Prof. Dr. Daniel Plaumann M. Sc. Dimitri Manevich Sommersemester 2017/2018

ÜBUNGEN ZUR ALGEBRAISCHEN GEOMETRIE I

Blatt 24 Abgabe bis Dienstag, 10. Juli, 12:00 Uhr in Briefkasten 11

53. Zeigen Sie, dass die Graßmannsche $\mathbb{G}(1,3) = G(2,4)$ aller Geraden in \mathbb{P}^3 unter der Plücker-Einbettung in $\mathbb{P}(\bigwedge^2 K^4) \cong \mathbb{P}^5$ in den Koordinaten $z_{ij} = e_i \wedge e_j$ mit der quadratischen Hyperfläche

$$V_{+}(z_{01}z_{23}-z_{02}z_{13}+z_{03}z_{12})$$

übereinstimmt, der *Plücker-Quadrik*. Interpretieren Sie diese Gleichung noch einmal explizit als Relation zwischen den 2×2 -Minoren einer 2×4 -Matrix.

- **54.** Sei $p \in \mathbb{P}^3$ ein Punkt und $H \subset \mathbb{P}^3$ eine Ebene mit $p \in H$. Sei $\Sigma_{p,H} \subset \mathbb{G}(1,3)$ die Menge aller Geraden in \mathbb{P}^3 , die durch p gehen und in H enthalten sind. Zeigen Sie:
 - (a) Unter der Plücker-Einbettung ist $\Sigma_{p,H}$ eine Gerade in \mathbb{P}^5 .
 - (b) Jede Gerade in $\mathbb{G}(1,3) \subset \mathbb{P}^5$ ist von der Form $\Sigma_{p,H}$ für geeignete p, H.