Monolithic FEM Techniques for Viscoelastic Flow

S. Turek, A. Ouazzi, H. Damanik
Institute of Applied Mathematics, LS III, TU Dortmund
http://www.featflow.de

ECCOMAS CFD 2010, Lissabon
• **Generalized Navier-Stokes equations**

\[
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + \nabla \cdot \sigma, \quad \nabla \cdot u = 0,
\]

\[
D(u) = \frac{1}{2} (\nabla u + (\nabla u)^T)
\]

\[
\sigma = \sigma^s + \sigma^p
\]

• **Viscous stress**

\[
\sigma^s = 2\eta_s (D_\Pi, p) D, \quad D_\Pi = \text{tr}(D(u)^2).
\]

• **Elastic stress**

\[
\sigma^p + \text{We} \frac{\partial \varepsilon^T \sigma^p}{\partial t} = 2\eta_p D(u).
\]
Constitutive Models (I)

- **Viscous stress**

\[\sigma^s = 2 \eta_s (D_{11}, p) D_1, \quad D_1 = \text{tr}(D(u)^2). \]

- **Power law model**

\[\eta_s(z, p) = \eta_0 z^2 \quad , \quad (\eta_0 > 0, r > 1) \]

- **Carreau model**

\[\eta_s(z, p) = \eta_\infty + (\eta_0 - \eta_\infty)(1 + \lambda z)^{-1} \]

\[(\eta_0 > \eta_\infty \geq 0, r > 1, \lambda > 0) \]

- **Powder flow in the quasi-static and intermediate regimes**

\[\eta_s(z, p) = \sqrt{2} [\sin \phi z^2 + b \cos \phi z^2]^{-1} \]

\[(\phi \text{ is angle of internal friction, } r > 1) \]
Constitutive Models (II)

- Elastic stress

\[
\sigma^p + We \frac{\delta_a \sigma^p}{\delta t} = 2\eta_p D(u)
\]

- Upper/Lower convective derivative

\[
\frac{\delta_a \sigma}{\delta l} = \left(\frac{\partial}{\partial l} + u \cdot \nabla \right) \sigma + g_u(\sigma, \nabla u)
\]

\[
g_u(\sigma, \nabla u) = \frac{1 - a}{2} \left(\sigma \nabla u + (\nabla u)^T \sigma \right) - \frac{1 + a}{2} \left(\nabla u \sigma + \sigma (\nabla u)^T \right) \quad (a = \pm 1)
\]
Constitutive Models (III)

- **Generalized differential constitutive model**

\[
\sigma \mid \mathcal{W} \frac{\delta_{\alpha} \sigma}{\delta t} \mid \mathbf{G}(\sigma, D) \mid \mathbf{H}(\sigma) = 2\eta_p D(u)
\]

- **Oldroyd**

\[
\mathbf{G} = 0, \quad \mathbf{H} = 0
\]

- **Giesekus**

\[
\mathbf{G} = 0, \quad \mathbf{H} = \alpha \sigma^2
\]

- **Phan-Thien and Tanner**

\[
\mathbf{G} = 0, \quad \mathbf{H} = [\exp(\alpha \text{tr}(\sigma)) \quad 1] \sigma
\]

- **White and Metzner**

\[
\mathbf{G} = \alpha (2D : D)^{1/2}, \quad \mathbf{H} = 0
\]
Problem Reformulation

Old $\Rightarrow (u, p, \sigma^p)$

\[
\begin{align*}
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) &= -\nabla p + 2\eta_s \nabla \cdot D + \nabla \cdot \sigma^p, \\
\nabla \cdot u &= 0, \\
\Lambda \frac{\delta_a \sigma^p}{\delta t} + \sigma^p - 2\eta_p D &= 0
\end{align*}
\]

Conformation tensor $\Rightarrow (u, p, \tau) \text{ which is positive definite by design}$

