedby R2;2sym.The nonlinear tensorial fun
tion TE given by (2.3){(2.4) is the typi
al exampleof a 
lass of nonlinear potential tensorial fun
tions T 's satisfying the followingassumptions9� : R2;2sym 7! R+0 su
h that Tij(�) = ��(�)��ij 8� 2 R2;2sym(2.5) 9
1 > 0 : �2�(�)��ij��kl �ij�kl � 
1("+ j�j)p�2 j�j2 8�; � 2 R2;2sym(2.6) 9
2 > 0 : ���� �2�(�)��ij��kl ���� � 
2("+ j�j)p�2 8� 2 R2;2sym(2.7)2Note that the assumption \the stress tensor at point ~x depends on the velo
ity gradientthrough a general tensorial fun
tion", 
an be redu
ed in 2 dimensions to the form (2.3) by theprin
iple of the material frame indi�eren
e and by the representation of the isotropi
 tensors.



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 5Consequently, see 
f. [11℄, se
tion 5.1, we also have9
3 > 0 : Tij(�)�ij � 
3(j�j � 1)p 8� 2 R2;2sym(2.8) 9
4 > 0 : jT (�)j � 
4("+ j�j)p�1 8� 2 R2;2sym(2.9)Let 
 be a smooth (C2 - boundary) domain. Considering the Diri
hlet boundary
ondition ~v = ~0 at �
(2.10)we 
an de�ne a weak solution to (2.1){(2.2), (2.5){(2.10).Let ~f 2 Lp0 , p0 = pp�1 and %(~x) = 1 8~x 2 
. A fun
tion ~v 2 Vp is said to be aweak solution to our problem ifZ
 vj �vi�xj 'id~x+ Z
 Tij(D(~v))Dij(~')d~x = Z
 fi'id~x(2.11)for all ~' smooth with div ~' = 0.Theorem 2.12. Let p > 65 . Then there exists a weak solution to the problem(2.1){(2.2), (2.5){(2.10) whi
h belongs to W 2;plo
 (
) \ Vp. If, in addition, jj~f jjp0 issmall enough then the solution is unique in the 
lass of weak solutions from Vp.We are not aware of the fa
t that the result would have been formulated inthis form before. In [10℄, the 
lassi
al method of monotone operators provides theexisten
e of the solutions for p � 3dd+2 , where d denotes the dimension. Thus, ifd = 2 we obtain the existen
e for p � 32 . In [3℄, the existen
e of weak solution wereproved for p � 2dd+1 , whi
h in 2D gives the bound p � 43 . The method is based onthe 
onstru
tion of a spe
ial L1-test fun
tion and on stri
t monotoni
ity for T , i.e.�T (�)� T (�)� � (� � �) > 0 8�; � 2 R2;2sym; � 6= �:(2.13)In fa
t, the 
ondition (2.6) implies a stronger kind of monotoni
ity than (2.13),namely �T (�)� T (�)� � (� � �) � 
5 j� � �j2"+ j�j2�p + j�j2�p 8�; � 2 R2;2sym;(2.14)valid also for " = 0, see [11℄ for the proof of (2.14) for example.In two dimensions, we 
an improve the last result using the spe
ial 
an
ellationin the 
onve
tive term when it is tested in the interior of the domain 
 by \�~v ",whi
h in addition brings higher regularity for ~v (~v 2 W 2;plo
 (
)) and 
onsequentlyuniqueness for small jj~f jjp0 .The proof of Theorem 2.12 
an be dedu
ed from the results of [7℄, where C1;�-regularity (i.e. the H�older 
ontinuity of gradients) has been proved lo
ally (insideof 
) for p > 65 and globally (near the boundary) for p > 32 . It is possible to
ompare the results with [6℄ where this issue of \full" regularity has been su

essfullyinvestigated for the spa
e periodi
 problem even for p > 1.2.2. Finite element dis
retization. First, we dis
retize the time variable t inthe momentum equation (2.2) by some usual one �-step s
heme (� = 1 for ba
kwardEuler, � = 12 for the Crank-Ni
holson s
heme) or by the fra
tional �-step s
heme



