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Abstract

This work demonstrates the concept of describing adjacency relations as set-valued map-

pings, which has already been used in graph algorithm implementations for a long time. The

primary goal is to provide a way to express matrix sparsity patterns arising from finite element

discretisations on unstructured meshes in a directly implementable manner. For this purpose,

a formal definition of these mappings and their transposition and composition operations is

presented along with investigations on sparsity. Furthermore, two important variants of sparse

matrix patterns required by the finite element and the discontinuous Galerkin methods are de-

rived from the theory of set-valued adjacency relation mappings and expressed as compositions

thereof.

A generic interface is presented in the second part of this work, along with suggested imple-

mentations utilising the C++ standard library components of the required operations which can

be easily integrated in existing finite element software packages. Worst-case runtime estimates

are presented for these implementations.

Keywords: adjacency relations, finite elements, generic programming, unstructured sparse

matrices

1 Introduction

The usual approach to describe an adjacency relation is by using a (directed) graph G = (V,E)
with a finite set of nodes V and a set of edges E ⊆ V ×V . This approach has two major advantages:
First, it is very generic in the sense that any type of adjacency relation on V can be expressed this
way and, second, the use of a basic and common mathematical structure such as a graph offers a
wide variety of theorems and algorithms – in this case from the field of graph theory.

One of the most famous graph algorithms used in the field of numerics is the Cuthill-McKee
algorithm (see [5]), which computes a permutation of the graph’s node set with the goal of minimis-
ing the bandwidth of a sparse matrix represented by that graph. Although the authors formally
define their renumbering scheme on the data structure of a graph, i.e. on sets of nodes and edges,
an efficient implementation of the algorithm requires a different data structure, as one needs to be
able of iterating over all nodes adjacent to a specific node via some edge efficiently. This, among
other reasons, has led to the fact that one rarely describes adjacency relations by sets of edges – as
in theory – in implementations of graph algorithms, but instead prefers a data structure which al-
lows efficient access to all neighbours of a particular node. One commonly used data structure that
fulfills these requirements is the row-pointer and column-index array pair used by the Compressed
Sparse Row storage format for unstructured sparse matrices (see [2]).

Another aspect, which suggests the usage of such a data structure, is that one often has to
consider adjacency relations between two disjunct node sets X and Y . A few examples, which
appear in the context of finite element software, are adjacency relations between:

• vertices and elements of a mesh, specifying the corner vertices of an element.
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• elements of two meshes in a refinement hierarchy, specifying which elements in a refined mesh
arise from the subdivision of an element in a coarse mesh.

• finite element basis functions and the elements of a mesh, specifying which elements intersect
with the support of a basis function.

• boundary components and vertices of a mesh, specifying which vertices belong to a particular
boundary component.

In this work, we first want to formalise the data structure that has been used in graph algorithm
implementations for a long time and investigate how the concept of sparse relations can be defined
for this approach. Furthermore, we show how this approach can be utilised to formally express
finite element matrix stencils and, finally, we show how the theoretical concept can be realised in
a generic C++ implementation, including estimates for the worst-case runtime.

2 Mathematical Background

We begin our formal section with a definition that allows us to express adjacency relations between
finite sets as a set-valued mappings, which will form the basic data structure used throughout this
work.

Definition 1: Adjacency Relation Mapping
Let X,Y denote two finite sets, then a mapping A : X → ℘(Y ) is called an adjacency relation
mapping between X and Y , where ℘(Y ) denotes the power set of Y . Furthermore, we denote the
cardinality of A by

|A| :=
∑

x∈X

|A(x)|.

We now want to see that for any pair of finite sets X and Y we can express any graph G = (X,Y,E)
characterised by an edge set E ⊆ X × Y as an adjacency relation mapping and vice versa by the
correlation y ∈ A(x) ⇐⇒ (x, y) ∈ E. One can say that the adjacency relation mapping is not
a fundamentally new mathematical structure, but rather a different way of interpreting a graph.
Furthermore, with this equivalence it is easy to see that the cardinality of A is equal to the
cardinality of the edge set E of the graph G that is equivalent to A.

Many definitions and operations on graphs can be translated into versions for adjacency relation
mappings, but we will restrict us to two operations, namely the transposition and the composition,
as they will suffice for our cause.

