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ABSTRACT. We provide a new solver for the flow of power-law fluids that
extends a solver developed by S. Turek (see [18]) for the Navier-Stokes fluid.
This solver is convenient to simulate efficiently both steady and unsteady flows
of shear-dependent fluids in a complex geometry. To illustrate the ability of
the solver, two specific problems were chosen. First, we study steady flows of
power-law fluids in corrugated channels, and carry out qualitative comparisons
with real experiments. The attention is paid to the dependences of friction fac-
tor and dimensionless normal stress amplitude on the aspect ratio (amplitude
versus wavelength of the sinusoidal channel) and to the occurrence of sec-
ondary flows. We show that the aspect ratio is not a sensible non-dimensional
number in this geometry. Secondly, we simulate unsteady (pulsatile) flows of
the power-law fluid (i.e. blood under certain circumstances) in the presence
of stenosis and we obtain a very good coincidence with recent numerical stud-
ies. The description of numerical scheme and theoretical background are also
outlined.

1. INTRODUCTION

There are many engineering problems which lead to the investigation of the flow
of both Newtonian and non-Newtonian fluids in complex geometry. To be more
specific, we can name the area of biomechanical engineering studying blood flow
in arteries and other blood vessels or the area of chemical and process engineering
studying flows in porous media. Periodically constricted tubes or channels with
corrugated walls are used to model the converging and diverging nature of porous
media or blood vessels. In all these cases, we can observe a periodic constriction
of the flow channel or a periodic change of the flow direction. The simplest model
for such geometry used in many experiments and simulations is a periodically con-
stricted tube or in two dimensions a channel with corrugated walls (see Figure 1).

Shear-dependent fluids, as a significant class of non-Newtonian models, are de-
fined by a polynomial dependence of the (generalized) viscosity on the modulus
of the symmetric velocity gradient. If this viscosity function is increasing, the
corresponding fluids are called shear thickening, while fluids, where the viscosity
decreases for increasing shear rate are named shear thinning fluids. The latter has
broad applications in engineering practice; we can find them in chemical engineer-
ing (cf. [16]), geology (cf. [2, 12]), blood rheology (see [23]), glaciology (cf. [8]), it
can also be used to model boundary layer type of behavior (see [13, 14]).

This research was supported by the Grant Agency of the Czech Republic, grant No.
201/96/0228 and by CEZ:J13/9811320007.



2 JAROSLAV HRON, JOSEF MALEK, AND STEFAN TUREK

Y
"

i
v

. BVAVAVAVAVY,

. =
7
F1GURE 1. Flow in porous media and model flow in corrugated channels

NAVAVAVAVA

The objective of the first two paragraphs is to recall that there is a large num-
ber of engineering problems that require better understanding of flows of non-
Newtonian (in particular power-law) fluids in a real (i.e. complex) geometry. These
are the areas, where numerical simulations produced by an effective solver can help
significantly.

Thus, the aim of this paper is to present a numerical code that would be com-
petitive to study adequately various complex flows from engineering applications
mentioned above. For the Navier-Stokes equations such a solver has been developed
by Stefan Turek, see [18]. The main advantages of this code are

e simple and stable spatial discreization by Ql/QO nonconforming finite ele-
ments on quadrilateral meshes

e adaptive stabilization techniques for the convective term (upwinding or stream-
line diffusion)

e Multilevel Pressure Schur Complement techniques for treating the saddle
point problems

e fast and robust multigrid solver for linear problems

e adaptive fixed-point defect correction schemes for nonlinear parts

e fractional step #-scheme for time discretization with adaptive selection of the
time step for the nonstationary flows

The solver makes it possible to consider non-linear models for stress.

We show in this paper that such solver can be extended (modified) to be applica-
ble also to the various kinds of fluids with non-constant (shear-dependent) viscosity.
For the numerical experiments, we consider only the power-law types of viscosity
functions. However, we wish to underline that we can include an arbitrary form
of the viscosity function into the code without having any significant growth of
computational effort, and in fact, this enlargement of the code is a recent project
(see also http://www.featflow.de).

For this presentation, we choose two problems, one for steady, the second for
unsteady motions. Both problems can be viewed as a first attempt in understanding
of blood flows, as explained later.