Replace σ^p in (1) with $\sigma^p = \frac{\eta_p}{\Lambda} (\tau - I) \Rightarrow \text{special discretization: TVD}$

\[
\begin{align*}
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) &= -\nabla p + 2\eta_s \nabla \cdot D + \frac{\eta_p}{\Lambda} \nabla \cdot \tau, \\
\nabla \cdot u &= 0, \\
\frac{\delta_a \tau}{\delta t} + \frac{1}{\Lambda} (\tau - I) &= 0
\end{align*}
\]
Conformation Tensor Properties

\[\tau(t) = \int_0^t \frac{1}{\text{We}} \exp \left(-\frac{(t - s)}{\text{We}} \right) F(s, t) F(s, t)^T ds \]

Positive by design, so we can take its logarithm

2 Observations:
- positive definite → special discretizations like FCT/TVD
- exponential behaviour → approximation by polynomials???
Problem Reformulation

Replace τ in (2) with $\tau = \exp \psi$

\[
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + 2\eta_s \nabla \cdot D + \frac{\eta_p}{\text{We}} \nabla \cdot (\exp \psi),
\]

$\nabla \cdot u = 0,$

\[
\frac{\delta_a (\exp \psi)}{\delta t} + \frac{1}{\text{We}} (\exp \psi - 1) = 0
\]

Gradient of exponential of $\psi \rightarrow ???$

Solvers $\rightarrow ???$
Experiences:
- Stresses grow exponentially
- Conformation tensor is positive by design

Idea:
- Decompose the velocity gradient inside the stretching part

\[
\nabla u = \Omega + B + N \tau^{-1}
\]

- Take the logarithm as a new variable \(\psi = \log \tau \) using eigenvalue decomposition

\[
\psi = R \log(\lambda) R^T
\]
LCR for Oldroyd-B Model

\[\tau(t) = \int_0^t \frac{1}{\text{We}} \exp \left(-\frac{(t-s)}{\text{We}}\right) F(s, t) F(s, t)^T \, ds \]

Oldroyd-B

\[\text{We} \frac{\delta \sigma^p}{\delta t} + \sigma^p - 2\eta_p D = 0, \]

\[\sigma^p = \frac{\eta_p}{\text{We}} (\tau - I) \]

\[\frac{\delta_a \tau}{\delta t} + \frac{1}{\text{We}} (\tau - I) = 0, \]

\[\nabla u = \Omega + B + N\tau^{-1} \]

\[\left(\frac{\partial}{\partial t} + u \cdot \nabla \right) \tau - (\Omega \tau - \tau \Omega) + 2B\tau = \frac{1}{\Lambda} (I - \tau) \]

\[\tau = \exp \psi \quad \psi = R \log(\lambda_t) R^T \]

LCR

\[\partial_t \psi + (\nabla u) \psi - (\Omega \psi - \psi \cdot \Omega) + 2B = \frac{1}{\text{We}} (\exp(-\psi) - I) \]
LCR Equations for Different Models

- LCR equations

\[
\rho \frac{d}{dt} (u \cdot \nabla) u = -\nabla p + \nabla \cdot (2\eta_s (D_{II}, p) D(u)) + \frac{\eta_p}{\text{We}} \nabla \cdot e^\psi, \\
\nabla \cdot u = 0,
\]

\[
\frac{d}{dt} (\psi \cdot \nabla) \psi - (\Omega \psi - \psi \Omega) - 2B = \frac{1}{\text{We}} f(\psi).
\]

- Oldroyd-B model

\[
f(\psi) = (e^{-\psi} - I).
\]

- Giesekus model

\[
f(\psi) = (e^{-\psi} - I) - \alpha e^\psi (e^{-\psi} - I)^2.
\]
Numerical Techniques