Definition 2: Transposition
Let A : X → ℘(Y ), then the transpose A⊤ : Y → ℘(X) is defined as

A⊤(y) :=
{
x ∈ X

∣∣ y ∈ A(x)
}
. (1)

Definition 3: Composition
Let A : X → ℘(Y ) and B : Y → ℘(Z), then the composition B ◦ A =: C : X → ℘(Z) is defined as

C(x) :=
{
z ∈ Z

∣∣ ∃y ∈ A(x) : z ∈ B(y)
}
=

⋃

y∈A(x)

B(y). (2)

Finally, we want to propose a lemma that describes the interplay of the transposition and compo-
sition operations.

Lemma 4

Let A : X → ℘(Y ) and B : Y → ℘(Z), then it holds

(
B ◦ A

)⊤
= A⊤ ◦ B⊤.
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We omit the proof of this lemma, as it is just an application of the two previous definitions.

2.1 Sparsity

With the previous definitions, we have established a basic formal description of adjacency relations
between finite sets. In the following, we want to restrict our further investigations to sparse
relations and for this purpose, we first need to define this term. The following definition will
introduce two variants of sparse relations, that will be used throughout the rest of this work. For
that purpose, we will consider families of adjacency relations, as it would be hard to speak of ‘a
constant independent of n’ otherwise.

Definition 5: Weak/Strong Sparsity
For n ∈ N let An : Xn → ℘(Yn) denote a family of adjacency relations.

1. We say that An is weakly sparse if there exists a constant cA ≥ 1 independent of n, such that
for all n

|An| ≤ cA ·
(
|Xn|+ |Yn|

)
.

2. We say that An is strongly sparse if there exists a constant cA ≥ 1 independent of n, such
that for all n and all x ∈ Xn it holds

|An(x)| ≤ cA.

Obviously, a strongly sparse family An is also weakly sparse, and one can easily construct counter-
examples showing that weakly sparse families are not necessarily strongly sparse.

In the following, we want to investigate how the transposition and composition operations affect
these two definitions of sparsity. By observing that for any A : X → ℘(Y ) it holds that |A| = |A⊤|
one can immediately conclude that for any weakly sparse family An : Xn → ℘(Yn) also the family of
the transpositions A⊤

n : Yn → ℘(Xn) is weakly sparse with the same constant c. Unfortunately, one
can show that the transposed family of a strongly sparse family is not necessarily strongly sparse:
Let c ∈ N denote an arbitrary constant, then for n > c we define Xn := {1, ..., n}, Yn := {1} and
set An(x) := Yn for all x ∈ Xn, then |A(x)| = 1 for all x ∈ X, but |A⊤

n (1)| = |Xn| = n > c. One
may argue about the usefulness of a sparsity definition, where a relation A is strongly sparse, but
its transpose may not be. The reason for this ‘non-symmetry’ is simply that we do not want to
restrict the definition more than we need to, as this would rule out practically relevant scenarios
which we will consider later.

The effects of composing sparse relations are more complex and contain several cases, which
we want to summarise in the following lemma.

Lemma 6: Composition Sparsity
For n ∈ N let Xn, Yn and Zn denote families of finite sets. Let An : Xn → Yn and Bn : Yn → Zn

denote two weakly sparse families and let Cn := Bn ◦ An denote the family of the compositions of
An and Bn, then:

1. If both An and Bn are strongly sparse, then Cn is strongly sparse.

2. If Bn is strongly sparse and at least one of the following conditions holds, then Cn is weakly
sparse.

(a) ∃cA ≥ 1, ∀n : |An| ≤ cA · |Xn|

(b) ∃cY ≥ 1, ∀n : |Yn| ≤ cY · |Zn|

3. If A⊤
n is strongly sparse and at least one of the following conditions holds, then Cn is weakly

sparse.

(a) ∃cB ≥ 1, ∀n : |Bn| ≤ cB · |Zn|

(b) ∃cY ≥ 1, ∀n : |Yn| ≤ cY · |Xn|

3
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Proof. Throughout this proof, let n ∈ N be arbitrary and let cA and cB denote the sparsity
constants of An and Bn, respectively, as given in Definition 5.
• case 1.: Let x ∈ Xn be arbitrary, then we have

∣∣Cn(x)
∣∣ =

∣∣∣
⋃

y∈An(x)

Bn(y)
∣∣∣ ≤

∑

y∈An(x)

∣∣Bn(y)
∣∣ ≤

∑

y∈An(x)

cB ≤ cA · cB.