The first problem deals with flows in corrugated channels (see Fig. 1). This
has been motivated by an experimental investigation of R. C. Yalamanchili [21,
22] where the experiments in channels with corrugated walls were performed for
the fluid consisting of 60% water, 40% glycerine with added Oppm, 500ppm or
2000ppm polyacrylamide. Such a fluid exhibits non-zero normal stress differences
but has constant viscosity in range of shear-rate they measured. It means that the
material is a viscoelastic, non shear-thinning fluid. Therefore, we can verify our
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numerical simulations with the measured experimental data only qualitatively. We
have found (see section 3) very good correspondence between the numerical results
and experimental data from [21], that are caused by the geometry of the domain.
It mainly concerns the structure of the velocity field, the location of maximum
velocity amplitude, the length of acceleration zone, eddies forming secondary flows,
etc. For the experiments a channel with two sinusoidal plates was used. Then,
it is reasonable to consider two dimensional domain for numerical simulations. In
coincidence with [21], we have also observed that aspect ratio! %, where a is the
amplitude and X is the wavelength of the channel oscillations, cannot be used as a
good measure even for power-law fluids; for two different channels with the same
aspect ratio we have observed differences in the structure of corresponding flows,
see Fig. 8.

The second problem, analyzed here, deals with the pulsatile flow in channels
with stenosis, and we compare our results with those presented in [17], where detail
comparison with previous experimental and numerical studies is discussed, and
where also the importance of such numerical simulations is clarified.

We wish to recall that the simulation of blood flow in a cardiovascular system is
challenging, clearly very important, and not yet satisfactorally answered problem,
which is because of many properties of blood that need to be considered, and makes
the modeling of blood flow very complicated. From the basic features we can name:

3D flow in complex geometry

complex rheological behavior of blood

pulsativity of the flow and consequently pulsativity of the walls
inelastic permeable walls

different deformability of the red cells at different shear rates, etc.

ALl .

From this point of view, our numerical experiments can be considered as one
of the preliminary steps in simulating blood flow. However, there are just few
calculations involving a complicated geometry and nonlinear fluid, thus this paper
aims to focus on this lacunae.

In the next section we describe the analyzed model, completed by boundary
conditions and the constitutive formulae for the viscous part of the stress tensor.
We also present, in brief, known theoretical results concerning the existence of weak
solution and its uniqueness and regularity, and give a description of used numerical
scheme for the Navier-Stokes equations. A big advantage of this scheme is its “easy”
modification for shear-dependent fluids which is presented here for the first time.
Section 3 contains numerical results, their comparison and analysis for the flows in
corrugated channels, while section 4 is devoted to pulsatile flows in channels with
stenosis. Conclusions form the final part of the paper.

2. EQUATIONS AND NUMERICAL METHODS

We consider both, steady and unsteady motions of an incompressible fluid in a
two-dimensional domain . Such a flow is governed by the following equations

(2.1) divi = 0,

o <~ O
2.2 —  —
(22) 0<3t+;%amj>

IHere, the aspect ratio has different meaning than in FEM or multigrid where it is the quotient
between (local) length and width of quadrilaterals which is essential for the numerical behavior.

—gradp + div TF + Qf,
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where ¥ = (v1,v2) is the velocity vector, g is the constant density of the fluid, p is
the pressure field, f_': (f1, f2) is the field of body forces per mass unit and T is
the viscous part of the stress tensor.

We deal with a viscous fluid, which is modeled by?

(2.3) T" = 2(|D*) D,

where D = % (Vi+(V#)T) is the symmetric part of the velocity gradient. Since the
modulus of D corresponds in viscometric flows to shear rate, the fluids undergoing
(2.3) are called the fluids with shear-dependent viscosity. Numerical tests were
performed for the simple power-law model with two parameters € and a in the
form

(2.4) w(|DP) = 20 (= + |D|)°,

where e > 0, a € [0,1] and py is given viscosity constant. Tests were made for f: 0
and the value 22 = 0.042 cm~2 s~ and f = 0. The Reynolds number Re = V"—ﬁg is
based on the channel width L and on the maximum of the inflow velocity V4. In the
sequel we use the non-dimensionalized form of equations (2.2) with the viscosity v
defined by v = g‘/ﬁ'

For the sake of completeness, we briefly describe in this section the numerical
methods used in Featflow code, together with the modifications of this solver needed
to include nonlinear viscous (explicitly given) function u(|D|”) into the program.
Some other numerical approaches can be found for example in [1, 4, 5, 9, 16].

