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Introduction
These lecture notes accompany the second half (five hours) of a short course at IHP. The first
half was given by Ioannis Emiris.
The aim of the lectures is to give a short introduction to real algebraic geometry and semi-

algebraic geometry, i.e. the geometry of systems of real polynomial equations and inequalities.
I will not focus on symbolic computation or enter into any details about algorithms, but

I will emphasise the parts of the theory that form the basis of algorithms and are relevant for
computational and effective questions.

For references, I will often point to these two excellent books:
[BCR98] J. Bochnak, M. Coste, M.-F. Roy: Real Algebraic Geometry, Springer 1998.

(Translated, and also updated, from the French edition published in 1987)
[BPR06] S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry,

Springer 2006.

A lot of details and most proofs are omitted. Instead, I want to focus on ideas and examples.

I would like to thank the organizers of the workshop and special week Carlos D’Andrea,
Pierre Lairez, Mohab Safey El Din, Éric Schost, and Lihong Zhi for the invitation, and IHP for
the kind hospitality. With the lectures now delivered, I can say that audience participation was
great. In particular, I would like to thank everyone who pointed out typos and mistakes, which
have now hopefully been fixed. More comments are very welcome.

Daniel Plaumann Paris, 14 October 2023

Contact:
Daniel.Plaumann@math.tu-dortmund.de
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1 Real root counting
The problem of counting the real roots of a polynomial in one variable is of practical importance
but also at the heart of the theory in real algebraic geometry. Let

𝑓 (𝑇) = 𝑇𝑛 + 𝑎𝑛−1𝑇𝑛−1 + · · · + 𝑎1𝑇 + 𝑎0

be a monic real polynomial of degree 𝑛 in one variable𝑇 . For a quadratic (𝑛 = 2), the sign of the
discriminant

𝑎21 − 4𝑎0
decides whether 𝑓 has zero, one or two distinct real roots. Note that there is no need to compute
the roots. In particular, if the coefficients are rationals or integers, then so is the discriminant.
There are no arithmetic difficulties, like field extensions.
There is a similar criterion for 𝑛 = 3, but starting with 𝑛 = 4 the discriminant does not

suffice. There are two classical symbolic methods for counting real roots in any degree:

• Sturm sequences, based on a modified Euclidean algorithm;
• Hermite’s method, which we are going to look at now.

For 𝑓 as above, let 𝛼1, . . . , 𝛼𝑛 be the complex roots (not necessarily distinct). TheNewton sums
are the power sums of the roots:

𝑝𝑘 = 𝛼
𝑘
1 + · · · + 𝛼𝑘𝑛.

The Newton sums are symmetric polynomials in the roots and therefore polynomials in the
coefficients of 𝑓 , by the Fundamental Theorem on Symmetric Polynomials. Explicitly, they can
be computed by a recursive application of Newton’s identities:

𝑝𝑟 + 𝑐1𝑝𝑟−1 + 𝑐2𝑝𝑟−2 + · · · + 𝑐𝑟−1𝑝1 + 𝑐𝑟𝑟 = 0

for all 𝑟 ⩾ 1, where 𝑐𝑖 = 𝑎𝑛−𝑖 (resp. 0 for 𝑖 > 𝑛). Alternatively, one can use the companion matrix
of 𝑓 (see below). For example,

𝑝0 = 𝑛, 𝑝1 = −𝑐1, 𝑝2 = −𝑝1𝑐1 − 2𝑐2 = 𝑐21 − 2𝑐2 etc.

We now let 𝐻 (𝑓 ) be the Hermite matrix

𝐻 (𝑓 ) = (𝑝𝑖+𝑗−2)𝑖,𝑗=1,...,𝑛

of 𝑓 . It is a symmetric 𝑛 × 𝑛-matrix whose entries are homogeneous polynomials in 𝑎0, . . . , 𝑎𝑛−1
of degree at most 2𝑛 − 2. It is also a Hankel matrix, i.e. the entry at position (𝑖, 𝑗) depends only
on 𝑖 + 𝑗.

