Numerical Simulation of Powder Flow

Stefan Turek, Abderrahim Ouazzi
Institut für Angewandte Mathematik, Univ. Dortmund
http://www.mathematik.uni-dortmund.de/LS3
http://www.featflow.de

Models for granular flow
Numerical aspects
Discussion and outlook
Motivation of our Research

‘Preserve the high efficiency of special PDE solvers for flow problems’
Motivation of our Research

‘Preserve the high efficiency of special PDE solvers for flow problems’

→ High (guaranteed) accuracy for user-specific quantities!
→ With minimal #d.o.f.s!
→ Via robust solvers with ‘optimal’ numerical complexity!
→ Exploiting the huge sequential/parallel GFLOP/s rates!

Realization for complex CFD?
Continuum mechanical description, for example

\[\rho \frac{Du}{Dt} = -\nabla p + \nabla \cdot S + \rho g \quad , \quad \nabla \cdot u = 0 \]

\[S = \mu \frac{p}{\epsilon + |D(u)|} D(u) \quad , \quad \mu = \sqrt{2} \sin \phi \]

Finite Elemente methods, iterative solvers

‘Nonlinear models for granular flow based on generalized Navier-Stokes equations’

\[S = \nu(\mu, p, D(u)) D(u) \]
The behaviour of granular flow is different from that of fluids since it does not exhibit viscosity and the dominant interaction between particles is friction. [Nevertheless, numerical methods are similar.]

We do not examine flow of large grains but smaller-sized bulk powders where a continuum approach may be more advantageous. [→ generalized Navier-Stokes equations]
Regimes of Powder Flow (cf. Tardos)

Slow, Frictional Flow Regime
(Quasi-Static Regime)

\[\tau \neq f(\gamma^\circ) \]

Uncertain Boundary

Intermediate Flow Regime
Increasing Fluctuations of (stress and) strain rate

\[\tau \sim \gamma^\circ^n \quad (n < 1) \]
\[\tau \sim \gamma^\circ \]
\[\tau \sim \gamma^{\circ 2} \]

Rapid Granular Flow Regime

\[\text{Dimensionless Shear Rate, } \gamma^{\circ \ast} = \gamma^\circ \left[\frac{d_p}{g} \right]^{1/2} \]
Static Regime

Assumption: The flow is slow enough so that any movement between 2 static states can be neglected.

Advantages:

- static ‘equilibrium’ equation can be applied
- theory predicts the onset of flow

Disadvantages:

- no flow field can be predicted
- no flow rates result from theory

‘Method of Slices’ (Jenkins 1895)
It is (still) used for the design of silos!
Slow, Frictional Regime

General equations of flow result from:

- adding inertial effects to the static equations
- considerations of continuity
- using a yield condition
- invoking a "flow rule"

(Most) Important from industrial point of view!

First model: Schaeffer (1987)
Intermediate + Rapid-Granular Regimes

Intermediate: Both inter-particle friction and collisional energies are important.

→ **More research needed!**

Rapid-Granular: Short particle-particle contacts are important while frictional forces are neglected; particles behave as molecules in a dense gas.

Equations of flow result from a ‘Kinetic Theory’ type model:

- conservation of mass
- conservation of momentum
- conservation of energy
Characteristics of Slow Granular Flow

Open a silo hopper and.....???

The **drag force** for Schaeffer and Bingham flow acting on a cylinder is **independent** of the grain **velocity**, contrary to Stokes flow.

When mechanical ploughs replaced draught animals, it was observed that ploughing at greater speeds does not require greater forces! (Schaeffer)
General Powder Flow Model

- Conservation of mass (\(u\) is the velocity vector)

\[
\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0
\]

- For an incompressible material the bulk density, \(\rho\), is a constant:

\[
\nabla \cdot u = 0
\]

- Equation of motion

\[
\rho \frac{Du}{Dt} = -\nabla \cdot T + \rho g
\]

with \(T = S + pI\) ("stress field" \(T\), deviatoric part \(S\), pressure \(p\))
Constitutive Equations

The constitutive equation is devoted to correlate between the deviatoric tensor S and the velocity u, through the rate of deformation $D = \frac{1}{2}(\nabla u + \nabla^T u)$, and to assure the closure of the equations.