• case 2.: We have

∣∣Cn
∣∣ =

∑

x∈Xn

∣∣Cn(x)
∣∣ =

∑

x∈Xn

∣∣∣
⋃

y∈An(x)

Bn(y)
∣∣∣ ≤

∑

x∈Xn

∑

y∈An(x)

∣∣Bn(y)
∣∣ ≤

∑

x∈Xn

∑

y∈An(x)

cB = cB ·
∣∣An

∣∣.

If condition (a) holds, then we obtain

∣∣Cn
∣∣ ≤ cB ·

∣∣An

∣∣ ≤ cA · cB · |Xn|.

Otherwise, if condition (b) holds, we obtain

∣∣Cn
∣∣ ≤ cB ·

∣∣An

∣∣ ≤ cA · cB ·
(
|Xn|+ |Yn|

)
≤ cA · cB · cY ·

(
|Xn|+ |Zn|

)
.

• case 3.: This case follows directly from case 2., the fact that (A⊤)⊤ = A and Lemma 4. �

As a final note, one can easily construct a counter-example which shows that the composition of
two weakly but not strongly sparse families is not necessarily (weakly) sparse: for n ∈ N consider
Xn = Yn = Zn := {1, ..., n}, let An(i) := {1} for all 1 ≤ i ≤ n and let Bn := A⊤

n , then the
composition Cn := Bn ◦ An is dense, i.e. |Cn| = n2.

3 Finite Element Matrix Sparsity Patterns

Now we want to apply the framework of the previous section on the adjacency relations appearing
in the context of the finite element method, especially with the goal of describing an efficient
method for the assembly of matrix sparsity patterns. For the rest of this section, we assume that
all meshes are conforming, i.e. there shall be no hanging nodes.

Definition 7: Finite Element Dof-Mapping
Let V denote a finite element space defined on a mesh T = {Tk}, and let B = {ϕi} denote a basis
of V , then the dof-mapping D : T → ℘(B) of V is defined as

D(Tk) :=
{
ϕi ∈ B

∣∣ support(ϕi) ∩ Tk 6= ∅
}
. (3)

The dof-mapping is one of the most basic and most important adjacency relations for finite ele-
ment methods. One major question is now what type of sparsity a dof-mapping relation (and its
transpose) fulfills. The answer to that question obviously depends on the construction of the basis
functions, but we want to assume that the dof-mapping relation is at least weakly sparse, as we
could not expect the resulting matrix to be sparse otherwise. Furthermore, we see that a (family
of) dof-mapping relation(s) is strongly sparse if and only if for any element at most a constant
number of basis functions do not vanish on that element. Although there exist various approaches
to construct finite element basis sets violating this condition (e.g. in the case of p-adaptivity), the
vast majority of finite element basis function sets fulfill this condition, especially since one usu-
ally imposes upper bounds for those violating scenarios, e.g. by prescribing a maximum allowed
degree in the case of p-adaptivity. However, considering the widely used finite elements such as
the H1-conforming Pn and Qn spaces (see e.g. [3]), but also non-conforming approaches such as
Crouzeix-Raviart (see [8]), Rannacher-Turek (see [9]) and various others (see e.g. [10]) fulfill the
strong sparsity condition of the dof-mapping relation.

As for the transposed dof-mapping D⊤, we observe that strong sparsity not only depends on
the construction of the basis, but also on the underlying mesh family. Considering the example of
the H1-conforming piecewise linear element P1, then for the standard Lagrangian basis the family
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D⊤
n will only be sparse if for any mesh in the family the number of elements sharing a common

vertex is bounded by a constant. Furthermore, one also may consider finite element spaces, where
a single basis function does not vanish on the whole domain (e.g. for use as a Lagrangian multiplier
in a problem with pure Neumann boundary conditions, see e.g. [7]) which also leads to violation
of the strong sparsity of D⊤

n .
In summary, we assume that a (family of) dof-mapping relation(s) is strongly sparse, however,

we do not assume the same for its transpose, as it simply will not be necessary for our purpose.
As a first example of matrix sparsity pattern assembly for the finite element method, we consider
the standard matrix stencil, which describes the adjacency relation of test- and trial-space1 basis-
function pairs under a (discrete) weak partial differential operator L : V ×W → R consisting only
of integrals over the elements Tk of a mesh T :

L(ϕ,ψ) :=
∑

Tk∈T

∫

Tk

ℓk
(
ϕ,ψ

)
(x) dx for some ℓk : V |Tk

×W |Tk
→ L1(Tk).