6 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKwith 3 substeps ea
h with di�erent parameter �. Given ~vn, pn and time-step k =tn+1 � tn, solve for unknown ~vn+1, pn+1 div~vn+1 = 0~vn+1k + ��(r~vn+1)~vn+1 � div ��(D(~vn+1))D(~vn+1)��+rpn+1 = ~g(2.15)with the known right-hand side~g = ~vnk + � ~f n+1 + (1� �)~f n � (1� �)�(r~vn)~vn � div ��(D(~vn))D(~vn)��Next, we introdu
e Th, a regular de
omposition of the domain 
 into quadrilat-erals and de�ne the following spa
esLh = fqh 2 L2(
); qh=T = 
onst.;8T 2 Thg;(2.16) Sh = fvh 2 L2(
); vh=T 2 ~Q1(T );8T 2 Th;(2.17) F�(vh=T1) = F�(vh=T2) � = T1 \ T2; F�(vh) = 0;8� � �
g;where the nodal fun
tional F�(v) 
an be 
hosen as (m� is the midpoint of the edge�) F�(v) = j�j�1 Z� v(~x)d
 or F�(v) = v(m�):~Q1(T ) is a spa
e generated by fx2 � y2; x; y; 1g (so-
alled \rotated bilinear �niteelements"). For details see [15℄. We apply usual spatial �nite element dis
retizationusing weak formulation of equations (2.15) and spa
es Lh for pressure andHh = S2hfor velo
ities to obtain a nonlinear algebrai
 system of following form.[�0M + �1kL(u) + �2kK(u)℄u+ kBp = f(2.18) BTu = 0(2.19)where u;p are the 
oeÆ
ient ve
tors 
orresponding to the approximation of ~u; p inthe spa
es Hh resp. Lh. The parameter �0 is set to 0 for the stationary 
ase and1 for the time-dependent 
ase. MatrixM 
orresponds to the mass matrix, K 
or-responds to the non-linear 
onve
tive term. The matrix L in our 
ase 
orrespondsto the vis
ous term R
 �(jD(~u)j2)Dij(~u)Dij(~')d~x.We use two algorithms whi
h 
an both be in
luded in the general framework ofthe Multilevel Pressure S
hur Complement (MPSC) methods developed in [19℄.For the stationary problems we use the lo
al MPSC variant. In this aproa
h wedeal with a 
oupled problem in u and p. First the nonlinear problem is linearized byouter �xed point iteration and the resulting linear problem is solved by a multigridsolver with the element-wise solution of small lo
al S
hur 
omplement problemsas a smoother and 
oarse grid solver (whi
h in fa
t is very similar to the \Vankasmoother" (see [20℄), but it 
an be generalized to be mu
h more robust and eÆ
ient).This algorithm 
an be written as�um+1pm+1� = �umpm�� !m XT2Th � ~S=T kB=TBT=T 0 ��1�� S kBBT 0 � �umpm�� �g0��(2.20)where S = �1kL(um) + �2kK(um) and ~S 
an be a simpli�ed version of S, forexample ~S = diag(S). In pra
ti
e, the applied pre
onditioner in (2.20) 
an beredu
ed to a one-dimensional problem with the FEM dis
retization used here.



