Finite Element-Fictitious Boundary Methods (FEM-FBM) for time-dependent mixing processes in complex geometries

Stefan Turek, Otto Mierka, Raphael Münster
Institut für Angewandte Mathematik, LS III
Technische Universität Dortmund
ture@featflow.de
http://www.featflow.de
http://www.mathematik.tu-dortmund.de/LS3
Motivation: Numerical & Algorithmic Challenges

Accurate, robust, flexible and efficient simulation of multiphase problems with dynamic interfaces and complex geometries, particularly in 3D, is still a challenge!

- Mathematical Modelling of $l-g$, $l-l$, $s-l$ Interfaces
- Numerics / CFD Techniques
- HPC Techniques / Software
- Validation / Benchmarking

Vision: Highly efficient, flexible and accurate „real life“ simulation tools based on modern numerics and algorithms while exploiting modern hardware!

Realization: FeatFlow
Motivation: Target Application I

- Numerical simulation of *micro-fluidic drug encapsulation* ("monodisperse compound droplets") for application in lab-on-chip and bio-medical devices
- Polymeric "bio-degradable" outer fluid with *viscoelastic* effects
- Optimization of chip design w.r.t. boundary conditions, flow rates, droplet size, geometry
Motivation: Target Application II

Flow simulations in twinscrew extruders

- Non-Newtonian rheological models (shear & temperature dependent)
- Non-isothermal flow conditions (cooling from outside, heat production)
- Evaluation of torque acting on the screws, resulting energy consumption
- Influence of local characteristics on global product quality
- Influence of gaps on back-mixing
Basic Flow Solver: FeatFlow

Main features of the FeatFlow approach:
- Parallelization based on domain decomposition
- FCT & EO stabilization techniques
- High order FEM discretization schemes
- Use of unstructured meshes
- Adaptive grid deformation
- Newton-Multigrid solvers

HPC features
- Massive parallel
- GPU computing
- Open source

Hardware-oriented Numerics
Two phase flow (I-I) with resolved interphases

The incompressible Navier Stokes equation

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) - \nabla \cdot \left(\mu \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right] \right) + \nabla p = \mathbf{f}_{\text{ST}} + \rho \mathbf{g}
\]

\[\nabla \cdot \mathbf{v} = 0\]

Interphase tension force

\[\mathbf{f}_{\text{ST}} = \sigma \kappa \mathbf{n}, \quad \kappa = -\nabla \cdot \mathbf{n} \quad \text{on} \quad \Gamma\]

Dependency of physical quantities

\[\mu = \mu(D(\mathbf{v}), \Gamma), \quad \rho = \rho(\Gamma)\]

Interphase capturing realized by the Level Set method

\[
\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0 \quad + \quad \frac{\partial \phi}{\partial \tau} + \mathbf{n} \cdot \nabla \phi = S(\phi) \quad \mathbf{n} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|}
\]

- Exact representation of the interphase
- Natural treatment of topological changes
- Provides derived geometrical quantities \((\mathbf{n}, \kappa)\)
- Requires reinitializion w.r.t. distance field
- Can lead to mass loss \(\rightarrow\) dG(1) discretization!
Two phase flow (s-l) with resolved interphases

- **Fluid** motion is governed by the **Navier-Stokes equations**
- **Particle** motion is described by **Newton-Euler equations**

\[M_p \frac{dU_p}{dt} = F_p + F_{ex, col} + (\Delta M_p)g, \]
\[I_p \frac{d\omega_p}{dt} = T_p - \omega_p \times (I_p \omega_p) \]

Fictitious Boundary Method

- Surface integral is replaced by volume integral
- Use of monitor function (liquid/solid)

\[\alpha_p(X) = \begin{cases} 1 & \text{for } X \in \Omega_p \\ 0 & \text{for } X \in \Omega_f \end{cases} \]