2.1. An overview of the theoretical results. Before coming to the finite ele-
ment discretizations, we present a brief summary of theoretical results regarding
mainly the existence of weak solutions, its uniqueness and regularity for Dirich-
let boundary conditions. We restrict ourselves to steady flows, and we refer the
interested reader to [11], section 5.1-5.4, where the evolutionary model with the
space-periodic boundary conditions has been analyzed. The extension of the re-
sults to more realistic boundary conditions is in process.

We will use the standard notation: for p € [1,00],k = 1,2,..., we denote LP(2)
and W*?(Q) the Lebesgue and Sobolev spaces with the norms | - |, and | - |#,,. By
V, we denote the closed subspace of functions from W' () satisfying dive = 0 in
Q and 7 = 0 at 9Q. The space of symmetric matrices of the type 2 by 2 is denoted
by Rf}li}

The nonlinear tensorial function TF given by (2.3)—(2.4) is the typical example
of a class of nonlinear potential tensorial functions T’s satisfying the following
assumptions

0
(2.5) J¢:RZ%2 — R{ suchthat Tj(n) = ;5(77) vn € RZ2,
Mij ’

82

(2.6) dey >0 %{;}lzl&jsz >c(e+ )P 2P Vi ée R2?2
ij

9*¢(n)
2.7 Je 0: — | <ec P2y R2?2
@0 Za>0s [ <oy vne Rz

2Note that the assumption “the stress tensor at point # depends on the velocity gradient
through a general tensorial function”, can be reduced in 2 dimensions to the form (2.3) by the
principle of the material frame indifference and by the representation of the isotropic tensors.
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Consequently, see cf. [11], section 5.1, we also have

(2.8) Jez > 00 Ty(mmig > es(lnl — )P Yn e RES,
(2.9) dea >0: [T(n)| <cale+ )P~ Vnpe R

Let Q be a smooth (C? - boundary) domain. Considering the Dirichlet boundary
condition

(2.10) 7=0 at 89

we can define a weak solution to (2.1) (2.2), (2.5) (2.10).
Let f e L?, p' = p%l and o(%) =1 VZ € Q. A function o € V,, is said to be a
weak solution to our problem if

(2.11) / ) e + / T, <D<ﬁ>>m<¢>df=/ﬂ fipidi

for all ¢ smooth with div g = 0.

Theorem 2.12. Let p > g. Then there exists a weak solution to the problem

(2.1)(2.2), (2.5)-(2.10) which belongs to Wi P(Q) N V,. If, in addition, |f], is
small enough then the solution is unique in the class of weak solutions from V,.

We are not aware of the fact that the result would have been formulated in
this form before. In [10], the classical method of monotone operators provides the
existence of the solutions for p > %, where d denotes the dimension. Thus, if
d = 2 we obtain the existence for p > % In [3], the existence of weak solution were
proved for p > d+17 which in 2D gives the bound p > %. The method is based on

the construction of a special L>-test function and on strict monotonicity for T, i.e.

(2.13) (T(m) ~T() (n-& >0 Vn&eRLL: n#E

In fact, the condition (2.6) implies a stronger kind of monotonicity than (2.13),
namely

2
Cs ‘71*5‘

£€R22
2— 2— n,
e+n|” P+ (€77

sym’

(2.14) (T(n) —T(&)) - (n—& >

valid also for e = 0, see [11] for the proof of (2.14) for example.

In two dimensions, we can improve the last result using the special cancellation
in the convective term when it is tested in the interior of ‘rhe domain 2 by “A7 ",
which in addition brings higher regularity for & (7 € W.2*(Q)) and consequently

loc
uniqueness for small Hpr:.

The proof of Theorem 2.12 can be deduced from the results of [7], where C1:%-
regularity (i.e. the Holder continuity of gradients) has been proved locally (inside
of Q) for p > g and globally (near the boundary) for p > % It is possible to
compare the results with [6] where this issue of “full” regularity has been successfully

investigated for the space periodic problem even for p > 1.