1.1 Theorem (Hermite criterion).

(1) The rank of 𝐻 (𝑓 ) is the number of distinct complex roots of 𝑓 .
(2) The signature of 𝐻 (𝑓 ) is the number of distinct real roots of 𝑓 .

Here, the signature sgn(𝐻 (𝑓 )) is the difference between the number of strictly positive and
the number of strictly negative eigenvalues of 𝐻 (𝑓 ).
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1.2 Example. For a monic quadratic polynomial 𝑓 (𝑇) = 𝑇2 + 𝑎1𝑇 + 𝑎0, the relevant Newton
sums are

𝑝0 = 2, 𝑝1 = −𝑎1, 𝑝2 = 𝑎21 − 2𝑎0
and so the Hermite matrix is

𝐻 (𝑓 ) =
(
2 −𝑎1

−𝑎1 𝑎21 − 2𝑎0

)
.

We can find the signature with Sylvester’s criterion from linear algebra: The determinant is

det(𝐻 (𝑓 )) = 𝑎21 − 4𝑎0

and therefore agrees with the discriminant. (This is true in any degree.) If 𝑎21 − 4𝑎0 > 0, then
𝐻 (𝑓 ) is positive definite, so the signature is 2. If 𝑎21 − 4𝑎0 < 0, then 𝐻 (𝑓 ) is indefinite, so the
signature is 0. If 𝑎21 − 4𝑎0 = 0, then 𝐻 (𝑓 ) has rank 1 and signature 1. So Hermite’s criterion
agrees with what we know about the quadratic equation. ^

Proof. Wecan verify this through a direct computation. We assume that 𝛼1, . . . , 𝛼𝑝 are the distinct
real roots of 𝑓 and 𝛼𝑝+1, . . . , 𝛼𝑝+𝑞, 𝛼𝑝+1, . . . , 𝛼𝑝+𝑞 the distinct non-real roots, so that there are 𝑟 =
𝑝 + 2𝑞 distinct roots in total. Each root 𝛼 𝑗 occurs with a multiplicity 𝑚 𝑗 ⩾ 1. We write

𝑣𝑗 = (1, 𝛼 𝑗, . . . , 𝛼𝑛−1𝑗 )𝑡

(column vectors) for 𝑗 = 1, . . . , 𝑟, which implies

𝐻 (𝑓 ) =
𝑟∑︁
𝑗=1

𝑚 𝑗𝑣𝑗𝑣
𝑡
𝑗

by definition. We also note that the vectors 𝑣1, . . . , 𝑣𝑟 are linearly independent (by the Vander-
monde formula). This shows (1). We can further write

𝐻 (𝑓 ) =
𝑝∑︁
𝑗=1

𝑚 𝑗𝑣𝑗𝑣
𝑡
𝑗 +

𝑝+𝑞∑︁
𝑗=𝑝+1

𝑚 𝑗(𝑣𝑗𝑣𝑡𝑗 + 𝑣𝑗𝑣𝑗
𝑡)

=

𝑝∑︁
𝑗=1

𝑚 𝑗𝑣𝑗𝑣
𝑡
𝑗 +

𝑝+𝑞∑︁
𝑗=𝑝+1

2𝑚 𝑗Re(𝑣𝑗)Re(𝑣𝑗)𝑡 −
𝑝+𝑞∑︁
𝑗=𝑝+1

2𝑚 𝑗Im(𝑣𝑗)Im(𝑣𝑗)𝑡 .