- Normal to particle surface vector is non-zero only at the surface of particles

\[n_p = \nabla \alpha_p \]

\[F_p = -\int_{\Gamma_p} \sigma \cdot n_p d\Gamma_p = -\int_{\Omega_T} \sigma \cdot \nabla \alpha_p d\Omega_T \]
\[T_p = -\int_{\Gamma_p} (X - X_p) \times (\sigma \cdot n_p) d\Gamma_p = -\int_{\Omega_T} (X - X_p) \times (\sigma \cdot \nabla \alpha_p) d\Omega_T \]
Two phase flow (s-l) with resolved interphases

- supports HPC concepts (no computational overhead, constant data structures, optimal load balancing)
- reduces dramatically requirements put on the computational mesh
- relatively low resolution

Velocity “boundary condition” imposed for particles:
\[u(X) = U_p + \omega_p \times (X - X_p) \]

For computed
\[U_{p}^{n+1}, \omega_{p}^{n+1} \]

Position update:
\[\frac{dX_p}{dt} = U_p, \quad \frac{d\theta_p}{dt} = \omega_p \]

Angle update:
\[X_{p}^{n+1}, \theta_{p}^{n+1} \]

Brute force \(\rightarrow \) Finer mesh resolution
- High resolution interpolation functions
- Grid deformation (+ monitor function)
Turbulent (l,g-l) multiphase flow

- Population Balance Equations within the Reynolds Averaged framework

\[
\frac{\partial f}{\partial t} + \mathbf{u}_g \cdot \nabla f + \nabla \cdot \left(\frac{\nu_T}{\sigma_T} \nabla f \right) = \int_v^\infty r^B(v, \tilde{v}) f(\tilde{v}) \, d\tilde{v} - \frac{f(v)}{v} \int_0^v \tilde{v} r^B(\tilde{v}, v) \, d\tilde{v} \\
+ \frac{1}{2} \int_0^v r^C(\tilde{v}, v - \tilde{v}) f(\tilde{v}) f(v - \tilde{v}) \, d\tilde{v} - f(v) \int_0^\infty r^C(\tilde{v}, v) f(\tilde{v}) \, d\tilde{v}
\]

- Different discretization techniques for PBEs
 - Moment based: Parallel Parent Daughter Classes (PPDC)
 - Class based: Method of Classes (MC)

-Decoupling of the problem to standalone modules

Navier-Stokes equation

- Continuity equation
- Momentum equation

turbulence model

- K-ε model

multiphase model

- Population balance equation

Decoupling of the problem to standalone modules

ProcessNet 2011
Benchmarking

Flow Simulation for the Flow Around Cylinder problem

Known benchmark problem (DFG) in the CFD community

- Comparison of CFX 12.0, OpenFoam 1.6 and FeatFlow
- Drag and lift coefficients behave very sensitive to mesh resolution
 - Ideal indicator for computational accuracy
- Five consequently refined meshes L1 (coarse), …, L5 (fine)
- Same meshes and physical models used in all three codes

\[
F_L = \frac{1}{2} \rho v^2 A C_L
\]

\[
F_D = \frac{1}{2} \rho v^2 A C_D
\]

<table>
<thead>
<tr>
<th>Mesh Level</th>
<th># Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>6,144</td>
</tr>
<tr>
<td>L3</td>
<td>49,152</td>
</tr>
<tr>
<td>L4</td>
<td>393,216</td>
</tr>
<tr>
<td>L5</td>
<td>3,145,728</td>
</tr>
</tbody>
</table>
Benchmarking

Flow Simulation with CFD software available on the market

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2Err</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_D</td>
</tr>
<tr>
<td>cfXL3</td>
<td>0.0152</td>
</tr>
<tr>
<td>cfXL4</td>
<td>0.0098</td>
</tr>
<tr>
<td>cfXL5</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2Err</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_D</td>
</tr>
<tr>
<td>OFL3</td>
<td>0.0261</td>
</tr>
<tr>
<td>OFL4</td>
<td>0.0067</td>
</tr>
<tr>
<td>OFL5</td>
<td>0.0016</td>
</tr>
</tbody>
</table>
Benchmarking

Flow Simulation with FeatFlow

FeatFlow

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2Err</th>
<th>c_D</th>
<th>c_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2P1L2</td>
<td>0.0209</td>
<td>0.1378</td>
<td></td>
</tr>
<tr>
<td>Q2P1L3</td>
<td>0.0029</td>
<td>0.0109</td>
<td></td>
</tr>
<tr>
<td>Q2P1L4</td>
<td>0.0005</td>
<td>0.0015</td>
<td></td>
</tr>
</tbody>
</table>