Newtonian law

\[S = 2\nu_0 D \]

Power law

\[S = 2\nu(\|D\|^2)D, \quad \nu(z) = z^{\frac{r}{2} - 1}, \quad r > 1 \]

Schaeffer’s law (1987): For a powder a constitutive equation was first introduced by Schaeffer (1987), which has to obey a

- von Mises yield condition; $\|S\| = \sqrt{2}p \sin \phi$, and
- Levy’s flow rule; $S = \lambda D$.

We use this correlation to obtain the constitutive equation

\[S = \sqrt{2}p \sin \phi \frac{D}{\|D\|} \]
The generalized incompressible Navier-Stokes problem reads:

\[\rho \frac{D u}{D t} = -\nabla p + \nabla \cdot (\nu(p, D I I D) D) + \rho g, \quad \nabla \cdot u = 0 \]

If we define the 'pseudo viscosity' \(\nu(\cdot, \cdot) \) as function of \(D I I (u) = \frac{1}{2} D : D \) and \(p \), we obtain a full range of different ‘nonlinear flow models’:

- **Power law** defined for
 \[\nu(z, p) = \nu_0 z^{\frac{r}{2} - 1} \]

- **Bingham law** defined for
 \[\nu(z, p) = \nu_0 z^{-\frac{1}{2}} \]

- **Schaeffer’s law** (including the pressure) defined for
 \[\nu(z, p) = \sqrt{2} \sin \phi \, p z^{\frac{1}{2}} \]

...other laws with pressure-dependent viscosity...
Mathematical Challenges I

Mathematical Analysis:
For pressure-dependent viscosity: Hron/Malek/Necas/Rajagopal, Schaeffer

Discretization method:
LBB-stable FEM discretization?
Uniqueness of the pressure? Inflow profiles?
Operator-Splitting (a la Chorin, Van Kan)?

Nonlinear solver:
Newton techniques for this highly nonlinear problem?
Decoupling of pressure and velocity?

Linear multigrid solver:
New types of saddle-point problems?
1. **Discretization method**: The approximation of incompressible velocity fields is subject to the so-called LBB-condition

\[
\min_{q_h \in Q_h} \max_{v_h \in V_h} \frac{(q_h, \nabla \cdot v_h)}{\|q_h\|_0 \|\nabla v_h\|_0} \geq \beta > 0, \quad (1)
\]

Discrete Korn’s inequality

\[
\sum_{\tau \in \tau_h} \|v\|_{H^1(\tau)} \leq c(\|v\|^2_{L^2} + \|D(v)\|^2_{L^2})^{1/2} \quad (2)
\]

2. **Convection-dominated transport** specially at high Reynolds number \((Re = \frac{1}{\nu})\)

3. **Boundary condition**
Quadrilateral Rannacher-Turek Stokes Element

\[\tilde{Q}_1 := \left\{ q \circ \psi^{-1}_T : q \in \text{span} \left< 1, x, y, x^2 - y^2 \right> \right\} \]

The degree of freedom are determined by the nodal functionals

\[\{ F_{(a,b)}^\Gamma (\cdot), \Gamma \subset \partial T_h \} \]

with

\[F^a_\Gamma := |\Gamma|^{-1} \int_\Gamma v d\gamma \quad \text{or} \quad F^b_\Gamma := v(m_\Gamma) \quad (m_\Gamma \text{ midpoint of edge } \Gamma) \quad (3) \]

Advantage

- Stable and efficient for incompressible flow.
- Compact data structures.

Disadvantage

- Not satisfying classical discrete Korn’s inequality
- Numerical oscillations for convection dominated problem
Classical Stabilization Methods

FEM streamline diffusion

\[
\langle \tilde{N}(u)v, w \rangle = \langle N(u)v, w \rangle + \langle N_{sd}(u)v, w \rangle , \quad \text{where} \quad (4)
\]

\[
\langle N_{sd}(u)v, w \rangle = \sum_{T \in T_h} \delta_T \int_T (u \cdot \nabla v)(u \cdot \nabla w) \, dx. \quad (5)
\]