2.2. Finite element discretization. First, we discretize the time variable ¢ in
the momentum equation (2.2) by some usual one 6-step scheme (6 = 1 for backward
Euler, 6 = % for the Crank-Nicholson scheme) or by the fractional #-step scheme
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with 3 substeps each with different parameter 8. Given 9", p” and time-step k =

tni1 — tn, solve for unknown gm+1, pnti

divi"tt =0
(2.15)

grtt
k
with the known right-hand side

+ 0[(ve gt — div (v(D @) D@ T) ] + Vpt = §

§=" 0] (1= 0 — (1 =) (V) — div (u(D) D))

Next, we introduce T}, a regular decomposition of the domain 2 into quadrilat-
erals and define the following spaces

(2.16) Ly = {qn € L*(Q); qn/T = const., VT € T4},

(2.17) Sy = {vn € L*(Q); 0, /T € Q1(T), VT € T4,
FF(Uh/Tl) = FF(Uh/Tg) =" ﬁTQ, FF('Uh) = OVF C 89},

where the nodal functional F1-(v) can be chosen as (mr is the midpoint of the edge
I)

Fr(v) = \rrl/rv(f)dy or  Fr(v) = v(mr).

Q1(T) is a space generated by {z2 — y2, z,y,1} (so-called “rotated bilinear finite
elements”). For details see [15]. We apply usual spatial finite element discretization
using weak formulation of equations (2.15) and spaces L, for pressure and H), = S}
for velocities to obtain a nonlinear algebraic system of following form.

(2.19) BTu =0

where u, p are the coefficient vectors corresponding to the approximation of i, p in
the spaces Hy, resp. Lp. The parameter 6, is set to 0 for the stationary case and
1 for the time-dependent case. Matrix M corresponds to the mass matrix, K cor-
responds to the non-linear convective term. The matrix L in our case corresponds
to the viscous term [, u(|D(@))*)Di; (@) Dij (F)dZ.

We use two algorithms which can both be included in the general framework of
the Multilevel Pressure Schur Complement (MPSC) methods developed in [19].

For the stationary problems we use the local MPSC variant. In this aproach we
deal with a coupled problem in w and p. First the nonlinear problem is linearized by
outer fixed point iteration and the resulting linear problem is solved by a multigrid
solver with the element-wise solution of small local Schur complement problems
as a smoother and coarse grid solver (which in fact is very similar to the “Vanka
smoother” (see [20]), but it can be generalized to be much more robust and efficient).
This algorithm can be written as

AR N (Pl )

TeTy,

um+1

2.20
( ) pm+l

where § = 61kL(u™) + 6:kK(u™) and 8§ can be a simplified version of S, for
example S = diag(S). In practice, the applied preconditioner in (2.20) can be
reduced to a one-dimensional problem with the FEM discretization used here.
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For the time dependent problems we apply the global version of the MPSC
method where by forming first the Schur complement problem we decouple the
problem into a nonlinear equation for the velocity and the Poisson equation for
pressure. This can be written as the following iterative scheme
1
k
where again S has the same meaning as in previous paragraph and A contains one
or several easy invertible approximations of BTS 'B. For solving the nonlinear
problem for the velocity (i.e. inverting the matrix S) we use again a fixed point
iteration and multigrid method with successive over-relaxation smoother and coarse
grid solver. The Poisson equation for the pressure is then solved (i.e. inversion of
the matrix A) with the multigrid solver. Again, this complete procedure can be
used as a smoother in an outer multigrid such that the resulting numerical behavior
of this algorithm is significantly better than the similar and well-known (single grid)
variants of projection or fractional step algorithms (see [19]).

As regards the convergence of the solvers, we have found that generally the meth-
ods converge slower or do not converge at all as parameter o approaches 1, which
might be expected because of the presence of higher gradients near the bound-
ary and prescribed zero boundary condition (compare also with known theoretical
results, section 2.1). The convergence is better for small or moderate Reynolds
numbers (Re = 10,100) when ¢ is close to 1 and almost does not depend on the
value of a (in the range of values of 0.5 < a < 1.0). On the other hand, the
convergence of the method does not depend on the value of € for higher Reynolds
number (Re = 1000).