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 7For the time dependent problems we apply the global version of the MPSCmethod where by forming �rst the S
hur 
omplement problem we de
ouple theproblem into a nonlinear equation for the velo
ity and the Poisson equation forpressure. This 
an be written as the following iterative s
hemepm+1 = pm � !mA�1(BTS�1Bpm � 1kBTS�1g)(2.21)where again S has the same meaning as in previous paragraph and A 
ontains oneor several easy invertible approximations of BTS�1B. For solving the nonlinearproblem for the velo
ity (i.e. inverting the matrix S) we use again a �xed pointiteration and multigrid method with su

essive over-relaxation smoother and 
oarsegrid solver. The Poisson equation for the pressure is then solved (i.e. inversion ofthe matrix A) with the multigrid solver. Again, this 
omplete pro
edure 
an beused as a smoother in an outer multigrid su
h that the resulting numeri
al behaviorof this algorithm is signi�
antly better than the similar and well-known (single grid)variants of proje
tion or fra
tional step algorithms (see [19℄).As regards the 
onvergen
e of the solvers, we have found that generally the meth-ods 
onverge slower or do not 
onverge at all as parameter � approa
hes 1, whi
hmight be expe
ted be
ause of the presen
e of higher gradients near the bound-ary and pres
ribed zero boundary 
ondition (
ompare also with known theoreti
alresults, se
tion 2.1). The 
onvergen
e is better for small or moderate Reynoldsnumbers (Re = 10; 100) when " is 
lose to 1 and almost does not depend on thevalue of � (in the range of values of 0:5 � � � 1:0). On the other hand, the
onvergen
e of the method does not depend on the value of " for higher Reynoldsnumber (Re = 1000).
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Figure 2. Velo
ity pro�les at minimal 
learan
e and normal extrastress on the wall of the 
hannel for di�erent grids. (Re = 100,� = 0:2)As regards the dependen
e of the obtained results on the re�nement of the mesh,we 
on
entrate on three quantities, the velo
ity ~v, the pressure p ant the stress TE .We start the 
onstru
tion of the mesh with a uniform grid with 2560 elements(referred to as level 1, uniform) and dividing ea
h element into 4 elements byjoining the midpoints of the opposite edges we obtain �ner uniform grids (level 2and 3, uniform). The se
ond set of meshes is 
onstru
ted from the grid with thesame number of elements as the level 1, uniform, but re�ned toward the boundary(referred to as level 1, re�ned) and again by dividing ea
h element into 4 elements



8 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKbut this time in su
h a way that the new elements 
loser to the boundary aresmaller we obtain another two grids (level 2 and 3, re�ned). While we do notobserve any signi�
ant di�eren
es for the pressure we have found that the mostsensitive quantity for the non-zero power-law index � is the velo
ity gradient nearthe wall and 
onsequently the values of the stress tensor on the wall (see Fig. 2).
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illations.3. Numeri
al results for stationary flowWe have made 
omputations for all 
uids mentioned in Table 1a): we will referto f0 - f2 as the �rst set of 
uids, while f3 - f4 form the se
ond set. We havealso varied the parameters of the domain (see �g. 3) namely the amplitude a andwavelength � of the 
hannel os
illations as shown in table 1b).
0

0.002

0.004

0.006

0.008

0.01

0.012

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

N
or

m
 o

f v
el

oc
ity

Distance

0

0.002

0.004

0.006

0.008

0.01

0.012

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

N
or

m
 o

f v
el

oc
ity

Distance� = 0 � = 0:5Figure 4. Velo
ity pro�les at the maximal and minimal 
learan
e.Re = 100



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 93.1. Velo
ity pro�les. The velo
ity pro�les for di�erent 
uids and Reynolds num-bers were 
omputed. In Figure 4 we plotted the velo
ity pro�les for 
hannel II wherethe eddies forming se
ondary 
ow3 o

ured near the boundary at the lo
ation ofmaximal 
learan
e. As expe
ted, the maximum of the velo
ity pro�le is at the 
en-ter of the 
hannel and it is higher in the narrow region than the maximum in wideregion. With in
reasing the power-law exponent the maximum of velo
ity de
reasesand the velo
ity pro�le be
omes more 
atten. This de
rease in the maximum ofvelo
ity is bigger at the lo
ation of maximal 
learan
e. It 
an be noti
ed that weget very high values of the velo
ity gradient near the wall of the 
hannel in thelo
ation of minimal 
learan
e as the power-law exponent in
reases, as expe
ted.
N