This shows that 𝐻 (𝑓 ) has signature 𝑝 + 𝑞 − 𝑞 = 𝑝 (see also the problem below). ■

Problem 1. Verify that if 𝑤1, . . . , 𝑤𝑟 ∈ ℝ𝑛 are linearly independent, then the symmetric matrix∑𝑘
𝑗=1 𝑤𝑗𝑤

𝑡
𝑗
−∑𝑟

𝑗=𝑘+1 𝑤𝑗𝑤
𝑡
𝑗
has rank 𝑟 and signature 𝑘 − (𝑟 − 𝑘) = 2𝑘 − 𝑟.

There is a very useful extension of Hermite’s criterion: Given 𝑓 ∈ ℝ[𝑇] as above and 𝑔 ∈
ℝ[𝑇] a second polynomial, we may wish to count only those real roots 𝛼 of 𝑓 with 𝑔(𝛼) > 0.
We can define the generalized Hermite matrix

𝐻 (𝑓 , 𝑔) = (𝑝𝑖+𝑗−2(𝑓 , 𝑔))𝑖,𝑗=1,...,𝑛 where 𝑝𝑘(𝑓 , 𝑔) = 𝛼𝑘1 · 𝑔(𝛼1) + · · · + 𝛼𝑘𝑛 · 𝑔(𝛼𝑘).
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1.3 Theorem (Hermite criterion with sign conditions).
(1) The rank of 𝐻 (𝑓 , 𝑔) is the number of distinct complex roots 𝛼 of 𝑓 with 𝑔(𝛼) ≠ 0.
(2) If 𝛼1, . . . , 𝛼𝑟 are the distinct real roots of 𝑓 , then sgn(𝐻 (𝑓 , 𝑔)) = ∑𝑟

𝑗=1 sgn(𝑔(𝛼 𝑗)).
Proof. See [BPR06, §4.3.2] ■

The case of polynomials in one variable is the most important in practice because one can
often proceed inductively. But I want to mention a natural generalization to polynomial sys-
tems in several variables. This starts from the following observation: The Newton sums of a
polynomial 𝑓 = 𝑇𝑛 + 𝑎𝑛−1𝑇𝑛−1 + · · · + 𝑎1𝑇 + 𝑎0 can be computed from the companion matrix

𝐶(𝑓 ) =

©­­­­­­­«

0 · · · 0 −𝑎0
1 0 · · · 0 −𝑎1
0 1 0

...
...

...
. . .

. . .
...

...
. . . 0 −𝑎𝑛−2

0 · · · 1 −𝑎𝑛−1

ª®®®®®®®¬
of 𝑓 , whose characteristic polynomial is 𝑓 , so that its eigenvalues are the roots of 𝑓 and the New-
ton sums 𝑝𝑘 of 𝑓 are therefore given by

𝑝𝑘 = tr(𝐶(𝑓 )𝑘).
In algebraic terms, we can think of 𝐶(𝑓 ) as the matrix describing the multiplication by 𝑇 (shift
operator) in the factor ring ℝ[𝑇]/𝑓 . This generalizes to the following:
1.4 Theorem (Multivariate Hermite criterion).
Let 𝑓1, . . . , 𝑓𝑘 ∈ ℝ[𝑋1, . . . , 𝑋𝑛] and assume that the system 𝑓1 · · · = 𝑓𝑘 = 0 is zero-dimensional,
i.e. with finitely many complex solutions. Let 𝐼 = (𝑓1, . . . , 𝑓𝑘) be the ideal generated by 𝑓1, . . . , 𝑓𝑘 and
𝐴 = ℝ[𝑋1, . . . , 𝑋𝑛]/𝐼 the factor ring modulo 𝐼 . On the finite-dimensional ℝ-vector space 𝐴, let

𝜑𝑓 : 𝐴→ 𝐴, ℎ ↦→ 𝑓 ℎ

be multiplication with a fixed element 𝑓 ∈ 𝐴, and consider the bilinear map

𝐻 : 𝐴 × 𝐴→ ℝ, (𝑓 , 𝑔) ↦→ tr(𝜑𝑓 𝑔).

(1) The rank of 𝐻 is the number of distinct complex solutions.
(2) The signature of 𝐻 is the number of distinct real solutions.