(2.21) p"t =pm —wm"A N (BTS'Bp™ — —BTSg)

5 0.04 T T T
2 level 3, refined —
45 i level 3, uniform -
41
35¢
193
> O ¢
8 25} =
g g
2t 5]
<
15}
1l
0.5
0 . . L L -0.05 MY L MY MY
-0.6 -0.4 -0.2 . ? 0.2 0.4 0.6 0 5 10 15 ’2t0 25 30 35 40
x distance y distance

FI1GURE 2. Velocity profiles at minimal clearance and normal extra
stress on the wall of the channel for different grids. (Re = 100,
a=0.2)

As regards the dependence of the obtained results on the refinement of the mesh,
we concentrate on three quantities, the velocity ¥, the pressure p ant the stress T'F.
We start the construction of the mesh with a uniform grid with 2560 elements
(referred to as level 1, uniform) and dividing each element into 4 elements by
joining the midpoints of the opposite edges we obtain finer uniform grids (level 2
and 3, uniform). The second set of meshes is constructed from the grid with the
same number of elements as the level 1, uniform, but refined toward the boundary
(referred to as level 1, refined) and again by dividing each element into 4 elements
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but this time in such a way that the new elements closer to the boundary are
smaller we obtain another two grids (level 2 and 3, refined). While we do not
observe any significant differences for the pressure we have found that the most
sensitive quantity for the non-zero power-law index « is the velocity gradient near
the wall and consequently the values of the stress tensor on the wall (see Fig. 2).

1 T T T T T

§ 0.5 /W\
g 0

E\ -0.5 \/\/\_/—\_/:

1 1 1 1 1 1
0 10 15 20 25 30 35 40

x distance
F1GURE 3. Dimensions of the domain.
Fluid 0 f1 2 3 f4 Channel I 11 11T
« 0 0.25 0.5 0.51]1.0 a 0.2 [ 0.2 0.05
€ 10710 | 10710 | 10710 | 1 1 A 10.0 | 25| 2.5
a) b)

TABLE 1. The parameters of a) power-law model and b) channel oscillations.

3. NUMERICAL RESULTS FOR STATIONARY FLOW

We have made computations for all fluids mentioned in Table 1a): we will refer

to f0 - 2 as the first set of fluids, while f3 - f4 form the second set.

We have

also varied the parameters of the domain (see fig. 3) namely the amplitude a and
wavelength A of the channel oscillations as shown in table 1b).
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0.008 |
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FIGURE 4. Velocity profiles at the maximal and minimal clearance.
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3.1. Velocity profiles. The velocity profiles for different fluids and Reynolds num-
bers were computed. In Figure 4 we plotted the velocity profiles for channel IT where
the eddies forming secondary flow?® occured near the boundary at the location of
maximal clearance. As expected, the maximum of the velocity profile is at the cen-
ter of the channel and it is higher in the narrow region than the maximum in wide
region. With increasing the power-law exponent the maximum of velocity decreases
and the velocity profile becomes more flatten. This decrease in the maximum of
velocity is bigger at the location of maximal clearance. It can be noticed that we
get very high values of the velocity gradient near the wall of the channel in the
location of minimal clearance as the power-law exponent increases, as expected.

Norm of velocity
Norm of velocity

D VEAVAVAVAVE
VAV VAVAVAY VAV ANV Y

Distance Distance

Re =10 Re =100

F1GURE 5. Centerline velocity. (The solid curve represents the channel.)

3.2. Centerline velocity. The norm of the velocity on the central axis of the
channel I for different Reynolds numbers and different fluids are plotted in Figure 5.
The solid curves represent the orientation of the channel sides. As expected, the
velocity increases in the converging regions of the channel and decreases in the
diverging regions. The length of accelerating region is shorter than the length of
decelerating region. For low Reynolds number it can be observed that the maximum
and the minimum of the centerline velocity do not exactly correspond to the point
of minimal and maximal clearance of the channel. With increase in power-law
exponent the maximum of velocity decreases, the minimum of velocity decreases
for high Reynolds number but for low Reynolds number this decrease is much
smaller.

3.3. Friction factor and Normal stress. The friction factor is defined by

TIZ
.f: l U27
50

where Ty, is average shear stress on the wall of the channel.

