
A NUMERICAL INVESTIGATION OF FLOWS OFSHEAR-THINNING FLUIDS WITH APPLICATIONS TO BLOODRHEOLOGYJAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKAbstrat. We provide a new solver for the ow of power-law uids thatextends a solver developed by S. Turek (see [18℄) for the Navier-Stokes uid.This solver is onvenient to simulate eÆiently both steady and unsteady owsof shear-dependent uids in a omplex geometry. To illustrate the ability ofthe solver, two spei� problems were hosen. First, we study steady ows ofpower-law uids in orrugated hannels, and arry out qualitative omparisonswith real experiments. The attention is paid to the dependenes of frition fa-tor and dimensionless normal stress amplitude on the aspet ratio (amplitudeversus wavelength of the sinusoidal hannel) and to the ourrene of se-ondary ows. We show that the aspet ratio is not a sensible non-dimensionalnumber in this geometry. Seondly, we simulate unsteady (pulsatile) ows ofthe power-law uid (i.e. blood under ertain irumstanes) in the preseneof stenosis and we obtain a very good oinidene with reent numerial stud-ies. The desription of numerial sheme and theoretial bakground are alsooutlined. 1. IntrodutionThere are many engineering problems whih lead to the investigation of the owof both Newtonian and non-Newtonian uids in omplex geometry. To be morespei�, we an name the area of biomehanial engineering studying blood owin arteries and other blood vessels or the area of hemial and proess engineeringstudying ows in porous media. Periodially onstrited tubes or hannels withorrugated walls are used to model the onverging and diverging nature of porousmedia or blood vessels. In all these ases, we an observe a periodi onstritionof the ow hannel or a periodi hange of the ow diretion. The simplest modelfor suh geometry used in many experiments and simulations is a periodially on-strited tube or in two dimensions a hannel with orrugated walls (see Figure 1).Shear-dependent uids, as a signi�ant lass of non-Newtonian models, are de-�ned by a polynomial dependene of the (generalized) visosity on the modulusof the symmetri veloity gradient. If this visosity funtion is inreasing, theorresponding uids are alled shear thikening, while uids, where the visositydereases for inreasing shear rate are named shear thinning uids. The latter hasbroad appliations in engineering pratie; we an �nd them in hemial engineer-ing (f. [16℄), geology (f. [2, 12℄), blood rheology (see [23℄), glaiology (f. [8℄), itan also be used to model boundary layer type of behavior (see [13, 14℄).This researh was supported by the Grant Ageny of the Czeh Republi, grant No.201/96/0228 and by CEZ:J13/9811320007. 1



2 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREK
Figure 1. Flow in porous media and model ow in orrugated hannelsThe objetive of the �rst two paragraphs is to reall that there is a large num-ber of engineering problems that require better understanding of ows of non-Newtonian (in partiular power-law) uids in a real (i.e. omplex) geometry. Theseare the areas, where numerial simulations produed by an e�etive solver an helpsigni�antly.Thus, the aim of this paper is to present a numerial ode that would be om-petitive to study adequately various omplex ows from engineering appliationsmentioned above. For the Navier-Stokes equations suh a solver has been developedby Stefan Turek, see [18℄. The main advantages of this ode are� simple and stable spatial disreization by ~Q1=Q0 nononforming �nite ele-ments on quadrilateral meshes� adaptive stabilization tehniques for the onvetive term (upwinding or stream-line di�usion)� Multilevel Pressure Shur Complement tehniques for treating the saddlepoint problems� fast and robust multigrid solver for linear problems� adaptive �xed-point defet orretion shemes for nonlinear parts� frational step �-sheme for time disretization with adaptive seletion of thetime step for the nonstationary owsThe solver makes it possible to onsider non-linear models for stress.We show in this paper that suh solver an be extended (modi�ed) to be applia-ble also to the various kinds of uids with non-onstant (shear-dependent) visosity.For the