For this kind of operator, we can directly observe that a pair of test and trial basis functions ψi

and ϕj can only generate a non-zero entry aij in the matrix representing the discrete differential
operator if their supports intersect. For the purpose of implementing the matrix stencil assembly,
this condition is usually relaxed in the sense that a pair of test- and trial-functions generates a
non-zero entry if there exists an element Tk ∈ T which intersects with the supports of both the
test and the trial basis functions. Combining this relaxed condition with our previous definition
of the dof-mapping relation, we can now formulate a lemma which describes the standard matrix
stencil.

Lemma 8: Standard Matrix Stencil
Let V and W be two finite element spaces defined on the same mesh T , where V denotes the test
space and W denotes the trial space. Furthermore, let DV and DW denote the dof-mappings for
some bases BV and BW of V and W , respectively, then the standard matrix stencil A : BV →
℘(BW ) is given by

A = DW ◦ D⊤
V .

Proof. By definition, for any test basis function ψi ∈ BV the set of all elements Tk ∈ T on which
ψi does not vanish is given by D⊤

V (ϕj). Now, for each Tk ∈ T the set of all trial basis functions
ϕj , which do not vanish on Tk, is given by DW (Tk). In consequence, DW ◦ D⊤

V (ψi) is the set of
all ϕj ∈ BW , for which the supports of the test-trial basis function pair ψi, ϕj intersect with some
common Tk ∈ T . �

The previous lemma states that the standard matrix stencil is given by the composition of the trial-
space dof-mapping applied onto the transpose of the test-space dof-mapping, so in consequence we
can apply our results from Lemma 6. As we assume both DW and DV to be strongly sparse, we
can at least apply case 2. or 3. of the lemma, since in our case condition (b) states that the number
of elements shall be bounded linearly by the number of test- or trial-space basis functions, which
is naturally fulfilled for the vast majority of finite element spaces. Furthermore, if we additionally
assume that D⊤

V is strongly sparse, then by case 1. of Lemma 6 we get that A is also strongly
sparse – which covers most of the practically relevant scenarios.

In addition to integrals over elements, various methods require integrals over the facets of the
mesh – two notable examples are the discontinuous Galerkin method (see e.g. [4]) or the edge-
oriented jump-stabilisation method (see [6]). Such methods require an extended matrix stencil,
as a pair of test- and trial-functions generates non-zero entries if the closures of their supports
intersect. In analogy to the standard matrix stencil, one usually also relaxes this relation in the
sense that a pair of test- and trial-functions generates a non-zero entry if there exists a facet, such
that the supports of the test and the trial basis function intersect with some element adjacent to
that facet, respectively. For this purpose, we will first define a relation, which describes element
neighbours, as well as a proposition showing how this relation can be assembled by the methods
we have already described.

1The term trial space is a synonym for ansatz space.
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Lemma 9: Facet Neighbours
Let T = {Tk} denote a mesh and let F = {Fi} denote the set of all facets of T . Furthermore, let
F : T → ℘(F ) denote the relation

F(Tk) :=
{
Fi ∈ F

∣∣ Fi is a facet of Tk
}
,

then the relation N : T → ℘(T ) describing adjacencies of elements over facets (including self-
adjacencies), i.e.

N (Tk) =
{
Tl ∈ T

∣∣ Tl shares a common facet with Tk
}
,

is given by
N = F⊤ ◦ F . (4)

As long as one assumes that the mesh T is conformal, i.e. there exist no hanging nodes, then N
is strongly sparse by construction, as each Tk ∈ T has only a fixed number of facets, over which it
may be adjacent to another Tl ∈ T . By using the relation of facet neighbours, we can now propose
how the extended matrix stencil can be expressed by the means of a composition of relations, again
using the relaxed formulation.