For all cases the friction factor decreases with increasing Reynolds number. For
the first set, the friction factor is higher for the fluid with the higher power-law
exponent for low Reynolds number while for high Reynolds number the friction
factor is lower for the fluid with the higher power-law exponent. The point of

3In non-Newtonian fluid mechanics, secondary flow is usually ment as minor flow caused by
normal stress differences. In our case, the eddies forming secondary flow are due to geometry.
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cross-over takes place for channels I and IT (channels with different wavelength and
same amplitude) at the same value of Re = 40 but for channel III the cross-over
takes place at Re = 60. For the second set of fluids, we can observe the same
behavior for high Reynolds number but in low Reynolds number the friction factor
becomes nearly the same for all fluids.

1000 1000
| — | —
T T
100 | E 100 p E
g wf {1 & 1w} ,
5] 3] N
8 8 S
< <
2 2
g g
s 1r 7 s 1r 7
01} - 01} -
0.01 L L 0.01 . . N
1 10 100 1000 1 10 100 1000
Reynolds number Reynolds number

FIGURE 6. Friction factor vs Reynolds number for channels with
the same aspect ratio.

In Figure 6 we can compare the friction factors for the channel I and the channel
III. These two channels have the same aspect ratio §. In this case, we can see that
decrease in the friction factor is smaller for fluid with a = 0.5 than for Newtonian
fluid (a = 0).

More importantly, at low Reynolds number the friction factor for the Newtonian
case is lower than that for shear thinning fluid while the opposite is true at large
Reynolds numbers. This is to be expected as the fluid shear thins and at the higher
shear rates associated with large Reynolds number, the apparent viscosity is lower
than the Newtonian viscosity.

In order to determine the amplitude of the normal stress we compute mean
normal stress as a linear interpolation of the obtained values of the normal stress
on the wall of channel. Then we subtract from the obtained values of the normal
stress the mean normal stress and we compute an average of all local extremes
and we get the amplitude of normal stress. We used non-dimensional form of the
amplitude of the normal stress as suggested in [21]

20mh?
(T22) renp = —3§\M(2)a( 22) amp-

We observe that the amplitude of the dimension-less normal stress increases
with increasing Reynolds number except in a small range of Reynolds numbers
(0 < Re < 5) in channel II. In all channels, for low Reynolds numbers (Re < 1 for
channel T and III, Re < 6 for channel IT) the amplitude of the dimension-less normal
stress is higher for higher power-law exponent. For higher Reynolds numbers the
amplitude of the dimension-less normal stress is again higher for fluid with higher
power-law exponent. For channel II and Reynolds number greater than 600, the
opposite behavior occurs. In this case, it is probably connected with occurrence of
the secondary flow in the channel II.
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FIGURE 7. Normal stress amplitude vs. Reynolds number for

channels with different amplitude a.

1000 1000

100 '”I ] 100
, 10

1
01} p 0.1
0.01 - g 0.01

0.001 0001

0.0001 [ p

Dimensionless normal stress amplitude
Dimensionless normal stress amplitude

0.0001

1e-05 . . 1e-05 ; !
1 100 1000 1 10 100 1000
Reynolds number Reynolds number

fo f2

FIGURE 8. Normal stress amplitude vs. Reynolds number for
channels with the same aspect ratio §.

In Figure 7 we can compare the influence of the channel amplitude on the stress
amplitude. It can be noticed that for the fluids with & = 0 the stress amplitude
is higher for the channel II (¢ = 0.22) than the stress amplitude for the channel
III (a = 0.05) until Re = 500 after which the results are reversed. In the case of
fluids with @ = 0.5 we observe that the normal stress amplitudes corresponding
to different channel amplitudes have no clear ordering with the stress amplitudes
switching roles as for which is larger, based on the range of the Reynolds number.
Even the few calculations carried out clearly indicate that no correlation can be
drawn with the changes in the stress amplitude with the wavelength.

In Figure 8 we compare the normal stress amplitude for the channels I and III for
the first set of fluids. These two channels have the same aspect ratio 5. We notice
the starting result, also collaborated by the experiments of R. C. Yalamanchili [21],
that the normal stress amplitudes are different, at the same Reynolds number for
the same aspect ratio thereby cautioning us against the use of the aspect ratio as
a non-dimensional number with a view towards comparison.
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l T T T T T T T
3 0.5
g
o 0
o
S 05
_1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
x distance
FIGURE 9. The dimensions of the domain.
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FIGURE 10. Maximum velocity at the inlet during one time period
and wall shear stress at several time instants.
50 T T T T 35 T T T
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a) b)

FIGURE 11. Velocity profiles for several time instants at a) z = 11
and b) z = 30.