numerial experiments, we onsider only the power-law types of visosityfuntions. However, we wish to underline that we an inlude an arbitrary formof the visosity funtion into the ode without having any signi�ant growth ofomputational e�ort, and in fat, this enlargement of the ode is a reent projet(see also http://www.featflow.de).For this presentation, we hoose two problems, one for steady, the seond forunsteady motions. Both problems an be viewed as a �rst attempt in understandingof blood ows, as explained later.The �rst problem deals with ows in orrugated hannels (see Fig. 1). Thishas been motivated by an experimental investigation of R. C. Yalamanhili [21,22℄ where the experiments in hannels with orrugated walls were performed forthe uid onsisting of 60% water, 40% glyerine with added 0ppm, 500ppm or2000ppm polyarylamide. Suh a uid exhibits non-zero normal stress di�erenesbut has onstant visosity in range of shear-rate they measured. It means that thematerial is a visoelasti, non shear-thinning uid. Therefore, we an verify our



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 3numerial simulations with the measured experimental data only qualitatively. Wehave found (see setion 3) very good orrespondene between the numerial resultsand experimental data from [21℄, that are aused by the geometry of the domain.It mainly onerns the struture of the veloity �eld, the loation of maximumveloity amplitude, the length of aeleration zone, eddies forming seondary ows,et. For the experiments a hannel with two sinusoidal plates was used. Then,it is reasonable to onsider two dimensional domain for numerial simulations. Inoinidene with [21℄, we have also observed that aspet ratio1 a� , where a is theamplitude and � is the wavelength of the hannel osillations, annot be used as agood measure even for power-law uids; for two di�erent hannels with the sameaspet ratio we have observed di�erenes in the struture of orresponding ows,see Fig. 8.The seond problem, analyzed here, deals with the pulsatile ow in hannelswith stenosis, and we ompare our results with those presented in [17℄, where detailomparison with previous experimental and numerial studies is disussed, andwhere also the importane of suh numerial simulations is lari�ed.We wish to reall that the simulation of blood ow in a ardiovasular system ishallenging, learly very important, and not yet satisfatorally answered problem,whih is beause of many properties of blood that need to be onsidered, and makesthe modeling of blood ow very ompliated. From the basi features we an name:1. 3D ow in omplex geometry2. omplex rheologial behavior of blood3. pulsativity of the ow and onsequently pulsativity of the walls4. inelasti permeable walls5. di�erent deformability of the red ells at di�erent shear rates, et.From this point of view, our numerial experiments an be onsidered as oneof the preliminary steps in simulating blood ow. However, there are just fewalulations involving a ompliated geometry and nonlinear uid, thus this paperaims to fous on this launae.In the next setion we desribe the analyzed model, ompleted by boundaryonditions and the onstitutive formulae for the visous part of the stress tensor.We also present, in brief, known theoretial results onerning the existene of weaksolution and its uniqueness and regularity, and give a desription of used numerialsheme for the Navier-Stokes equations. A big advantage of this sheme is its \easy"modi�ation for shear-dependent uids whih is presented here for the �rst time.Setion 3 ontains numerial results, their omparison and analysis for the ows inorrugated hannels, while setion 4 is devoted to pulsatile ows in hannels withstenosis. Conlusions form the �nal part of the paper.2. Equations and numerial methodsWe onsider both, steady and unsteady motions of an inompressible uid in atwo-dimensional domain 
. Suh a ow is governed by the following equationsdiv~v = 0;(2.1) %��~v�t + 2Xj=1 vj �~v�xj� = � gradp+ divTE + %~f;(2.2)1Here, the aspet ratio has di�erent meaning than in FEM or multigrid where it is the quotientbetween (loal) length and width of quadrilaterals whih is essential for the numerial behavior.