Comparison

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2Err</th>
<th>c_D</th>
<th>c_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2P1L5</td>
<td>0.0005</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>OFL5</td>
<td>0.0016</td>
<td>0.0147</td>
<td></td>
</tr>
<tr>
<td>cfxL5</td>
<td>0.0029</td>
<td>0.0224</td>
<td></td>
</tr>
</tbody>
</table>

Less than 2 hours sim. time on 3+1 processors

→ Same order of accuracy with FeatFlow on L3 as L5 with CFX and OpenFOAM on L5!
→ High order Q2/P1 FEM + (parallel) Multigrid Solver
Benchmark quantities

Center of mass
\[x_c = \frac{\int_{\Omega_2} x \, dx}{\int_{\Omega_2} 1 \, dx} \]

Mean rise velocity
\[U_c = \frac{\int_{\Omega_2} u \, dx}{\int_{\Omega_2} 1 \, dx} \]

Circularity
\[\phi = \frac{P_a}{P_b} = \frac{\pi d_a}{P_b} \]

Benchmark quantities

Center of mass
$$x_c = \frac{\int x \, dx}{\int 1 \, dx}$$

Mean rise velocity
$$\mathbf{U}_c = \frac{\int \mathbf{u} \, dx}{\int 1 \, dx}$$

Circularity
$$\phi = \frac{P_a}{P_b} = \frac{\pi d_a}{P_b}$$
3D convergence analysis for large density jumps

Rising bubble problem for $Eo = 60$, $Re = 34$
Density jump 1:100

Level 2 Level 3 Level 4
Continuous phase:

Glucose-Water mixture
- \(\mu_D = 500 \text{ mPa} \text{s} \)
- \(\rho_D = 972 \text{ kg m}^{-3} \)
- \(V_D = 3,64 \text{ ml min}^{-1} \)

\[\sigma_{CD} = 0,034 \text{ N m}^{-1} \]

Silicon oil
- \(\mu_C = 500 \text{ mPa} \text{s} \)
- \(\rho_C = 1340 \text{ kg m}^{-3} \)
- \(V_C = 99,04 \text{ ml min}^{-1} \)

Dispersed phase:

Validation parameters:
- frequency of droplet generation
- droplet size
- stream length

Experimental Set-up with AG Walzel (BCI/Dortmund)
Benchmarking with experimental results

<table>
<thead>
<tr>
<th></th>
<th>Separation frequency [Hz]</th>
<th>Droplet size [dm]</th>
<th>Stream Length [dm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td>0.58</td>
<td>0.062</td>
<td>0.122</td>
</tr>
<tr>
<td>Sim</td>
<td>0.6</td>
<td>0.058</td>
<td>0.102</td>
</tr>
</tbody>
</table>
Validation based on experimental results

Jetting mode

Experimental setup/results Group of Prof. Walzel (BCI/Dortmund)

Continuous phase:

Glucose-Water mixture

\[\mu_D = 500 \text{ mPa s} \]

\[\rho_D = 972 \text{ kg m}^{-3} \]

\[\sigma_{CD} = 0.034 \text{ N m}^{-1} \]

Silicon oil

\[\mu_C = 500 \text{ mPa s} \]

\[\rho_C = 1340 \text{ kg m}^{-3} \]

Dispersed phase:

Operating conditions

<table>
<thead>
<tr>
<th>(V_D) [ml/min]</th>
<th>3.64</th>
<th>4.17</th>
<th>4.70</th>
<th>5.23</th>
<th>5.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_C) [ml/min]</td>
<td>99.04</td>
<td>113.34</td>
<td>128.34</td>
<td>143.34</td>
<td>156.95</td>
</tr>
</tbody>
</table>

Validation parameters:
- frequency of droplet generation
- droplet size
- stream length
Validation based on experimental results