Proof. See [BPR06, §4.6] ■

Problem 2. Verify that the univariate Hermite criterion 1.1 is a special case of Thm. 1.4.
For example, the multivariate Hermite method has been employed recently for solving para-

metric systems of zero-dimensional systems over the reals.1

In this context, I also want to advertisemsolve, a modern and easy-to-use library for solving
multivariate polynomial systems developed here at LIP6 by the PolSys Team:

https://msolve.lip6.fr
1see H. P. Le andM. Safey El Din: Solving parametric systems of polynomial equations over the reals through Hermite

matrices. J. Symbolic Comput. 112(2022), 25–61

Real Algebraic Geometry (IHP lectures) / Daniel Plaumann (2023) 5

https://msolve.lip6.fr


2 Semialgebraic sets and quantifier elimination
Throughout, we will write 𝑋 = (𝑋1, . . . , 𝑋𝑛), andℝ[𝑋] as shorthand for the polynomial ring in
the variables 𝑋1, . . . , 𝑋𝑛.

An algebraic set in ℝ𝑛 is one of the form

Z(𝑓1, . . . , 𝑓𝑟) =
{
𝑝 ∈ ℝ𝑛 | 𝑓1(𝑝) = · · · = 𝑓𝑟 (𝑝) = 0

}
for polynomials 𝑓1, . . . , 𝑓𝑟 ∈ ℝ[𝑋]. A set of the form

W(𝑓1, . . . , 𝑓𝑟) =
{
𝑝 ∈ ℝ𝑛 | 𝑓1(𝑝) ⩾ 0, · · · , 𝑓𝑟 (𝑝) ⩾ 0

}
is a called a basic closed (semialgebraic) set. Likewise, a set of the form

U(𝑓1, . . . , 𝑓𝑟) =
{
𝑝 ∈ ℝ𝑛 | 𝑓1(𝑝) > 0, · · · , 𝑓𝑟 (𝑝) > 0

}
is basic open.

Definition. A semialgebraic set in ℝ𝑛 is a finite boolean combination of basic closed sets.

A finite boolean combination is made up of a finite number of unions, intersections and
complements. Equivalently, we may take finite boolean combinations of basic open sets.

2.1 Examples. (1) The closed unit disk is the semialgebraic setW(1 − 𝑋21 − 𝑋22 ). Half of
the disk isW(1 − 𝑋21 − 𝑋22 , 𝑋2). Three quarters of the disk (midnight to nine o’clock) is
the setW(1 − 𝑋21 − 𝑋22 ,−𝑋2) ∪W(1 − 𝑋21 − 𝑋22 , 𝑋1, 𝑋2).

(2) The semialgebraic subsets of ℝ are precisely the finite unions of points and intervals, i.e.

[𝑎, 𝑏] , (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏] , {𝑐}, ∅
for 𝑎, 𝑏 ∈ ℝ ∪ {∞} with 𝑎 < 𝑏 and 𝑐 ∈ ℝ (Exercise).

(3) Hence ℤ ⊂ ℝ is not semialgebraic.
(4) I just had to steal this one from [BCR98, Fig. 2.1]:

24 2. Semi-algebraic Sets 

Notation 2.1.2. Given a subset S of Ii!', denote by 

I(S) = {J E R[Xb ... ,Xnll Vx E S f(x) = O} 

the ideal of R[X 1, ... 'Xnl of polynomials vanishing on S. 

Note that each algebraic subset of Rn can be given by a single equation. 

Proposition 2.1.3; Given an algebraic subset V of Rn, there exists f in 
R[X1 , •.. , Xnl such that V = Z(I). 

Proof· Take f = ff + ... + f'/n, where It,···, fm generate I(V). 0 

We shall study the special properties of algebraic sets in other chapters. 

We are interested, here, in the properties they share with a larger class of 

subsets of Rn , the semi-algebraic sets. 