Lemma 10: Extended Matrix Stencil
Let T , V , W , BV , BW , DV , DW as in Lemma 8. Furthermore, let N : T → ℘(T ) as in (4), then

the extended matrix stencil Â : BV → ℘(BW ) is given by

Â := DW ◦ N ◦ D⊤
V .

We omit the proof of the lemma, as it is similar to the one of the standard matrix stencil. Fur-
thermore, since N is both strongly sparse and symmetric, i.e. N = N⊤, we obtain weakly or even
strong sparsity of Â under the same assumptions as for the standard matrix stencil.

By using the concepts of adjacency relations that we have learned so far, one might also con-
struct and formally describe far more complex matrix stencils than the two (most common) variants
we have handled in this section. One notable example may be the assembly of a matrix stencil
for a combination of test- and trial-spaces defined on two different meshes discretising the same
analytical domain – in this case, one only needs to exchange the facet-neighbour relation N of
the previous lemma by an according adjacency relation describing intersecting element pairs of the
two different meshes. However, we will not continue investigating this and other more complex
scenarios in this work as this would exceed its scope.

4 Implementational Aspects

We now focus on the practical aspects of realising our concept of adjacency relations in the context
of a finite element software implementation. A first practical observation is that entities coming
into consideration for adjacency relations (e.g. vertices, basis functions or matrix rows) are usually
enumerated consecutively in some context-dependent order, so that one may restrict to handling
adjacency relations for sets of indices rather than dealing with the objects themselves. Therefore,
we want to identify an element xi ∈ X = {x0, ..., xn−1} by its unique index i ∈ {0, ..., n − 1} and
analogously yj ∈ Y = {y0, ..., ym−1} by j ∈ {0, ...,m− 1}.

In this section we will define an abstract interface for adjacency relations as well as describe data
structures and algorithms that realise the transposition and composition operations, as we have
defined them formally in the previous section. The following descriptions are expressed by means
of C++ classes and templates, but the interfaces and algorithms may as well be translated into any
other programming language capable of object-oriented and generic programming, of course.

4.1 Adjactor Interface

As a first step, we want to define a duck-type interface specifying the minimum requirements for a
class that shall represent an adjacency relation mapping A between (the indices of) two finite sets
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X and Y , so that it can be used by algorithms assembling adjacency related information, such as
matrix stencils or mesh neighbourhoods.

A class implements the adjactor interface, if it

1. has two member functions returning the cardinalities of the domain and image sets X and
Y , respectively:
std::size_t size_domain() const;

std::size_t size_image() const;

2. contains a public nested class (or typedef) image_iterator which has at least

• a standard constructor:
image_iterator();

• a copy-constructor:
image_iterator(const image_iterator& other);

• a pre-increment operator:
image_iterator& operator++();

• an inequality-comparison operator:
bool operator!=(const image_iterator& other) const;

• a dereferentiation operator that returns2 the index j of the current yj ∈ Y :
std::size_t operator*()

3. has a member function returning an image_iterator representing the first yj ∈ A(xi) for
any xi ∈ X:
image_iterator begin_image(std::size_t i) const;

4. has a member function returning an image_iterator representing the first position past the
last yj ∈ A(xi) for any xi ∈ X:
image_iterator end_image(std::size_t i) const;

For the complexity analysis that we will carry out in the following sections, we assume that all
functions and operators of a class implementing the above interface have a complexity of O(1).
Furthermore, each yj ∈ A(xi) shall be stored exactly once – or more precisely: for any index i of
xi ∈ X and any index j of yj ∈ A(xi), there shall ∃! k ∈ {1, ..., |A(xi)|}, such that j is returned by
the dereferentiation operator of the image_iterator given by applying the pre-increment operator
(k − 1) times onto the return value of begin_image(i) – this condition shall be referred to as
injectivity from now on. However, we do not assume that the indices j of yj ∈ A(xi) are sorted in
any order.

This interface definition is designed to be as lean as possible to allow existing implementations
of classes managing adjacency relations to be easily extended, so that they may be used for our
purposes without the necessity of reimplementing existing code. Moreover, any input iterator, as
defined by the C++ standard (see [1, 24.2.3]), fulfills the conditions of the image_iterator interface,
thus allowing a wide choice of potential class templates for use as internal data containers.