FEM upwinding

\[
\langle \tilde{N}(u)v, w \rangle = \sum_l \sum_{k \in \Lambda_l} \oint_{\Gamma_{lk}} u \cdot n_{lk} \, d\gamma \quad (6)
\]

\[
[1 - \lambda_{lk}(u)(v(m_k) - v(m_l))]w(m_l)
\]

Based on the local Reynolds number \(Re_\tau = \frac{||u||_{\tau \cdot h_h}}{\nu} \), we can either define

\[
\delta_\tau = \delta^* \cdot \frac{h_\tau}{||u||_\Omega} \cdot \frac{2Re_\tau}{1 + Re_\tau}, \quad \lambda_{lk}(u_h) = \begin{cases}
\frac{1}{2} + \delta^* Re_\tau & \text{if } Re_\tau \geq 0 \\
1 + \delta^* Re_\tau & \text{otherwise}
\end{cases} \quad (7)
\]
New Edge-oriented FEM Stabilization

Based only on the “smoothness” of the discrete solution we have developed the following jump term

\[
\sum_{\text{edge } E} \max(\gamma \nu h_E, \gamma^* h_E^2) \int_E [\nabla u][\nabla v] d\sigma \quad \text{with } \gamma, \gamma^* \in [0.0001, 0.1]
\] (8)

Only one generic stabilization takes care of all instabilities
1. due to Korn’s inequality
2. due to convection dominated flow for medium and high Reynolds number, even for pure transport
3. due to problems with variable viscosity

Independent of the local Reynolds number
Standing vortex $Re = \infty$

Cutline of the x-velocity component for the ‘Standing Vortex’ problem

3D presentation of the norm of the velocity (VECT MAG) for the ‘Standing Vortex’ problem: edge-oriented (left) vs. streamline-diffusion (middle) and central (right)

- Upwind: significant smearing effects
- EO: preserves “perfectly” the solution with high accuracy
Nonlinear Solver: Newton Iteration

Let \(u^l \) being the initial state, the (continuous) Newton method consists of finding \(u \) such that

\[
\int_{\Omega} 2\nu(D_l(u^l), p^l) D(u) : D(v) dx \\
+ \int_{\Omega} 2\partial_1 \nu(D_l(u^l), p^l)[D(u^l) : D(u)] [D(u^l) : D(v)] dx \\
+ \int_{\Omega} 2\partial_2 \nu(D_l(u^l), p^l)[D(u^l) : D(v)] p dx
\]

\[
= \int_{\Omega} f v - \int_{\Omega} 2\nu(D_l(u^l), p^l) D(u^l) : D(v) dx, \quad \forall v, \quad (9)
\]

where \(\partial_i \nu(\cdot, \cdot); i = 1, 2 \) is the partial derivative of \(\nu \) related to the first and second variable, respectively.
New Linear Algebraic Problem

Every Newton step consists of finding \((u, p)\) as solution of the linear system

\[
\begin{align*}
A(u^l, p^l)u + \delta_u A^*(u^l, p^l)u + Bp + \delta_p B^*(u^l, p^l)p &= R_u(u^l, p^l), \\
B^T u &= R_p(u^l, p^l),
\end{align*}
\]

(10)

where \(R_u(\cdot, \cdot)\) and \(R_p(\cdot, \cdot)\) denote the corresponding nonlinear residual terms for the momentum and continuity equations, and the matrix \(A^*(u^l, p^l)\) and \(B^*(u^l, p^l)\) are defined as follows, respectively

\[
\langle A^*(u^l, p^l)u, v \rangle = \int_\Omega 2\partial_1 \nu(D_1(u^l), p^l)[D(u^l) : D(u)][D(u^l) : D(v)]dx.
\]

(11)

\[
\langle B^*(u^l, p^l)p, v \rangle = \int_\Omega 2\partial_2 \nu(D_1(u^l), p^l)[D(u^l) : D(v)]pdx.
\]

(12)
Schaeffer Model (I)

The nonlinear ‘pseudo viscosity’ has the form \(\nu(p, z) = Q(p) z^{r - 1} \)

New type of (nonsymmetric) saddle-point problems;

\[
M_{\delta_p}(\tilde{u}, \tilde{p}) = \begin{pmatrix}
A_u & B + \delta_p B^* \\
B^T & 0
\end{pmatrix}
\]

