Finite Element-Fictitious Boundary Methods (FEM-FBM) for time-dependent mixing processes in complex geometries

Stefan Turek, Otto Mierka, Raphael Münster
Institut für Angewandte Mathematik, LS III
Technische Universität Dortmund
ture@featflow.de

http://www.featflow.de
http://www.mathematik.tu-dortmund.de/LS3
Motivation: Numerical & Algorithmic Challenges

Accurate, robust, flexible and efficient simulation of multiphase problems with dynamic interfaces and complex geometries, particularly in 3D, is still a challenge!

- Mathematical Modelling of Dynamic Interfaces
- Numerics / CFD Techniques
- HPC Techniques / Software
- Validation / Benchmarking

Aim: Highly efficient, flexible and accurate “real life“ simulation tools based on modern numerics and algorithms while exploiting modern hardware!

Realization: FEATFLOW
Motivation: Target Application I

- Numerical simulation of *micro-fluidic drug encapsulation* ("monodisperse compound droplets") for application in lab-on-chip and bio-medical devices
- Polymeric "bio-degradable" outer fluid with *viscoelastic* effects
- Optimization of chip design w.r.t. boundary conditions, flow rates, droplet size, geometry
Motivation: Target Application II

- Non-Newtonian rheological models (shear & temperature dependent)
- Non-isothermal flow conditions (cooling from outside, heat production)
- Evaluation of torque acting on the screws, resulting energy consumption
- Influence of local characteristics on global product quality
- Influence of gaps on back-mixing
Basic Flow Solver: FEATFLOW

Numerical features:
- Parallelization based on domain decomposition
- FCT & EO stabilization techniques
- High order FEM (Q2/P1) discretization
- Use of unstructured meshes
- Adaptive grid deformation
- Newton-Multigrid solvers

HPC features
- Massive parallel
- GPU computing
- Open source

Hardware-oriented Numerics

Stefan Turek
The incompressible Navier Stokes equation

\[\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) - \nabla \cdot \left(\mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) \right) + \nabla p = \mathbf{f}_{ST} + \rho \mathbf{g} \]

\[\nabla \cdot \mathbf{v} = 0 \]

Interphase tension force

\[\mathbf{f}_{ST} = \sigma \kappa \mathbf{n}, \quad \kappa = -\nabla \cdot \mathbf{n} \quad \text{on} \quad \Gamma \]

Dependency of physical quantities

\[\mu = \mu(D(\mathbf{v}), \Gamma), \quad \rho = \rho(\Gamma) \]

Interphase capturing realized by **Level Set method**

\[\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0 \]

\[+ \quad \frac{\partial \phi}{\partial \tau} + \mathbf{n} \cdot \nabla \phi = S(\phi) \quad \mathbf{n} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|} \]

- Exact representation of the interphase
- Natural treatment of topological changes
- Provides derived geometrical quantities \((\mathbf{n}, \kappa)\)
- Requires reinitialization w.r.t. distance field
- Can lead to mass loss \(\rightarrow\) dG(1) discretization!
Two phase flow (s-l) with resolved interphases

- **Fluid** motion is governed by the **Navier-Stokes equations**
- **Particle** motion is described by **Newton-Euler equations**

\[
M_p \frac{dU_p}{dt} = F_p + F_{\text{ex, col}} + \left(\Delta M_p \right) g,
\]

\[
I_p \frac{d\omega_p}{dt} = T_p - \omega_p \times \left(I_p \omega_p \right).
\]

Hydrodynamic force

\[
F_p = -\int_{\Gamma_p} \sigma \cdot n_p \, d\Gamma_p
\]

Postprocessing the actual flow field

\[
T_p = -\int_{\Gamma_p} \left(X - X_p \right) \times \left(\sigma \cdot n_p \right) \, d\Gamma_p
\]

Fictitious Boundary Method

- Surface integral is replaced by volume integral
- Use of monitor function (liquid/solid)

\[
\alpha_p(X) = \begin{cases}
1 & \text{for } X \in \Omega_p \\
0 & \text{for } X \in \Omega_f
\end{cases}
\]

- Normal to particle surface vector is non-zero only at the surface of particles

\[
n_p = \nabla \alpha_p
\]

\[
F_p = -\int_{\Gamma_p} \sigma \cdot n_p \, d\Gamma_p = -\int_{\Omega_T} \sigma \cdot \nabla \alpha_p \, d\Omega_T
\]

\[
T_p = -\int_{\Gamma_p} \left(X - X_p \right) \times \left(\sigma \cdot n_p \right) \, d\Gamma_p = -\int_{\Omega_T} \left(X - X_p \right) \times \left(\sigma \cdot \nabla \alpha_p \right) \, d\Omega_T
\]
Two phase flow (s-l) with resolved interphases