As we have seen in the theoretical background before, we will need to compute transpositions
and compositions of objects whose underlying class(es) implement(s) the adjactor interface. The
first approach – in analogy to the concept of container adaptors from the C++ standard library
– would be writing two class templates, which realise the transposition or composition of an
arbitrary (pair of) adjactor object(s). At least for the transposition operation, this will in general
not be possible, as it would require iterating over all xi ∈ X such that A(xi) ∋ yj for any
yj ∈ Y and some A : X → ℘(Y ), which is a functionality that our interface is not designed
to offer in an efficient way. The composition of two (or more) adjactor objects, however, could
be implemented as a class template in such a manner and, although the implementation of the
image_iterator class is a bit more complex in this case, this approach offers the possibility
of describing compositions of arbitrary length by recursively nesting such composite adjactors.

2The dereferentiation operator might as well return a (const) reference to an object of type std::size_t or any
other type, as long as the result is implicitly convertible to std::size_t.
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One drawback is that this way of realising compositions will inevitably violate the injectivity
condition, thus leading to potentially significant runtime overhead when iterating over the yj ∈
A(xi), especially if the (nested) composition consists of more than two adjactors.

Another approach, which we will describe in the following, is implementing a ‘reference’ adjactor
class that conforms to the above interface and which is capable of computing and storing the
(possibly temporary) transpositions and compositions of other adjactor objects. In total, such a
reference adjactor class must provide at least three operations, preferably realised as templatised
constructors:

1. The class has to be capable of converting any object whose underlying class implements
the adjactor interface into its own representation. This operation is called rendering (the
conversion of) an adjactor.

2. The class has to be capable of computing the transposition of any object whose underlying
class implements the adjactor interface and storing the result in its own representation. This
operation is called rendering the transposition of an adjactor.

3. The class has to be capable of computing the composition of any two objects (with compatible
cardinalities, of course) whose (possibly different) underlying classes implement the adjactor
interface and storing the result in its own representation. This operation is called rendering
the composition of two adjactors.

4.2 Dynamic Reference Adjactor

The first approach for the implementation of a reference adjactor class uses an
std::vector<std::set<std::size_t>> as an internal data container, which – considering our
required operations – is the natural choice for a C++ implementation utilising the language’s stan-
dard library components. This class is called the dynamic reference adjactor, where the word
dynamic derives from the capability of easily and efficiently adding and/or removing adjacencies
(in graph terms: edges), as long as the two sets X and Y remain unchanged.

The dynamic reference adjactor class implements the interface described in section 4.1 as follows:

• The cardinality of the image set Y , returned by the size_image() function, is stored sepa-
rately in an attribute of type std::size_t, as it cannot be deduced from the internal data
container itself.

• The cardinality of the domain set X, returned by the size_domain() function, is given by
the length of the outer std::vector container.

• The image_iterator is a typedef for the const_iterator of the inner std::set container.

• The begin_image(i) and end_image(i) functions call the begin() and end() functions of
the inner std::set container stored at position i of the outer std::vector container.

Each of the three rendering operations is easy to implement as a function template with less
than five lines of code for the dynamic reference adjactor class, as all rendering operations only
require iterating over all adjacencies of the (two) input adjactor(s) and successively inserting the
corresponding adjacency into the data container, which is a trivial task thanks to the insert()

function of the std::set class template.
The first drawback of this implementation is its worst-case runtime: assume we have A : X →

℘(Y ) and assume there exists an xi ∈ X such that |A(xi)| = |Y | =: n, i.e. xi is adjacent to all
y ∈ Y , then for rendering A(xi) for this particular xi, we obtain a worst-case runtime of

n∑

k=1

log(k) = log(n!) = Θ
(
n log(n)

)
,

since the complexity of the insert() function of the inner std::set container is logarithmic in
the size of that set (see [1, Table 102]). However, if we assume that A is strongly sparse, then we
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obtain ∑

x∈X

log
(
|A(x)|!

)
≤ |X| ·max

x∈X
log

(
|A(x)|!

)
≤ |X| · log(cA!),

which leads to a complexity of O(|X|) for the operation of rendering the conversion. By the same
argument, one can also show that rendering the transposition A⊤ has linear complexity if A⊤ is
strongly sparse. Furthermore, rendering the composition B ◦ A also leads to linear complexity, if
both A and B are strongly sparse, as can be seen in Lemma 6.