or
m

 o
f v

el
oc

ity

Distance

f 0
f 2

N
or

m
 o

f v
el

oc
ity

Distance

f 0
f 2

Re = 10 Re = 100Figure 5. Centerline velo
ity. (The solid 
urve represents the 
hannel.)3.2. Centerline velo
ity. The norm of the velo
ity on the 
entral axis of the
hannel II for di�erent Reynolds numbers and di�erent 
uids are plotted in Figure 5.The solid 
urves represent the orientation of the 
hannel sides. As expe
ted, thevelo
ity in
reases in the 
onverging regions of the 
hannel and de
reases in thediverging regions. The length of a

elerating region is shorter than the length ofde
elerating region. For low Reynolds number it 
an be observed that the maximumand the minimum of the 
enterline velo
ity do not exa
tly 
orrespond to the pointof minimal and maximal 
learan
e of the 
hannel. With in
rease in power-lawexponent the maximum of velo
ity de
reases, the minimum of velo
ity de
reasesfor high Reynolds number but for low Reynolds number this de
rease is mu
hsmaller.3.3. Fri
tion fa
tor and Normal stress. The fri
tion fa
tor is de�ned byf = T 1212%U2 ;where T 12 is average shear stress on the wall of the 
hannel.For all 
ases the fri
tion fa
tor de
reases with in
reasing Reynolds number. Forthe �rst set, the fri
tion fa
tor is higher for the 
uid with the higher power-lawexponent for low Reynolds number while for high Reynolds number the fri
tionfa
tor is lower for the 
uid with the higher power-law exponent. The point of3In non-Newtonian 
uid me
hani
s, se
ondary 
ow is usually ment as minor 
ow 
aused bynormal stress di�eren
es. In our 
ase, the eddies forming se
ondary 
ow are due to geometry.
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ross-over takes pla
e for 
hannels I and II (
hannels with di�erent wavelength andsame amplitude) at the same value of Re = 40 but for 
hannel III the 
ross-overtakes pla
e at Re = 60. For the se
ond set of 
uids, we 
an observe the samebehavior for high Reynolds number but in low Reynolds number the fri
tion fa
torbe
omes nearly the same for all 
uids.
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f0 f2Figure 6. Fri
tion fa
tor vs Reynolds number for 
hannels withthe same aspe
t ratio.In Figure 6 we 
an 
ompare the fri
tion fa
tors for the 
hannel I and the 
hannelIII. These two 
hannels have the same aspe
t ratio a� . In this 
ase, we 
an see thatde
rease in the fri
tion fa
tor is smaller for 
uid with � = 0:5 than for Newtonian
uid (� = 0).More importantly, at low Reynolds number the fri
tion fa
tor for the Newtonian
ase is lower than that for shear thinning 
uid while the opposite is true at largeReynolds numbers. This is to be expe
ted as the 
uid shear thins and at the highershear rates asso
iated with large Reynolds number, the apparent vis
osity is lowerthan the Newtonian vis
osity.In order to determine the amplitude of the normal stress we 
ompute meannormal stress as a linear interpolation of the obtained values of the normal stresson the wall of 
hannel. Then we subtra
t from the obtained values of the normalstress the mean normal stress and we 
ompute an average of all lo
al extremesand we get the amplitude of normal stress. We used non-dimensional form of theamplitude of the normal stress as suggested in [21℄(T22)�amp = 2%�h23��20a (T22)amp:We observe that the amplitude of the dimension-less normal stress in
reaseswith in
reasing Reynolds number ex
ept in a small range of Reynolds numbers(0 < Re < 5) in 
hannel II. In all 
hannels, for low Reynolds numbers (Re < 1 for
hannel I and III, Re < 6 for 
hannel II) the amplitude of the dimension-less normalstress is higher for higher power-law exponent. For higher Reynolds numbers theamplitude of the dimension-less normal stress is again higher for 
uid with higherpower-law exponent. For 
hannel II and Reynolds number greater than 600, theopposite behavior o

