

ÜBUNGEN ZUR ALGEBRAISCHEN GEOMETRIE I

Blatt 16

Abgabe bis Dienstag, 8. Mai, 12:00 Uhr in Briefkasten 11

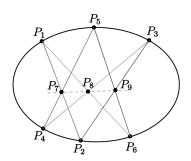
37. Es sei $V \subset \mathbb{A}^n$ eine affine Varietät und $X \subset \mathbb{P}^n$ ihr projektiver Abschluss. Für $f \in K[x_1, \ldots, x_n]$ mit $\deg(f) = d$ bezeichne $\mathrm{LF}(f) = f_d$ den homogenen Teil vom höchsten Grad, die *Leitform* von f. Zeigen Sie:

$$\mathcal{I}_+(V_\infty) = \langle \mathrm{LF}(f) \colon f \in \mathcal{I}(V) \rangle.$$

38. Satz von Pascal über das Hexagrammum Mysticum. Es sei C ein irreduzibler Kegelschnitt in \mathbb{P}^2 und seien p_1, \ldots, p_6 sechs verschiedene Punkte auf C. Dann liegen die drei Schnittpunkte

$$p_7 = L_1 \cap L_4$$
 mit $L_1 = \overline{p_1 p_2}$ und $L_4 = \overline{p_4 p_5}$,
 $p_8 = L_2 \cap L_5$ mit $L_2 = \overline{p_6 p_1}$ und $L_5 = \overline{p_3 p_4}$,
 $p_9 = L_3 \cap L_6$ mit $L_3 = \overline{p_2 p_3}$ und $L_6 = \overline{p_5 p_6}$

von Verbindungsgeraden auf einer Geraden.



Bildquelle: Wikimedia Commons (Ag2gaeh)

Beweisen Sie den Satz nach folgender Skizze: Sei $f \in K[x_0, x_1, x_2]_2$ mit $C = \mathcal{V}_+(f)$. Betrachte die Kubiken

$$X_1 = L_1 \cup L_5 \cup L_6$$
 und $X_2 = L_2 \cup L_3 \cup L_4$

und seien $g_1, g_2 \in K[x_0, x_1, x_2]_3$ mit $X_1 = \mathcal{V}_+(g_1), X_2 = \mathcal{V}_+(g_2)$. Sei $p \in C, p \notin \{p_1, \ldots, p_6\}$ und setze

$$g = g_2(p)g_1 - g_1(p)g_2.$$

Zeigen Sie, dass $g \neq 0$, aber $g(p) = g(p_1) = \cdots = g(p_6) = 0$. Schließen Sie mit Hilfe des Satzes von Bézout, dass f ein Teiler von g sein muss und folgern Sie daraus die Aussage des Satzes.