4. PULSATILE FLOW

The time dependent calculations were done for two-dimensional flow in a channel
with a symmetric constriction (see Fig. 9) and the fluid with the power-law index
a = 0.2. A similar axisymmetric channel is used in [17, 4] as a model for an
artery with stenosis. We also take similar time-dependent inflow velocity which is
parabolic with maximum value changing in time as shown in Fig. 10.

The Fig. 10 shows the shear stress on the wall of the channel at several time
instants. The values vary sharply with x distance in the area of the stenosis and
also in time during the period of the inflow velocity. It reaches the maximal value
slightly before the narrowest point and at the same time as maximum of inflow
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FiGure 12. Instantaneous streamlines during one period for
t=0.1, 0.3, 0.5, 0.7, 0.9. (a = 0.2)

velocity occurs. The minimum value is reached behind the stenosis at the same
time. In the rest of the domain the wall shear stress has positive value when the
fluid flows in positive x direction and is negative when the direction of the flow is
reversed.

Velocity profiles at locations behind the stenosis (z = 11) and further down-
stream (z = 30) are shown in Fig. 11. The whole flow pattern is shown in Fig. 12
as instantaneous streamlines and velocity vector plots at four different times. We
can observe the forming of a secondary flow behind the stenosis as the inflow ve-
locity grows. The eddy becomes larger and moves toward the center of the channel
as the inflow velocity decreases. When the inflow velocity reverses the direction
the flow starts to develope a second eddy there. In the second velocity pulse both
eddies disappear.

5. CONCLUSION

In this paper, two numerical experiments were performed. First, we compared
our results of the first stationary problem with the results of measurements done
by R. C. Yalamanchili in [21]. Clearly, while the fluid tested by R. C. Yalamanchili
is not a shear thinning fluid, it is nonetheless interesting that the predictions of our
work show similar qualitative features as the experiments of R. C. Yalamanchilli.
For the centerline velocity also we observed results similar to those found by Yala-
manchili: 1) The maximum velocity occurs at the same location irrespective of the
Reynolds number. 2) The increase in the Reynolds number causes the amplitude
of the centerline velocity to increase, with no significant change in the wavelength.
3) The maximum velocity in the converging region of the channel is reached in a
shorter distance, when compared to the distance in which the minimum of velocity
is reached in the diverging region. For the velocity profiles we observed similar
eddies forming secondary flow in the channel with smaller wavelength and bigger
amplitude (see Fig. 4 and Fig. 13). For the friction factor we did not observe com-
pletely different characteristics for the channels with the same aspect ratio. For
the amplitude of the dimension-less normal stress we observed: 1) An increase in
channel wavelength decreases the amplitude of the normal stress. 2) An increase
in channel amplitude can increase or decrease the amplitude of the normal stress
depending on the Reynolds number. Which implies that the aspect ratio ¥ is not a
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FI1GURE 13. An eddy forming secondary flow in channel II.

good characteristic number for this case of channel where the width of the channel
and wavelength and amplitude of the wall corrugation are comparable. All in all,
we found that our numerical simulations predict results that are qualitatively in
keeping with the experimental results of R. C. Yalamanchili et. al.

In the second part we have tested the solver in time-dependent problem with
periodically varying inflow velocity. Concerning the wall shear stress we have ob-
served dramatic variation of its value in the region of the stenosis in time and in
distance z. The velocity field structure showed the presence of secondary flow be-
hind the constriction and significant backward flow near the walls when the inflow
velocity was in negative z direction. Our results exhibit good correspondence with
extensive results presented in [17]. Despite the fact that their results were com-
puted for axially symmetric tube while ours are obtained for 2-dimensional channel
the qualitative behavior of the wall shear stress and the flow pattern is similar.

These tests show that the new solver for simulating flows of the power-law fluids,
presented in this paper, works in a reasonably efficient way for our problem in
a certain range of parameters and is suitable for further development for more
complex problems in blood rheology. More information about the numerical tools
and the code itself can be found under http://www.featflow.de.
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