urs. In this 
ase, it is probably 
onne
ted with o

urren
e ofthe se
ondary 
ow in the 
hannel II.
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hannels with di�erent amplitude a.
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In Figure 7 we 
an 
ompare the in
uen
e of the 
hannel amplitude on the stressamplitude. It 
an be noti
ed that for the 
uids with � = 0 the stress amplitudeis higher for the 
hannel II (a = 0:22) than the stress amplitude for the 
hannelIII (a = 0:05) until Re = 500 after whi
h the results are reversed. In the 
ase of
uids with � = 0:5 we observe that the normal stress amplitudes 
orrespondingto di�erent 
hannel amplitudes have no 
lear ordering with the stress amplitudesswit
hing roles as for whi
h is larger, based on the range of the Reynolds number.Even the few 
al
ulations 
arried out 
learly indi
ate that no 
orrelation 
an bedrawn with the 
hanges in the stress amplitude with the wavelength.In Figure 8 we 
ompare the normal stress amplitude for the 
hannels I and III forthe �rst set of 
uids. These two 
hannels have the same aspe
t ratio a� . We noti
ethe starting result, also 
ollaborated by the experiments of R. C. Yalaman
hili [21℄,that the normal stress amplitudes are di�erent, at the same Reynolds number forthe same aspe
t ratio thereby 
autioning us against the use of the aspe
t ratio asa non-dimensional number with a view towards 
omparison.
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Figure 10. Maximum velo
ity at the inlet during one time periodand wall shear stress at several time instants.
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a) b)Figure 11. Velo
ity pro�les for several time instants at a) x = 11and b) x = 30. 4. Pulsatile flowThe time dependent 
al
ulations were done for two-dimensional 
ow in a 
hannelwith a symmetri
 
onstri
tion (see Fig. 9) and the 
uid with the power-law index� = 0:2. A similar axisymmetri
 
hannel is used in [17, 4℄ as a model for anartery with stenosis. We also take similar time-dependent in
ow velo
ity whi
h isparaboli
 with maximum value 
hanging in time as shown in Fig. 10.The Fig. 10 shows the shear stress on the wall of the 
hannel at several timeinstants. The values vary sharply with x distan
e in the area of the stenosis andalso in time during the period of the in
ow velo
ity. It rea
hes the maximal valueslightly before the narrowest point and at the same time as maximum of in
ow
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Figure 12. Instantaneous streamlines during one period fort=0.1, 0.3, 0.5, 0.7, 0.9. (� = 0:2)velo
ity o

urs. The minimum value is rea
hed behind the stenosis at the sametime. In the rest of the domain the wall shear stress has positive value when the
uid 
ows in positive x dire
tion and is negative when the dire
tion of the 
ow isreversed.Velo
ity pro�les at lo
ations behind the stenosis (x = 11) and further down-stream (x = 30) are shown in Fig. 11. The whole 
ow pattern is shown in Fig. 12as instantaneous streamlines and velo
ity ve
tor plots at four di�erent times. We
an observe the forming of a se
ondary 
ow behind the stenosis as the in
ow ve-lo
ity grows. The eddy be
omes larger and moves toward the 
enter of the 
hannelas the in
ow velo
ity de
reases. When the in
ow velo
ity reverses the dire
tionthe 
ow starts to develope a se
ond eddy there. In the se
ond velo
ity pulse botheddies disappear. 5. Con
lusionIn this paper, two numeri
al experiments were performed. First, we 
omparedour results of the �rst stationary problem with the results of measurements doneby R. C. Yalaman
hili in [21℄. Clearly, while the 
uid tested by R. C. Yalaman
hiliis not a shear thinning 
uid, it is nonetheless interesting that the predi
tions of ourwork show similar qualitative features as the experiments of R. C. Yalaman
hilli.For the 
enterline velo
ity also we observed results similar to those found by Yala-man
hili: 1) The maximum velo
ity o