- Supports HPC concepts (no computational overhead, constant data structures, optimal load balancing)
- Reduces dramatically requirements put on the computational mesh
- Relatively low resolution

Velocity “boundary condition” imposed for particles:

\[
\mathbf{u}(X) = \mathbf{U}_p + \mathbf{\omega}_p \times (X - X_p)
\]

- For computed

 \[
 \mathbf{U}^{n+1}_p, \, \mathbf{\omega}^{n+1}_p
 \]

- Position update:

 \[
 \frac{dX_p}{dt} = \mathbf{U}_p
 \]

- Angle update:

 \[
 \frac{d\theta_p}{dt} = \mathbf{\omega}_p
 \]

- Grid deformation (via Level-Set function)

- Brute force → Finer mesh resolution
- High resolution interpolation functions

Stefan Turek
Grid Deformation Method

idea: construct transformation \(\phi \), \(x = \phi (\xi, t) \) with \(\det \nabla \phi = f \)

\[\text{local mesh area} \approx f \]

1. Compute monitor function \(f(x, t) > 0, f \in C^1 \)

\[\int_{\Omega} f^{-1}(x, t) dx = |\Omega|, \quad \forall t \in [0,1] \]

2. Solve (\(t \in [0,1] \))

\[\Delta v(\xi, t) = - \frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n}\bigg|_{\partial \Omega} = 0 \]

3. Solve the ODE system

\[\frac{\partial}{\partial t} \phi (\xi, t) = f (\phi (\xi, t), t) \nabla v (\phi (\xi, t), t) \]

new grid points: \(x_i = \phi (\xi_i, 1) \)

Grid deformation preserves the (local) logical structure of the grid

Stefan Turek
Generalized Tensorproduct Meshes

Stefan Turek
Sedimentation of many Particles

Stefan Turek

tu technische universität dortmund
Benchmarking and Validation

Flow Simulation for the Flow Around Cylinder problem

Known benchmark problem (DFG) in the CFD community

- Comparison of **CFX 12.0, OpenFoam 1.6** and **FeatFlow**
- Drag and lift coefficients behave very sensitive to mesh resolution
 - Ideal indicator for computational accuracy
- Five consequently refined meshes L1 (coarse), ..., L5 (fine)
- Same meshes and physical models used in all three codes

\[
\begin{align*}
F_L &= \frac{1}{2} \rho v^2 A C_L \\
F_D &= \frac{1}{2} \rho v^2 A C_D
\end{align*}
\]

<table>
<thead>
<tr>
<th>Mesh Level</th>
<th># Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>6,144</td>
</tr>
<tr>
<td>L3</td>
<td>49,152</td>
</tr>
<tr>
<td>L4</td>
<td>393,216</td>
</tr>
<tr>
<td>L5</td>
<td>3,145,728</td>
</tr>
</tbody>
</table>
Benchmarking and Validation

CFX

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2 Err</th>
<th>c_D</th>
<th>c_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfxL3</td>
<td>0.0152</td>
<td>0.0781</td>
<td></td>
</tr>
<tr>
<td>cfxL4</td>
<td>0.0098</td>
<td>0.0631</td>
<td></td>
</tr>
<tr>
<td>cfxL5</td>
<td>0.0029</td>
<td>0.0224</td>
<td></td>
</tr>
</tbody>
</table>

OpenFOAM

<table>
<thead>
<tr>
<th>Case</th>
<th>L_2 Err</th>
<th>c_D</th>
<th>c_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFL3</td>
<td>0.0261</td>
<td>0.1449</td>
<td></td>
</tr>
<tr>
<td>OFL4</td>
<td>0.0067</td>
<td>0.0591</td>
<td></td>
</tr>
<tr>
<td>OFL5</td>
<td>0.0016</td>
<td>0.0147</td>
<td></td>
</tr>
</tbody>
</table>
Benchmarking and Validation

\[\text{FeatFlow} \]

\[\text{Comparison} \]

<table>
<thead>
<tr>
<th>Case</th>
<th>(c_D)</th>
<th>(c_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2P1L3</td>
<td>0.0029</td>
<td>0.0109</td>
</tr>
<tr>
<td>Q2P1L4</td>
<td>0.0005</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Less than 2 hours sim. time on 3+1 processors

\[\rightarrow \text{Same order of accuracy with FeatFlow on L3 as L5 with CFX and OpenFOAM on L5!} \]
\[\rightarrow \text{High order Q2/P1 FEM + (parallel) Multigrid Solver} \]