- Volumetric flow rate [ml/min]: 3.64, 4.17, 4.70, 5.23, 5.75
- Frequency [Hz]: 0, 0.4, 0.8, 1.2, 1.6
- Stream length [dm]: sim, exp

Graphs show the comparison between simulated (f_sim) and experimental (f_exp) results for different flow rates.
'Kissing, Drafting, Thumbling' of 2 Particles
Sedimentation of many Particles
Free fall of particles:
- Terminal velocity
- Different physical parameters
- Different geometrical parameters

$Münster, R.; Mierka, O.; Turek, S.: \text{Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2010, accepted}$

<table>
<thead>
<tr>
<th>$d_s = 0.3$</th>
<th>$\rho_s = 1.14$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>$U_{\text{feat flow}}$</td>
</tr>
<tr>
<td>0.02</td>
<td>5.885</td>
</tr>
<tr>
<td>0.05</td>
<td>4.133</td>
</tr>
<tr>
<td>0.1</td>
<td>2.588</td>
</tr>
<tr>
<td>0.2</td>
<td>1.492</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_s = 0.2$</th>
<th>$\rho_s = 1.14$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>$U_{\text{feat flow}}$</td>
</tr>
<tr>
<td>0.02</td>
<td>4.370</td>
</tr>
<tr>
<td>0.05</td>
<td>2.699</td>
</tr>
<tr>
<td>0.1</td>
<td>1.649</td>
</tr>
<tr>
<td>0.2</td>
<td>0.946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_s = 0.3$</th>
<th>$\rho_s = 1.02$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>$U_{\text{feat flow}}$</td>
</tr>
<tr>
<td>0.01</td>
<td>2.167</td>
</tr>
<tr>
<td>0.02</td>
<td>1.495</td>
</tr>
<tr>
<td>0.05</td>
<td>0.809</td>
</tr>
<tr>
<td>0.1</td>
<td>0.402</td>
</tr>
<tr>
<td>0.2</td>
<td>0.218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_s = 0.2$</th>
<th>$\rho_s = 1.02$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>$U_{\text{feat flow}}$</td>
</tr>
<tr>
<td>0.01</td>
<td>1.4660</td>
</tr>
<tr>
<td>0.02</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.05</td>
<td>0.4917</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2637</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1335</td>
</tr>
</tbody>
</table>
3D simulations with more complex shapes

‘Kissing, Drafting, Thumbling’

Sedimentation of particles in a complex domain
Velocity distribution

Pressure distribution

\begin{align*}
v_{\text{mean}} &= (1 \mid 0.1 \mid 0.01) \text{ms}^{-1} \\
\rho &= 1.25 \text{g cm}^{-3} \\
\mu &= 17.57 \times 10^{-6} \text{Pa s}
\end{align*}
Absorber packing simulations (BASF)

<table>
<thead>
<tr>
<th>Level</th>
<th>Mesh points</th>
<th>Velocity DOFs</th>
<th>Pressure DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_x</td>
<td>n_{yz}</td>
<td>n_{xyz}</td>
</tr>
<tr>
<td>2</td>
<td>155</td>
<td>109</td>
<td>16,895</td>
</tr>
<tr>
<td>3</td>
<td>309</td>
<td>409</td>
<td>126,381</td>
</tr>
<tr>
<td>4</td>
<td>617</td>
<td>1,585</td>
<td>977,945</td>
</tr>
</tbody>
</table>

ProcessNet 2011

Technische Universität Dortmund

Twinscrew Flow Simulation with FeatFlow

Geometrical representation of the twinscrews → Fictitious Boundary Method

- Fast and accurate description of the rotating geometry (screws)
- Applicable for conveying and kneading elements
- Mathematical description available for single, double- or triplet-flighted screws
- Surface and body of the screws are known at any time
- Mathematical formulation replaces external CAD-description

In cooperation with:
Twinscrew Flow Simulation with FeatFlow

Meshing strategy – Hierarchical mesh refinement

level 1 level 2 level 3

Pre-refined regions in the vicinity of gaps

2D mesh extrusion into 3D
Twinscrew Flow Simulation with FeatFlow

In cooperation with:

ProcessNet 2011
Vielen Dank!