- FEM techniques have to handle the following challenging points
 - Stable FE spaces for velocity/pressure and velocity/extra-stress fields
 → Q2/P1/Q2 or Q1(nc)/P0/Q1(nc) (new: Q2(nc)/P1/Q2(nc))
 - Special treatment of the convective terms $u \cdot \nabla u$, $u \cdot \nabla \sigma$
 → Edge-Oriented/interior penalty EO-FEM, TVD/FCT
 - High Weissenberg number problem (HWNP) via LCR

- Solvers have to deal with different sources of nonlinearity
 - nonlinear viscosity → Newton method via divided differences
 - strong coupling of equations → monolithic multigrid approach
 - complex geometries and meshes
FEM Discretization

- High order $Q_2/Q_2/P_1^{\text{disc}}$ for velocity-stress-pressure

- Advantages:
 - Inf-sup stable for velocity and pressure
 \[\sup_{u \in [H^1_0(\Omega)]^2} \frac{\int_{\Omega} \nabla \cdot u \, q \, dx}{\|u\|_{1, \Omega}} \geq \beta_1 \|q\|_{0, \Omega} \quad \forall q \in L^2_0(\Omega) \]
 - High order: good for accuracy
 - Discontinuous pressure: good for solver

- Disadvantages:
 - Stabilization for same spaces for stress-velocity
 - A single d.o.f. belongs to four elements

Compatibility condition between the stress and velocity spaces via EO-FEM!
EO-FEM

• Edge-Oriented FEM stabilization for

 ➢ convection dominated problem

 \[J_u = \sum_{\text{edge } E} \gamma_u h_E^2 \int_E [\nabla u] : [\nabla v] \, ds \]

 \[J_\sigma = \sum_{\text{edge } E} \gamma_\sigma h_E^2 \int_E [\nabla \sigma] : [\nabla \tau] \, ds \]

 Efficient Newton-type and multigrid solvers can be easily applied!
Nonlinear Solver

• Damped Newton results in the solution of the form

\[R(x) = 0, \quad x = (u, \sigma, p) \]
\[x^{n+1} = x^n + \omega^n \left[\frac{\partial R(x^n)}{\partial x} \right]^{-1} R(x^n) \]

• Inexact Newton: Jacobian is approximated using finite differences

\[
\left[\frac{\partial R(x^n)}{\partial x} \right]_{ij} \approx \frac{R_j(x^n + \epsilon e_j) - R_i(x^n - \epsilon e_i)}{2\epsilon}
\]

\[
\left[\frac{\partial R(x^n)}{\partial x} \right] = K + K^* =: \tilde{K}
\]

\[
= \begin{bmatrix}
\tilde{A} + \tilde{A}^* & B + B^* \\
B^T & 0
\end{bmatrix}
\]

Typical saddle point problem!
• **Monolithic multgrid solver**

- **Standard geometric multigrid approach**

- **Full Q_2, P_1^{disc} restrictions and prolongations**

- **Local MPSC via Vanka-like smoother**

\[
\begin{bmatrix}
\begin{array}{c}
\mathbf{u}^{l+1} \\
\mathbf{\sigma}^{l+1} \\
\mathbf{p}^{l+1}
\end{array}
\end{bmatrix} = \begin{bmatrix}
\begin{array}{c}
\mathbf{u}^{l} \\
\mathbf{\sigma}^{l} \\
\mathbf{p}^{l}
\end{array}
\end{bmatrix} + \omega^{l} \sum_{T \in h} \left[(\widetilde{\mathbf{K}} - J)_{|T} \right]^{-1} \begin{bmatrix}
\begin{array}{c}
\text{Res}_u \\
\text{Res}_\sigma \\
\text{Res}_p
\end{array}
\end{bmatrix}_{|T}
\]

Coupled Monolithic Multigrid Solver !
Viscoelastic Benchmark

- Planar flow around cylinder (Oldroyd-B)

The numerical method is quantitatively validated.