The (linear) solution depends on the choice of imposing the uniqueness, since \(\dim(\text{null}(M_{\delta_p})) = 1 \)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>Newton</th>
<th>Fixed Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 \times 10^{-2}</td>
<td>10/3</td>
<td>200/1</td>
</tr>
<tr>
<td>1 \times 10^{-1}</td>
<td>11/3</td>
<td>250/1</td>
</tr>
<tr>
<td>2 \times 10^{-1}</td>
<td>10/3</td>
<td>238/2</td>
</tr>
</tbody>
</table>

\[
\nu = \frac{\exp(\beta p)}{\epsilon + \|D(u)\|}
\]

\[
\nu = \frac{\beta p}{\epsilon + \|D(u)\|}
\]

<table>
<thead>
<tr>
<th></th>
<th>Newton</th>
<th>Fixed Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13</td>
<td>405/2</td>
<td></td>
</tr>
<tr>
<td>12/10</td>
<td>522/2</td>
<td></td>
</tr>
<tr>
<td>12/10</td>
<td>581/2</td>
<td></td>
</tr>
</tbody>
</table>
Schaeffer’s law: The nonstationary equations are linearly ill-posed according to Schaeffer.

Flow rate: The quantitative prediction of the flow rate through silo hoppers is wrong by more than 100%.

Add compressibility: This approach is an effort to regularize the instability.
Compressible Powder Models (cf. Tardos)

General equation of motion for a powder

\[\rho \frac{Du}{Dt} = -\nabla p + \nabla \cdot \left[\frac{q(p, \rho)}{||D - \frac{1}{n} \nabla \cdot uI||} \left(D - \frac{1}{n} \nabla \cdot uI \right) \right] + \rho g, \text{ with} \]

Continuity equation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0, \text{ and} \]

Normality condition

\[\nabla \cdot u = \frac{\partial q(p, \rho)}{\partial \rho} \left[D - \frac{1}{n} \nabla \cdot uI \right] \]

Yield condition \(q(p, \rho) \) is given by:

<table>
<thead>
<tr>
<th>Powder properties</th>
<th>Non-cohesive</th>
<th>Cohesive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incompressible</td>
<td>(p \sin \phi)</td>
<td>(p \sin \phi + c \cos \phi)</td>
</tr>
<tr>
<td>Compressible</td>
<td>(p \sin \phi \left(2 - \frac{p}{\rho^{1/3}} \right))</td>
<td>(p \sin \phi \rho^{1/3} - C \left(\frac{p - \rho^{1/3}}{\rho^{1/3}} \right)^2)</td>
</tr>
</tbody>
</table>
Summary:

- More mathematical research is needed to understand and to analyse the models for granular and powder flows.
- Numerical analysis of discretization and solution techniques?
- The physically correct choice of pressure (mean)values is not clear.
- How to prescribe velocity profiles? [Or: Fluxes?]
Outlook I: Hypoplastic Model by Kolymbas

\[
\text{Re} \left[\frac{\partial u}{\partial t} + (u \cdot \nabla)u \right] = -\nabla p + \nabla \cdot S + f , \quad \nabla \cdot u = 0
\]

\[
S = \frac{Q(p)}{|D(u)|} D(u) \text{ (Schaeffer/Power Law/etc.)} + T \text{ (Kolymbas)}
\]

\[
\frac{\partial T}{\partial t} + (u \cdot \nabla)T = -[TW - WT] + C_1 \frac{1}{2}(TD - DT)
\]

\[
+ C_2 tr(TD) \cdot I + C_3 \sqrt{trD^2}T + C_4 \frac{\sqrt{trD^2}}{trT}T^2
\]

\[
+ \nu(D) \left[\frac{\partial D}{\partial t} + (u \cdot \nabla)D + DW - WD \right]
\]

1. FEM discretization and solver ?
2. Free boundary ? Fluid-Structure interaction ?
3. Numerical ‘falsification’ of material/flow models !?
Outlook II: Particulate Flow

Development of simulation tools for the understanding of:

1. Interaction of solid particles with flow (→ many complex objects ?)
2. Behaviour of nonlinear fluid models

‘Fictitious Boundary Method’ on adapted meshes + Operator-Splitting !
‘Many’ particles ? Nonlinear fluids ? Wide range of applications !