4 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKwhere ~v = (v1; v2) is the veloity vetor, % is the onstant density of the uid, p isthe pressure �eld, ~f = (f1; f2) is the �eld of body fores per mass unit and TE isthe visous part of the stress tensor.We deal with a visous uid, whih is modeled by2TE = 2�(jDj2)D;(2.3)whereD = 12�r~v+(r~v)T � is the symmetri part of the veloity gradient. Sine themodulus of D orresponds in visometri ows to shear rate, the uids undergoing(2.3) are alled the uids with shear-dependent visosity. Numerial tests wereperformed for the simple power-law model with two parameters " and � in theform �(jDj2) = 2�0 ("+ jDj)��;(2.4)where " > 0, � 2 [0; 1℄ and �0 is given visosity onstant. Tests were made for ~f = 0and the value �0% = 0:042 m�2 s�1 and ~f = 0. The Reynolds number Re = V0L%�0 isbased on the hannel width L and on the maximum of the inow veloity V0. In thesequel we use the non-dimensionalized form of equations (2.2) with the visosity �de�ned by � = �%V0L .For the sake of ompleteness, we briey desribe in this setion the numerialmethods used in Featow ode, together with the modi�ations of this solver neededto inlude nonlinear visous (expliitly given) funtion �(jDj2) into the program.Some other numerial approahes an be found for example in [1, 4, 5, 9, 16℄.2.1. An overview of the theoretial results. Before oming to the �nite ele-ment disretizations, we present a brief summary of theoretial results regardingmainly the existene of weak solutions, its uniqueness and regularity for Dirih-let boundary onditions. We restrit ourselves to steady ows, and we refer theinterested reader to [11℄, setion 5.1-5.4, where the evolutionary model with thespae-periodi boundary onditions has been analyzed. The extension of the re-sults to more realisti boundary onditions is in proess.We will use the standard notation: for p 2 [1;1℄; k = 1; 2; :::; we denote Lp(
)and W k;p(
) the Lebesgue and Sobolev spaes with the norms jj � jjp and jj � jjk;p. ByVp we denote the losed subspae of funtions from W 1;p(
) satisfying div~v = 0 in
 and ~v = 0 at �
. The spae of symmetri matries of the type 2 by 2 is denotedby R2;2sym.The nonlinear tensorial funtion TE given by (2.3){(2.4) is the typial exampleof a lass of nonlinear potential tensorial funtions T 's satisfying the followingassumptions9� : R2;2sym 7! R+0 suh that Tij(�) = ��(�)��ij 8� 2 R2;2sym(2.5) 91 > 0 : �2�(�)��ij��kl �ij�kl � 1("+ j�j)p�2 j�j2 8�; � 2 R2;2sym(2.6) 92 > 0 : ���� �2�(�)��ij��kl ���� � 2("+ j�j)p�2 8� 2 R2;2sym(2.7)2Note that the assumption \the stress tensor at point ~x depends on the veloity gradientthrough a general tensorial funtion", an be redued in 2 dimensions to the form (2.3) by thepriniple of the material frame indi�erene and by the representation of the isotropi tensors.



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 5Consequently, see f. [11℄, setion 5.1, we also have93 > 0 : Tij(�)�ij � 3(j�j � 1)p 8� 2 R2;2sym(2.8) 94 > 0 : jT (�)j � 4("+ j�j)p�1 8� 2 R2;2sym(2.9)Let 
 be a smooth (C2 - boundary) domain. Considering the Dirihlet boundaryondition ~v = ~0 at �
(2.10)we an de�ne a weak solution to (2.1){(2.2), (2.5){(2.10).Let ~f 2 Lp0 , p0 = pp�1 and %(~x) = 1 8~x 2 
. A funtion ~v 2 Vp is said to be aweak solution to our problem ifZ
 vj �vi�xj 'id~x+ Z
 Tij(D(~v))Dij(~')d~x = Z
 fi'id~x(2.11)for all ~' smooth with div ~' = 0.Theorem 2.12. Let p > 65 . Then there exists a weak solution to the problem(2.1){(2.2), (2.5){(2.10) whih belongs to W 2;plo (