Definition 2.1.4. A semi-algebraic subset of Rn is a subset of the form 

S Ti 

U n{x ERn I Ai *i,i O}, 

i=l j=1 

where Aj E R[Xb ... , Xnl and *i,j is either < or =, for i = 1" ... , sand 
j=l, ... ,ri· 

Note that the semi-algebraic subsets of Rn form the smallest family of 

subsets containing all sets of the form 

{x ERn I f(x) > O}, where f E R[Xb ... ,Xnl , 

and closed under taking finite intersections, finite unions and complements. 

Alternatively, if we call the conditions f(x) > 0, f(x) < 0 or f(x) = 0, 

sign conditions on the polynomial f, then a semi-algebraic subset of Rn is 

defined by a boolean combination (obtained by disjunction, conjunction and 

negation) of sign conditions involving a finite number of polynomials. 

Example 2.1.5. 

(a) An algebraic set is, of course, semi-algebraic. 

Figure 2.1. 

2.1 Algebraic and Semi-algebraic Sets 25 

(b) Semi-algebraic sets can take various and pleasant shapes, like the one 

of Figure 2.1 which is defined by 

{(x, Y) E R2 I x 2/25 + y2/I6 < 1 and x2 + 4x + y2 - 2y > -4 

and x 2 - 4x + y2 - 2y > -4 and (x2 + y2 - 2y -=f 8 or y > -I)} . 

c) We shall see later in this chapter that many sets turn out to be semi-

algebraic, even if they do not appear so at first. For example, the closure of a 

semi-algebraic set, the set of points equidistant from two given semi-algebraic 

sets, etc., are semi-algebraic. 

It is, of course, not the case that every set is semi-algebraic. 

d) The set {(x, y) E R2 I y = eX} is not semi-algebraic. 

e) The set {(x,y) E R213n E N y = nx} is not semi-algebraic. 

f) The set 

{(x, y) E R21 y = LxJ or (x E Z and x y :::; x + I)} 

is not semi-algebraic (where Lx J denotes the greatest integer function). 

Figure 2.2. Example e (left) 

and Example f (right) 

Remark 2.1.6. The infinite fan (Example e) and the infinite staircase (Exam-

ple f) are different in the following sense: every point of R2 has a neighbour-

hood whose intersection with the infinite staircase is semi-algebraic, while 

this is not true for the infinite fan (look at the origin). The infinite staircase 

is said to be locally semi-algebraic. 

One sees immediately that 

Proposition 2.1.7. Semi-algebraic subsets of R are exactly the finite unions 
of points and open intervals (bounded or unbounded). 

Proposition 2.1.8. Every semi-algebraic subset of Rn can be written as a 
finite union of semi-algebraic sets of the form: 

{x E R n I !I(x) = ... = ft(x) = 0, gl(X) > 0, ... , gm{x) > O} , 

where !I" . .. , ft, gl, ... , gm are in R[XI, . .. , Xn). 

(5) The epigraph of the exponential {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥2 ⩾ 𝑒𝑥1} is not semialgebraic. Neither
is its graph. This is easy to believe, but how would you prove it?

(6) Easier: The epigraph 𝑋 = {(𝑥1, 𝑥2) ∈ ℝ2 | 𝑥2 ⩾ sin(𝑥1)} of sine is not semialgebraic. For
if it were, then the intersection with the horizontal axis Z(𝑋2) would also be semialge-
braic. But this is an infinite union of intervals. ^
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The first example already brings up an interesting point: Not every subset ofℝ𝑛 that is closed
and semialgebraic is basic closed.

Problem 3. Show that the sectorW(1− 𝑋21 − 𝑋22 ,−𝑋2) ∪W(1− 𝑋21 − 𝑋22 , 𝑋1, 𝑋2) in Exam-
ple 2.1(1) is not basic closed.