urs at the same lo
ation irrespe
tive of theReynolds number. 2) The in
rease in the Reynolds number 
auses the amplitudeof the 
enterline velo
ity to in
rease, with no signi�
ant 
hange in the wavelength.3) The maximum velo
ity in the 
onverging region of the 
hannel is rea
hed in ashorter distan
e, when 
ompared to the distan
e in whi
h the minimum of velo
ityis rea
hed in the diverging region. For the velo
ity pro�les we observed similareddies forming se
ondary 
ow in the 
hannel with smaller wavelength and biggeramplitude (see Fig. 4 and Fig. 13). For the fri
tion fa
tor we did not observe 
om-pletely di�erent 
hara
teristi
s for the 
hannels with the same aspe
t ratio. Forthe amplitude of the dimension-less normal stress we observed: 1) An in
rease in
hannel wavelength de
reases the amplitude of the normal stress. 2) An in
reasein 
hannel amplitude 
an in
rease or de
rease the amplitude of the normal stressdepending on the Reynolds number. Whi
h implies that the aspe
t ratio a� is not a
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Figure 13. An eddy forming se
ondary 
ow in 
hannel II.good 
hara
teristi
 number for this 
ase of 
hannel where the width of the 
hanneland wavelength and amplitude of the wall 
orrugation are 
omparable. All in all,we found that our numeri
al simulations predi
t results that are qualitatively inkeeping with the experimental results of R. C. Yalaman
hili et. al.In the se
ond part we have tested the solver in time-dependent problem withperiodi
ally varying in
ow velo
ity. Con
erning the wall shear stress we have ob-served dramati
 variation of its value in the region of the stenosis in time and indistan
e x. The velo
ity �eld stru
ture showed the presen
e of se
ondary 
ow be-hind the 
onstri
tion and signi�
ant ba
kward 
ow near the walls when the in
owvelo
ity was in negative x dire
tion. Our results exhibit good 
orresponden
e withextensive results presented in [17℄. Despite the fa
t that their results were 
om-puted for axially symmetri
 tube while ours are obtained for 2-dimensional 
hannelthe qualitative behavior of the wall shear stress and the 
ow pattern is similar.These tests show that the new solver for simulating 
ows of the power-law 
uids,presented in this paper, works in a reasonably eÆ
ient way for our problem ina 
ertain range of parameters and is suitable for further development for more
omplex problems in blood rheology. More information about the numeri
al toolsand the 
ode itself 
an be found under http://www.featflow.de.Referen
es[1℄ B�ohme, G., Rubart, L.: Non-Newtonian 
ow analysis by �nite elements, Fluid Dynami
sResear
h 5, 147{158, 1989.[2℄ �Cadek, O., Martine
, Z., Matyska, C.: Spe
tral variational approa
h to the non-NewtonianStokes problem in a spheri
al shell, Computer Physi
s Communi
ations 71, 56{70, 1992.[3℄ Frehse, J., M�alek, J., Steinhauer, M.: An existen
e result for 
uids with shear dependentvis
osity - steady 
ows, Nonlinear Analysis, Theory Meth. Appl. 30, 3041{3049, 1997.[4℄ Despotis, G. K., Tsangaris, S.: A Fra
tional Step Method for Unsteady In
ompressible Flowson Unstru
tured Meshes, Int. J. of Comp. Fluid Dynami
s 8, 11{29, 1997.[5℄ Du, Q., Gunzburger, M.D.: Finite-element approximations of a Ladyzhenskaya model forstationary in
ompressible vis
ous 
ow, SIAM J. Numer. Anal., Vol. 27, No. 1, 1{19, 1990.[6℄ Kapli
k�y, P., M�alek, J., Star�a, J.: Full regularity of weak solution to a 
lass of nonlinear
uids in two dimensions - stationary periodi
 problem, Comment. Mat. Univ. Carol. 38 (No.4), 681{695, 1997.[7℄ Kapli
k�y, P., M�alek, J., Star�a, J.: C1;�-regularity of weak solutions to a 
lass of nonlin-ear 
uids in two dimensions { stationary Diri
hlet problem, Zap. Nau
hn. Sem. POMI 259(No.29), 89{121, 1999.[8℄ Kjartanson, B.H. , Shields, D.H., Domas
huk, L., Man, C.S.: The 
reep of i
e measured withthe pressure-meter, Can. Geote
h. J., 25, 250{261, 1988.[9℄ Legat, V., Oden, J.T.: An adaptive hp-�nite element method for in
ompressible free surfa
e
ows of generalized Newtonian 
uids, Z. Angew. Math. Phys. 46, 643{678, 1995.[10℄ Lions, J.L.: Quelques m�ethodes de r�esolution des probl�emes aux limites non lin�eaires, Dunod,Paris, 1969.[11℄ M�alek, J., Ne�
as, J., Rokyta, M., R�u�zi�
ka, M.: Weak and measure-valued solutions to evolu-tionary PDE's, Chapman & Hall, London, 1996.