) \ Vp. If, in addition, jj~f jjp0 issmall enough then the solution is unique in the lass of weak solutions from Vp.We are not aware of the fat that the result would have been formulated inthis form before. In [10℄, the lassial method of monotone operators provides theexistene of the solutions for p � 3dd+2 , where d denotes the dimension. Thus, ifd = 2 we obtain the existene for p � 32 . In [3℄, the existene of weak solution wereproved for p � 2dd+1 , whih in 2D gives the bound p � 43 . The method is based onthe onstrution of a speial L1-test funtion and on strit monotoniity for T , i.e.�T (�)� T (�)� � (� � �) > 0 8�; � 2 R2;2sym; � 6= �:(2.13)In fat, the ondition (2.6) implies a stronger kind of monotoniity than (2.13),namely �T (�)� T (�)� � (� � �) � 5 j� � �j2"+ j�j2�p + j�j2�p 8�; � 2 R2;2sym;(2.14)valid also for " = 0, see [11℄ for the proof of (2.14) for example.In two dimensions, we an improve the last result using the speial anellationin the onvetive term when it is tested in the interior of the domain 
 by \�~v ",whih in addition brings higher regularity for ~v (~v 2 W 2;plo (
)) and onsequentlyuniqueness for small jj~f jjp0 .The proof of Theorem 2.12 an be dedued from the results of [7℄, where C1;�-regularity (i.e. the H�older ontinuity of gradients) has been proved loally (insideof 
) for p > 65 and globally (near the boundary) for p > 32 . It is possible toompare the results with [6℄ where this issue of \full" regularity has been suessfullyinvestigated for the spae periodi problem even for p > 1.2.2. Finite element disretization. First, we disretize the time variable t inthe momentum equation (2.2) by some usual one �-step sheme (� = 1 for bakwardEuler, � = 12 for the Crank-Niholson sheme) or by the frational �-step sheme



6 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKwith 3 substeps eah with di�erent parameter �. Given ~vn, pn and time-step k =tn+1 � tn, solve for unknown ~vn+1, pn+1 div~vn+1 = 0~vn+1k + ��(r~vn+1)~vn+1 � div ��(D(~vn+1))D(~vn+1)��+rpn+1 = ~g(2.15)with the known right-hand side~g = ~vnk + � ~f n+1 + (1� �)~f n � (1� �)�(r~vn)~vn � div ��(D(~vn))D(~vn)��Next, we introdue Th, a regular deomposition of the domain 
 into quadrilat-erals and de�ne the following spaesLh = fqh 2 L2(
); qh=T = onst.;8T 2 Thg;(2.16) Sh = fvh 2 L2(
); vh=T 2 ~Q1(T );8T 2 Th;(2.17) F�(vh=T1) = F�(vh=T2) � = T1 \ T2; F�(vh) = 0;8� � �
g;where the nodal funtional F�(v) an be hosen as (m� is the midpoint of the edge�) F�(v) = j�j�1 Z� v(~x)d or F�(v) = v(m�):~Q1(T ) is a spae generated by fx2 � y2; x; y; 1g (so-alled \rotated bilinear �niteelements"). For details see [15℄. We apply usual spatial �nite element disretizationusing weak formulation of equations (2.15) and spaes Lh for pressure andHh = S2hfor veloities to obtain a nonlinear algebrai system of following form.[�0M + �1kL(u) + �2kK(u)℄u+ kBp = f(2.18) BTu = 0(2.19)where u;p are the oeÆient vetors orresponding to the approximation of ~u; p inthe spaes Hh resp. Lh. The parameter �0 is set to 0 for the stationary ase and1 for the time-dependent ase. MatrixM orresponds to the mass matrix, K or-responds to the non-linear onvetive term. The matrix L in our ase orrespondsto the visous term R
 �(jD(~u)j2)Dij(~u)Dij(~')d~x.We use two algorithms whih an both be inluded in the general framework ofthe Multilevel Pressure Shur Complement (MPSC) methods developed in [19℄.For the stationary problems we use the loal MPSC variant. In this aproah wedeal with a oupled problem in u and p. First the nonlinear problem is linearized byouter �xed point iteration and the resulting linear problem is solved by a multigridsolver with the element-wise solution of small loal Shur omplement problemsas a smoother and oarse grid solver (whih in fat is very similar to the \Vankasmoother" (see [20℄), but it an be generalized to be muh more robust and eÆient).This algorithm an be written as�um+1pm+1� = �umpm�� !m XT2Th � ~S=T kB=TBT=T 0 ��1�� S kBBT 0 � �umpm�� �g0��(2.20)where S = �1kL(um) + �2kK(um) and ~S an be a simpli�ed version of S, forexample ~S = diag(S). In pratie, the applied preonditioner in (2.20) an beredued to a one-dimensional problem with the FEM disretization used here.



AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 7For the time dependent problems we apply the global version of the MPSCmethod where by forming �rst the Shur omplement problem we deouple theproblem into a nonlinear equation for the veloity and the Poisson equation forpressure. This an be written as the following iterative shemepm+1 = pm � !mA�1(BTS�1Bpm � 1kBTS�1g)(2.21)where again S has the same meaning as in previous paragraph and A ontains oneor several easy invertible approximations of BTS�1B. For solving the nonlinearproblem for the veloity (i.e. inverting the matrix S) we use again a �xed pointiteration and multigrid method with suessive over-relaxation smoother and oarsegrid solver. The Poisson equation for the pressure is then solved (i.e. inversion ofthe matrix A) with the multigrid solver. Again, this omplete proedure an beused as a smoother in an outer multigrid suh that the resulting numerial behaviorof this algorithm is signi�antly better than the similar and well-known (single grid)variants of projetion or frational step algorithms (see [19℄).As regards the onvergene of the solvers, we have found that generally the meth-ods onverge slower or do not onverge at all as parameter � approahes 1, whihmight be expeted beause of the presene of higher gradients near the bound-ary and presribed zero boundary ondition (ompare also with known theoretialresults, setion 2.1). The onvergene is better for small or moderate Reynoldsnumbers (Re = 10; 100) when " is lose to 1 and almost does not depend on thevalue of � (in the range of values of 0:5 � � � 1:0). On the other hand, theonvergene of the method does not depend on the value of " for higher Reynoldsnumber (Re = 1000).
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Figure 2. Veloity pro�les at minimal learane and normal extrastress on the wall of the hannel for di�erent grids. (Re = 100,� = 0:2)As regards the dependene of the obtained results on the re�nement of the mesh,we onentrate on three quantities, the veloity ~v, the pressure p ant the stress TE .We start the onstrution of the mesh with a uniform grid with 2560 elements(referred to as level 1, uniform) and dividing eah element into 4 elements byjoining the midpoints of the opposite edges we obtain �ner uniform grids (level 2and 3, uniform). The seond set of meshes is onstruted from the grid with thesame number of elements as the level 1, uniform, but re�ned toward the boundary(referred to as level 1, re�ned) and again by dividing eah element into 4 elements



8 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKbut this time in suh a way that the new elements loser to the boundary aresmaller we obtain another two grids (level 2 and 3, re�ned). While we do notobserve any signi�ant di�erenes for the pressure we have found that the mostsensitive quantity for the non-zero power-law index � is the veloity gradient nearthe wall and onsequently the values of the stress tensor on the wall (see Fig. 2).
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AN INVESTIGATION OF FLOWS OF SHEAR-THINNING FLUIDS 93.1. Veloity pro�les. The veloity pro�les for di�erent uids and Reynolds num-bers were omputed. In Figure 4 we plotted the veloity pro�les for hannel II wherethe eddies forming seondary ow3 oured near the boundary at the loation ofmaximal learane. As expeted, the maximum of the veloity pro�le is at the en-ter of the hannel and it is higher in the narrow region than the maximum in wideregion. With inreasing the power-law exponent the maximum of veloity dereasesand the veloity pro�le beomes more atten. This derease in the maximum ofveloity is bigger at the loation of maximal learane. It an be notied that weget very high values of the veloity gradient near the wall of the hannel in theloation of minimal learane as the power-law exponent inreases, as expeted.
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10 JAROSLAV HRON, JOSEF M�ALEK, AND STEFAN TUREKross-over takes plae for hannels I and II (hannels with di�erent wavelength andsame amplitude) at the same value of Re = 40 but for hannel III the ross-overtakes plae at Re = 60. For the seond set of uids, we an observe the samebehavior for high Reynolds number but in low Reynolds number the frition fatorbeomes nearly the same for all uids.
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f0 f2Figure 7. Normal stress amplitude vs. Reynolds number forhannels with di�erent amplitude a.