\text{Stefan Turek}

\text{tu technische universität dortmund}
Benchmarking and Validation

Free fall of particles:
• Terminal velocity
• Different physical parameters
• Different geometrical parameters

\[\begin{array}{cccc}
\nu & U_{\text{featflow}} & U_{\text{exp}} & \text{Relative error (\%)} \\
0.02 & 5.885 & 6.283 & 6.33 \\
0.05 & 4.133 & 3.972 & 4.05 \\
0.1 & 2.588 & 2.426 & 6.66 \\
0.2 & 1.492 & 1.401 & 6.50 \\
\end{array} \]

\[\begin{array}{cccc}
\nu & U_{\text{featflow}} & U_{\text{exp}} & \text{Relative error (\%)} \\
0.02 & 4.370 & 4.334 & 0.83 \\
0.05 & 2.699 & 2.489 & 8.44 \\
0.1 & 1.649 & 1.552 & 6.25 \\
0.2 & 0.946 & 0.870 & 8.74 \\
\end{array} \]

\[\begin{array}{cccc}
\nu & U_{\text{featflow}} & U_{\text{exp}} & \text{Relative error (\%)} \\
0.01 & 1.4660 & 1.4110 & 3.90 \\
0.02 & 0.9998 & 0.9129 & 9.52 \\
0.05 & 0.4917 & 0.4603 & 6.82 \\
0.1 & 0.2637 & 0.2571 & 2.57 \\
0.2 & 0.1335 & 0.1317 & 1.37 \\
\end{array} \]

Münster, R.; Mierka, O.; Turek, S.: Finite Element Fictitious Boundary Methods (FEM-FBM) for 3D particulate flow, IJNMF, 2010, accepted

Stefan Turek
3D simulations with complex shapes

‘Kissing, Drafting, Thumbling’

Sedimentation of particles in a complex domain
Absorber packing simulations

Velocity distribution

Pressure distribution

\[v_{\text{mean}} = (1 \pm 0.1 \pm 0.01) \text{ms}^{-1} \]
\[\rho = 1.25 \text{ g cm}^{-3} \]
\[\mu = 17.57 \times 10^{-6} \text{ Pa s} \]
Absorber packing simulations

<table>
<thead>
<tr>
<th>Level</th>
<th>Mesh points</th>
<th>Velocity DOFs</th>
<th>Pressure DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_x</td>
<td>n_{yz}</td>
<td>n_{xyz}</td>
</tr>
<tr>
<td>2</td>
<td>155</td>
<td>109</td>
<td>16,895</td>
</tr>
<tr>
<td>3</td>
<td>309</td>
<td>409</td>
<td>126,381</td>
</tr>
<tr>
<td>4</td>
<td>617</td>
<td>1,585</td>
<td>977,945</td>
</tr>
</tbody>
</table>

Stefan Turek
Twinscrew Flow Simulations

Geometrical representation of the twinscrews → **Fictitious Boundary Method**

- Fast and accurate description of the rotating geometry (screws)
- Applicable for conveying and kneading elements
- Mathematical description available for single, double- or triplet-flighted screws
- Surface and body of the screws are known at any time
- Mathematical formulation replaces external CAD-description

In cooperation with:

[UNIVERSITÄT PADERBORN](mailto:)

[IANUS Simulation](mailto:)

[Stefan Turek](mailto:)
Twinscrew Flow Simulations

Meshing strategy – Hierarchical mesh refinement

Pre-refined regions in the vicinity of gaps

2D mesh extrusion into 3D
Twinscrew Flow Simulations

Stefan Turek
Vielen Dank!
Benchmarking with experimental results

Continuous phase:
Glucose-Water mixture
\[\mu_D = 500 \text{ mPa s} \]
\[\rho_D = 972 \text{ kg m}^{-3} \]
\[\dot{V}_D = 3.64 \text{ ml min}^{-1} \]
\[\sigma_{CD} = 0.034 \text{ N m}^{-1} \]

Silicon oil
\[\mu_C = 500 \text{ mPa s} \]
\[\rho_C = 1340 \text{ kg m}^{-3} \]
\[\dot{V}_C = 99.04 \text{ ml min}^{-1} \]

Dispersed phase:

Validation parameters:
- frequency of droplet generation
- droplet size
- stream length

Experimental Set-up with AG Walzel (BCI/Dortmund)
Benchmarking with experimental results

<table>
<thead>
<tr>
<th></th>
<th>Separation frequency [Hz]</th>
<th>Droplet size [dm]</th>
<th>Stream Length [dm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td>0.58</td>
<td>0.062</td>
<td>0.122</td>
</tr>
<tr>
<td>Sim</td>
<td>0.6</td>
<td>0.058</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Exp. results → Group of Prof. Walzel BCI/Dortmund

Stefan Turek