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 15[12℄ Malevsky, A.V., Yuen, D.A.: Strongly 
haoti
 non-Newtonian mantle 
onve
tion in theEarth's mantle, Geophys. Astrophys. Fluid Dyn., 65. 149{171, 1992.[13℄ Mansutti, D., Rajagopal, K. R.: Flow of a shear thinning 
uid between interse
ting planes,International Journal of Non-Linear Me
hani
s, 26, 769{775, 1991.[14℄ Rajagopal, K. R.: Boundary layers in non-linear 
uids, in book Trends in appli
ations ofmathemati
s to me
hani
s (eds MDPMonteivo Marques and J. F. Rodriques), Pitman Mono-graphs and Surveys in Pure and Applied Me
hani
s, Longman 77, 209{218, 1995.[15℄ Ranna
her, R., Turek, S.: A simple non-
onforming quadrilateral Stokes element, Numer.Meth. Part. Di�. Eqn., 8, 97{111, 1992.[16℄ Rubart, L., B�ohme, G.: Numeri
al Simulation of shear-thinning 
ow problems in mixingvessels, Theoret. Comput. Fluid Dynami
s 3, 95{115, 1991.[17℄ Tu, C., Deville, M.: Pulsatile Flow of Non-Newtonian Fluids through Arterial Stenosis, J.Biome
hani
s, vol. 29, 889{908, 1996.[18℄ Turek, S.: FEATFLOW. Finite element software for the in
ompressible Navier-Stokes equa-tions: User Manual, Release 1.1, Te
hni
al report, 1998.[19℄ Turek, S.: EÆ
ient solvers for in
ompressible 
ow problems: An algorithmi
 and 
omputa-tional approa
h, LNCSE 6, Springer-Berlin, 1998.[20℄ Vanka, S.P.: Impli
it multigrid solutions of Navier-Stokes equations in primitive variables, J.Comp. Phys., 65, 138{158, 1985.[21℄ Yalaman
hili, R.C.: Flow of non-Newtonian 
uids in 
orrugated 
hannels, Int. J. Non-LinearMe
hani
s, Vol. 28, No. 5, 535|548, 1993.[22℄ Yalaman
hili, R.C., Sirivat, A., Rajagopal, K.R.: An experimental investigation of the 
owof dilute polymer solutions trough 
orrugated 
hannels, J. Non-Newtonian Fluid Me
h. 58,243{277, 1995.[23℄ Yeleswarapu, K.K., Antaki, J.F., Kameneva, M.V., Rajagopal, K.R.: A generalized Oldroyd-B model as 
onstitutive equation for blood, Pro
eedings of the Se
ond World Congress ofBiome
hani
s, 1994.(J. Hron and J. Malek) Mathemati
al Institute of Charles University, Sokolovsk�a 83,186 75 Prague 8, Cze
h Republi
(S. Turek) Institute for Applied Mathemati
s, University of Dortmund, Vogelpoth-sweg 87, 44227 Dortmund, Germany