The second drawback is that in general one has no control over the internal data management
of the inner std::set containers. To be more precise, one usually cannot bound the amount of
memory that a single container reserves, which – considering the amount of sets required – may
lead to out-of-memory situations although the actual amount of memory required to store the total
adjacency information would still be within the machine’s resources.

As a final summary, one may say that the dynamic reference adjactor provides an approach
that is easy to implement and which suffices under the assumptions that a) all input adjactors are
strongly sparse and b) the memory required to store the resulting dynamic reference adjactor is
significantly lower than the total amount of memory available.

4.3 Static Reference Adjactor

The second approach is the static reference adjactor class using two std::vector<std::size_t>

objects to manage adjacency information. The design of this class is closely related to the CSR
matrix storage format (see e.g. [2]).

The static reference adjactor class consists of three attributes:

• A value of type std::size_t storing the cardinality of the image set Y , returned by the
size_image() function.

• An object of type std::vector<std::size_t>, named x_ptr, whose size equals one plus
the cardinality of the domain set X which is returned by the size_domain() function.

• A second object of type std::vector<std::size_t>, named y_idx, whose size equals the
cardinality of A.

The interplay of the x_ptr and y_idx vectors coincides with that of the row-pointer and column-
index arrays of the CSR matrix storage format, i.e. for the index i of any node xi ∈ X, the indices
j of all yj ∈ A(xi) are given by the entries y_idx[k] for x_ptr[i] ≤ k < x_ptr[i+1]. Please note
that – in contrast to many CSR conventions – we do not assume that the indices j of yj ∈ A(xi)
for some xi are sorted in any way. However, we enforce that the subvector of y_idx storing the
indices of yj ∈ A(xi) for some xi does not contain duplicate values.

In the following, we want to describe how the three render operations can be implemented
efficiently.

4.3.1 Conversion Rendering

For the operation of rendering an A : X → ℘(Y ) represented by an object A, whose underlying
class implements the adjactor interface, we proceed as follows:

1. Allocate the x_ptr array of length A.size_domain()+1 and set x_ptr[0] = 0.

2. Successively loop over all indices i of xi ∈ X in increasing order, compute |A(xi)| by iterat-
ing from A.begin_image(i) to A.end_image(i) and set x_ptr[i+1] = x_ptr[i] + card,
where card is a local variable storing |A(xi)|.

3. Allocate the y_idx array of length x_ptr.back().

4. For each index i of xi ∈ X, loop over all adjacent indices j of yj ∈ A(xi) and store them
successively in the sub-vector of y_idx beginning at position x_ptr[i].

The worst-case runtime analysis for this render operation is straight forward: step 1. has a
complexity of O(|X|), whereas steps 2., 3. and 4. have a complexity of O(|A|), which is also
the natural lower bound for the complexity of the total render operation.
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4.3.2 Transposition Rendering

For the operation of rendering the transposition A⊤ of A : X → ℘(Y ) represented by an object A,
whose underlying class implements the adjactor interface, we proceed as follows:

1. Allocate a temporary std::vector<std::size_t> named temp of length A.size_image()

and initialise its entries to zero.

2. For each index i of xi ∈ X, loop over all adjacent indices j of yj ∈ A(xi) and increment
temp[j] by one.

3. Allocate the x_ptr array and compute its entries successively by x_ptr[i+1] = x_ptr[i] + temp[i]

starting with x_ptr[0] = 0.

4. Copy x_ptr to temp (ignoring the last entry).

5. Allocate the y_idx array of length x_ptr.back().

6. For each index i of xi ∈ X, loop over all adjacent indices j of yj ∈ A(xi) and for each j set
y_idx[temp[j]] = i and increment temp[j] by one.

Also for this rendering operation, we obtain a total complexity of O(|A|), which originates from
the complexity of steps 2., 5. and 6., whereas steps 1., 3. and 4. yield a complexity of O(|Y |).