A peculiar fact in real algebraic geometry is that every real algebraic set can be defined by
a single equation, since Z(𝑓1, . . . , 𝑓𝑟) = Z(𝑓 21 + · · · + 𝑓 2𝑟 ). There is no such simple trick for in-
equalities. Also, we can take finite boolean combinations of basic sets in any order. Nevertheless,
semialgebraic sets admit certain normal forms:

2.2 Proposition. Every semialgebraic set in ℝ𝑛 can be expressed as a finite union of sets of the
form Z(𝑓 ) ∩ U(𝑔1, . . . , 𝑔𝑙)
for polynomials 𝑓 , 𝑔1, . . . , 𝑔𝑙 ∈ ℝ[𝑋].

Proof. Since these sets are semialgebraic and include all basic open sets, it is enough to check
that this class is closed unter finite boolean operations (Exercise). ■

The following looks similar at a first glance but is much more difficult to prove:

2.3 Theorem (Finiteness theorem). Every closed (resp. open) semialgebraic set is a finite union
of basic closed (resp. basic open) sets.

Proof. We will not need this, but see [BCR98, Thm. 2.7.2]. ■

The foundation of semialgebraic geometry is the projection theorem:

2.4 Theorem (Projection Theorem). Let 𝑆 ⊂ ℝ𝑚×ℝ𝑛 be semialgebraic and let 𝜋 : ℝ𝑚×ℝ𝑛 →
ℝ𝑛 be the projection onto the second factor. Then 𝜋 (𝑆) is again a semialgebraic set.

The proof of the projection theorem is an application of root counting. Let us sketch the
simplest case: Let 𝑓 ∈ ℝ[𝑇, 𝑋1, . . . , 𝑋𝑛] be a polynomial in 𝑛+1 variables with zero set 𝑆 = Z(𝑓 )
in ℝ ×ℝ𝑛. Let 𝜋 be the projection onto ℝ𝑛. Then

𝜋 (𝑆) =
{
𝑝 ∈ ℝ𝑛 | ∃𝑎 ∈ ℝ : 𝑓 (𝑎, 𝑝) = 0

}
,

in other words, 𝜋 (𝑆) is the set of all 𝑝 ∈ ℝ𝑛 for which the polynomial 𝑓 (𝑇, 𝑝) ∈ ℝ[𝑇] has at
least one real root. We can set up the Hermite matrix 𝐻 (𝑓 ) of 𝑓 with respect to 𝑇 . Its entries
are polynomials in the coefficients of 𝑓 and therefore polynomials in 𝑋1, . . . , 𝑋𝑛. By Hermite’s
criterion 1.1, the set 𝜋 (𝑆) consists of those points 𝑝 for which the signature of 𝐻 (𝑓 ) is strictly
positive. This condition can be expressed by polynomial inequalities in the entries of 𝐻 (𝑓 ) and
hence in 𝑋1, . . . , 𝑋𝑛 (see below). These inequalities describe 𝜋 (𝑆) as a semialgebraic set.
For the general case, one needs to use the signed version ofHermite’s criterion 1.3. The proofs

in [BCR98, Thm. 2.2.1] and [BPR06, §1.3] are based on Sturm sequences. (The latter also describes
the algorithm much more explicitly.)

Problem 4. Show that the set of real symmetric 𝑛 × 𝑛-matrices of a fixed signature 𝑘 is a
semialgebraic subset of the space 𝕊𝑛 of real symmetric matrices, defined by polynomials with
integer coefficients. (Suggestion: Use induction on 𝑛. Note that if 𝐴 ∈ 𝕊𝑛 with 𝑎11 ≠ 0, there is
an invertible matrix 𝑇 such that 𝑇 𝑡𝐴𝑇 is block-diagonal of the form

(
𝑎11 0
0 𝐴′

)
.)
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2.5 Example. Wewill see several consequences and reformulations of the ProjectionTheorem
for semialgebraic geometry.
A simple application in geometry is something like the following: Suppose that, for some

reason, we wish to consider the set of all polynomials 𝑓 ∈ ℝ[𝑋, 𝑌 ] of degree 2 for which the
zero set (conic) Z(𝑓 ) in ℝ2 is fully contained in the upper half plane. We can write down an
incidence correspondence

{(𝑓 , (𝑎1, 𝑎2)) ∈ ℝ[𝑋, 𝑌 ]⩽2 ×ℝ2 | 𝑎2 < 0, 𝑓 (𝑎1, 𝑎2) = 0}.