S. Turek | FEM for LCR of viscoelastic
Viscoelastic Benchmark

- Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

\[\text{WC} = 0.7 \]

\[\text{WC} = 5.0 \]

Lack of pointwise mesh convergence!
Viscoelastic Benchmark

- Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

Lack of pointwise mesh convergence!

S. Turek | FEM for LCR of viscoelastic
- **M-FEM Newton solution Oldroyd-B vs. Giesekus**

 - **Oldroyd-B**

We	Drag	NL	We	Drag	NL	We	Drag	NL
0.1	130.366	8	0.8	117.347	4	1.5	126.666	4
0.2	126.628	5	0.9	117.762	4	1.6	127.523	4
0.3	123.194	4	1.0	118.574	6	1.7	129.494	4
0.4	120.593	4	1.1	119.657	6	1.8	131.578	4
0.5	118.828	4	1.2	120.919	5	1.9	133.754	4
0.6	117.779	4	1.3	122.350	4	2.0	136.039	5
0.7	117.321	4	1.4	123.936	4	2.1	138.438	5

 - **Giesekus**

We	Drag	Peak2	NL	We	Drag	Peak2	NL
5	96.943	924.45	14	60	85.859	12010.57	4
20	89.905	4204.51	12	70	85.356	13773.61	4
30	88.304	6318.79	8	80	84.987	15502.45	4
40	87.256	8311.32	5	90	84.585	17207.87	4
50	86.476	10199.10	4	100	84.287	18897.95	4

Stable Newton solver!
New numerical and algorithmic tools are available using

✓ Monolithic Finite Element Method (M-FEM)
✓ Log Conformation Reformulation (LCR)
✓ Edge Oriented stabilization (EO-FEM)
✓ Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of viscoelastic flow

Advantages

✓ No CFL-condition restriction due to the full coupling
✓ Positivity preserving
✓ Higher order and local adaptivity
Inertia turbulence

- Re $>> 1$
- Numerical instabilities + problems

→ Turbulence Models
→ Stabilization Techniques

Characteristics:
- Irregular temporal behaviour and spatially disordered
- Broad range of spatial/temporal scales
Elastic turbulence

- Re<<1, We>>1 (less inertia, more elasticity)
- Numerical instabilities + problems (HWNP)

→ Flow models: Oldroyd, Giesekus, Maxwell,…
→ Stabilization: EEME, EEVS, DEVSS/DG, SD, SUPG,…
Required: Special Numerics

Special FEM Techniques
Multigrid Solvers

Stabilization for high Re and We numbers

Implicit Approaches
Space-Time Adaptivity

Grid Deformation Methods
Newton Methods
Problems remain...

Different highly developed models

Oldroyd A/B, Maxwell A/B, Jeffreys, PTT, Giesekus

... nevertheless, despite „good“ models and „good“ Numerics, the HWNP („High Weissenberg Number Problem“) still exists for critical We, resp., De numbers...

![Kinetic Energy for two different velocity inflow](Image)

Zoom shows oscillation...!!
Our Numerical Approach

Fully implicit monolithic FEM
Multigrid solver for LCR formulation!
Exponential Behaviour

Driven cavity example:
as We number changes from
We=0.5 to We=1.5, the stress
value jumps significantly

Old Formulation Vs Lcr

\[\text{We} = 0.5 \quad \text{We} = 1.5 \]

Cutline of Stress_11 component at y = 1.0
• Direct steady vs. non-steady approach for Giesekus
Planar Flow around Cylinder

<table>
<thead>
<tr>
<th>We</th>
<th>Linear Tol</th>
<th>0.01</th>
<th>0.1</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>R1</td>
<td></td>
<td>9/2</td>
<td>10/1</td>
<td>14/1</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>9/3</td>
<td>10/2</td>
<td>16/2</td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td>9/3</td>
<td>10/3</td>
<td>16/2</td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td>9/3</td>
<td>10/3</td>
<td>13/3</td>
</tr>
</tbody>
</table>

Stable Newton and multigrid solver!