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In Figure 7 we an ompare the inuene of the hannel amplitude on the stressamplitude. It an be notied that for the uids with � = 0 the stress amplitudeis higher for the hannel II (a = 0:22) than the stress amplitude for the hannelIII (a = 0:05) until Re = 500 after whih the results are reversed. In the ase ofuids with � = 0:5 we observe that the normal stress amplitudes orrespondingto di�erent hannel amplitudes have no lear ordering with the stress amplitudesswithing roles as for whih is larger, based on the range of the Reynolds number.Even the few alulations arried out learly indiate that no orrelation an bedrawn with the hanges in the stress amplitude with the wavelength.In Figure 8 we ompare the normal stress amplitude for the hannels I and III forthe �rst set of uids. These two hannels have the same aspet ratio a� . We notiethe starting result, also ollaborated by the experiments of R. C. Yalamanhili [21℄,that the normal stress amplitudes are di�erent, at the same Reynolds number forthe same aspet ratio thereby autioning us against the use of the aspet ratio asa non-dimensional number with a view towards omparison.
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Figure 10. Maximum veloity at the inlet during one time periodand wall shear stress at several time instants.
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a) b)Figure 11. Veloity pro�les for several time instants at a) x = 11and b) x = 30. 4. Pulsatile flowThe time dependent alulations were done for two-dimensional ow in a hannelwith a symmetri onstrition (see Fig. 9) and the uid with the power-law index� = 0:2. A similar axisymmetri hannel is used in [17, 4℄ as a model for anartery with stenosis. We also take similar time-dependent inow veloity whih isparaboli with maximum value hanging in time as shown in Fig. 10.The Fig. 10 shows the shear stress on the wall of the hannel at several timeinstants. The values vary sharply with x distane in the area of the stenosis andalso in time during the period of the inow veloity. It reahes the maximal valueslightly before the narrowest point and at the same time as maximum of inow
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Figure 12. Instantaneous streamlines during one period fort=0.1, 0.3, 0.5, 0.7, 0.9. (� = 0:2)veloity ours. The minimum value is reahed behind the stenosis at the sametime. In the rest of the domain the wall shear stress has positive value when theuid ows in positive x diretion and is negative when the diretion of the ow isreversed.Veloity pro�les at loations behind the stenosis (x = 11) and further down-stream (x = 30) are shown in Fig. 11. The whole ow pattern is shown in Fig. 12as instantaneous streamlines and veloity vetor plots at four di�erent times. Wean observe the forming of a seondary ow behind the stenosis as the inow ve-loity grows. The eddy beomes larger and moves toward the enter of the hannelas the inow veloity dereases. When the inow veloity reverses the diretionthe ow starts to develope a seond eddy there. In the seond veloity pulse botheddies disappear. 5. ConlusionIn this paper, two numerial experiments were performed. First, we omparedour results of the �rst stationary problem with the results of measurements doneby R. C. Yalamanhili in [21℄. Clearly, while the uid tested by R. C. Yalamanhiliis not a shear thinning uid, it is nonetheless interesting that the preditions of ourwork show similar qualitative features as the experiments of R. C. Yalamanhilli.For the enterline veloity also we observed results similar to those found by Yala-manhili: 1) The maximum veloity ours at the same loation irrespetive of theReynolds number. 2) The inrease in the Reynolds number auses the amplitudeof the enterline veloity to inrease, with no signi�ant hange in the wavelength.3) The maximum veloity in the onverging region of the hannel is reahed in ashorter distane, when ompared to the distane in whih the minimum of veloityis reahed in the diverging region. For the veloity pro�les we observed similareddies forming seondary ow in the hannel with smaller wavelength and biggeramplitude (see Fig. 4 and Fig. 13). For the frition fator we did not observe om-pletely di�erent harateristis for the hannels with the same aspet ratio. Forthe amplitude of the dimension-less normal stress we observed: 1) An inrease inhannel wavelength dereases the amplitude of the normal stress. 2) An inreasein hannel amplitude an inrease or derease the amplitude of the normal stressdepending on the Reynolds number. Whih implies that the aspet ratio a� is not a
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