4.3.3 Composition Rendering

Before we describe the actual algorithm for this rendering operation, we want to discuss an is-
sue that appears with adjactor compositions. For the description of the adjactor interface, we
have assumed that any index j of yj ∈ A(xi) shall be stored exactly once within the family of
image_iterator’s describing A(xi). However, for the composition B ◦ A, this will in general not
hold, as some zk ∈ Z may be adjacent to a single xi ∈ X via two (or more) different yj1 , yj2 ∈ Y ,
i.e. yj1 , yj2 ∈ A(xi) and zk ∈ B(yj1) ∩ B(yj2). To avoid rendering duplicate indices, this scenario
has to be considered in the implementation, which in the following approach is realised using a
mask vector keeping track of the zk ∈ Z that have already been considered as being adjacent to
some xi ∈ X.

For the operation of rendering the composition B ◦ A of A : X → ℘(Y ) and B : Y → ℘(Z)
represented by two objects A and B, respectively, whose (possibly different) underlying classes
implement the adjactor interface, we proceed as follows:

1. Allocate the x_ptr array of length A.size_domain()+1 and set x_ptr[0] = 0.

2. Allocate a temporary std::vector<bool> named mask of length B.size_image() and ini-
tialise its entries to false.

3. Successively loop over all indices i of xi ∈ X in increasing order and:

(a) initialise a local variable of type std::size_t named card to zero.

(b) loop over all adjacent indices j of yj ∈ A(xi) and loop over all adjacent indices k of
zk ∈ B(yj), and:
If mask[k] is false, then increment card by one and set mask[k] to true, otherwise
skip this index k (as it has already been considered).

(c) loop over all adjacent indices j of yj ∈ A(xi) and loop over all adjacent indices k of
zk ∈ B(yj) and set mask[k] to false.

(d) set x_ptr[i+1] = x_ptr[i] + card.

4. Allocate the y_idx array of length x_ptr.back().

5. For each index i of xi ∈ X and:

(a) initialise a local variable of type std::size_t named cur to x_ptr[i]

10
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(b) loop over all adjacent indices j of yj ∈ A(xi) and loop over all adjacent indices k of
zk ∈ B(yj), and:
If mask[k] is false, set y_idx[cur] = k, increment cur by one and set mask[k] to
true, otherwise skip this index k (as it has already been considered).

(c) loop over all adjacent indices j of yj ∈ A(xi) and loop over all adjacent indices k of
zk ∈ B(yj) and set mask[k] to false.

For convenience we define C := B ◦ A, and we see that steps 1. ans 2. yield a complexity of
O(|X| + |Z|). Furthermore, step 4. gives us O(|C|), which is again a natural lower bound for the
overall complexity, and if we assume that C is (at least) weakly sparse, we have |C| ∈ O

(
|X|+ |Z|

)

by definition.
The analysis of steps 3. and 5. is a bit more complex: for instance, in step 3.(b), the variable

card is incremented exactly |C(xi)| times – thus again leading to a lower bound of O(|C|) for step 3.
– but in general one cannot provide an upper bound for the number of accesses on the mask array
without additional assumptions on the sparsity of A and B. If we assume that A and B fulfill one
of the three scenarios suggested by Lemma 6, then the proof of the lemma shows that the three
nested loops (over the indices i, j, k) cannot perform more than cC ·

(
|X|+ |Z|) iterations in total,

where cC is the sparsity constant as estimated in the proof – the same argument also holds for the
three other nested loops in steps 3. and 5.

Summarising all the partial estimates, we obtain a complexity of O(|X|+ |Z|) for this rendering
operation, assuming that A and B fulfill the requirements of Lemma 6.

5 Conclusions

We have proposed a formal description of adjacency relation mappings, which suggest an alter-
native to the usual approach of describing adjacency relations by graphs. These provide, in a
directly implementable manner, a means to express complex adjacency relations as compositions
and transpositions of more fundamental relations which appear in the context of finite element
software packages. We demonstrated this principle for the standard and extended finite element
matrix sparsity patterns. Although these are only two examples, they show the advantages of ad-
jacency relation mappings over graphs, as matrix sparsity patterns cannot be expressed as simple
operations on the latter.

Finally, we presented a generic interface which can be subsequently included in C++ finite
element software packages with minimal changes to existing code due to its weak assumptions
on the underlying data containers. Furthermore, the two reference adjactor classes, utilising C++

standard library containers, provide efficient implementations of the necessary transposition and
composition operations. These allow rendering various complex adjacency relations required in the
context of the finite element method, most notably the assembly of matrix sparsity patterns.
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