Under the identification ofℝ[𝑋, 𝑌 ]⩽2 withℝ6 by taking coefficients, this is a semialgebraic set
in ℝ6 × ℝ2 = ℝ8. Its projection onto the first factor is the set of quadratics having some root
in the lower half plane. It is semialgebraic by the Projection Theorem. Its complement is also
semialgebraic, and it is the set we want. So we know that there is some semialgebraic description
of this set of polynomials. ^

Problem 5. Compute inequalities describing the set in the above example.

3 Real closed fields
Many statements of real algebraic geometry hold not only over the real numbers but over every
real closed field. These are the fields that behave algebraically like the real numbers. There are
several equivalent definitions (see [BCR98, §1.2] or [KS22, Ch. 1]), such as:

Definition. A real closed field is an ordered field (𝑅, ⩽) such that
(1) every positive element in 𝑅 is a square;
(2) every polynomial of odd degree over 𝑅 has a root in 𝑅.

An equivalent characterization, it turns out, is that −1 is not a square in 𝑅, but 𝑅(
√
−1) is

algebraically closed (Artin-Schreier, 1927; see [KS22, Thm. 1.5.4 and Thm. 1.6.1]).

Why is this relevant? First, there are some important examples of real closed fields:
(a) The real numbers ℝ, of course.
(b) The fieldℝalg = ℚ ∩ℝ of real algebraic numbers. These are the numbers we typically

use for symbolic computations, without all the “dead wood” of real transcendental numbers.

There is a notion of real closure for an ordered field, analogous to the algebraic closure.

3.1 Theorem. Let 𝐾 be an ordered field. There exists a real closed field 𝑅 containing 𝐾 as a subfield
such that 𝑅/𝐾 is algebraic and the ordering of 𝑅 extends that of 𝐾 . The field 𝑅 is unique up to a
unique order-preserving isomorphism.

For example, the real algebraic numbers ℝalg are the real closure ofℚ.

3.2 Example. The fieldℝ((𝑇)) or realLaurent series is the field of fractions of the formal power
series ringℝ[[𝑇]]. It can be ordered by comparing initial cofficients, i.e. the non-zero coefficients
with lowest exponents. In other words, we have 𝑓 > 0 for 𝑓 (𝑇) ∈ ℝ((𝑇)) if the first non-zero
(formal) derivative of 𝑓 at 𝑇 = 0 is positive.
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The real closure of ℝ((𝑇)) is the field ℝ{{𝑇}} of real Puiseux series. Explicitly, a Puiseux
series is a formal series of the form ∑︁

𝑖⩾𝑘

𝑎𝑖𝑇
𝑖/𝑞

where 𝑘 ∈ ℤ, 𝑎𝑖 ∈ ℝ, 𝑖 runs over integers ⩾ 𝑘, and 𝑞 is a positive integer. (In other words,𝑇 may
occur with an infinite number of rational exponents, but starting from a minimum and over a
common denominator; it is not obvious that ℝ{{𝑇}} is indeed a field.)
This description of the real closure is a consequence of theNewton-Puiseux theorem (see

e.g. [BPR06, Thm. 2.91] for a proof). Likewise, the fieldℂ{{𝑇}} is the algebraic closure ofℂ((𝑇)).
The field ℝ{{𝑇}} also contains the real closure of the rational function field ℝ(𝑇) in one

variable (with respect to the same ordering) as a subfield.
Puiseux series occur naturally in real algebraic geometry, because we can think of varieties

and semialgebraic sets over ℝ{{𝑇}} as families of such objects over ℝ parametrized in 𝑇 , while
still having all the benefits of working over a real closed field. This also makes them a useful
algebraic tool in real tropical geometry (see [MS15] for a general reference).
Note that the variable𝑇 in the fieldsℝ((𝑇)) andℝ{{𝑇}} is infinitesimal, i.e., it is smaller than

1/𝑛 for every natural number 𝑛. Consequently, 1/𝑇 is larger than any natural number. The
ordered fields ℝ((𝑇)) and ℝ{{𝑇}} are therefore non-archimedean. ^

4 Formulas
We have to take a short detour and introduce a few basic notions from mathematical logic. Let
𝐴 be a ring (commutative with 1), e.g. 𝐴 = ℤ or 𝐴 = ℝ.

• An 𝐴-prime formula is a formula of the form 𝑓 (𝑋) > 0 for a polynomial 𝑓 ∈ 𝐴[𝑋].
• An 𝐴-formula arises by iteration as follows: Any 𝐴-prime formula is an 𝐴-formula. If 𝜑
and 𝜓 are two 𝐴-formulas, then so are

𝜑 ∨ 𝜓, ¬𝜑, ∃𝑥𝑖𝜑.
• Using this, we can also express the remaning standard logical operators: 𝜑 ∧ 𝜓 is ¬(¬𝜑 ∨
¬𝜓), 𝜑 ⇒ 𝜓 is ¬(𝜑 ∧ ¬𝜓), and ∀𝑋𝑖𝜑 is ¬∃𝑋𝑖(¬𝜑). Also, the formula 𝑓 (𝑋) ⩾ 0 is defined
as¬(−𝑓 (𝑋) > 0); the formula 𝑓 (𝑋) = 0 is similarly defined. Also, 𝑓 (𝑋) > 𝑔(𝑋) is defined
by 𝑓 (𝑋) − 𝑔(𝑋) > 0, etc.

• A variable in a formula is called free, if it occurs (at least once) outside the scope of any
quantifier. Otherwise, the variable is called bound. An 𝐴-formula in which all variables
are bound is called an 𝐴-sentence.

• A formula is quantifier-free if it does not involve any quantifiers.

Whether an 𝐴-sentence is true may of course depend on what values we are allowed to sub-
stitute for the variables. For example, the ℤ-sentence ∃𝑋 (𝑋2 = 2) is true in ℝ but false in ℤ.
On the other hand, a formula containing a free variable has no truth value: It is meaningless to
say that ∃𝑋1(𝑋1 = 𝑋2) is true or false.
Definition. Let 𝑅 be a ring containing 𝐴 as a subring. If 𝜑 is an 𝐴-formula and 𝑋1, . . . , 𝑋𝑚 are
free variables in 𝜑 (or not occuring in 𝜑 at all), we can form the set of satisfying assignments
SAT𝑅 (𝜑) as the set of all points 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛 such that 𝜑(𝑎1, . . . , 𝑎𝑛), which means that
𝜑 becomes a true sentence in 𝑅 if 𝑎𝑖 is substituted for 𝑋𝑖, for all 𝑖 = 1, . . . , 𝑚.
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We can define semialgebraic sets over a real closed field 𝑅 in exactly the same way as over
the real numbers. Everything we have proved so far (root counting, projection theorem,. . . ) will
work just as before. Using the language of formal logic, we can now say:

4.1 Theorem. Semialgebraic sets in 𝑅𝑛 are the sets of satisfying assignments of 𝑅-formulas in at
most 𝑛 free variables.

Proof. The description of a semialgebraic set as a boolean combination of basic sets is easily
rewritten as an 𝑅-formula. The converse is proved by “induction on the recursive construction
of the formula”: It is clear that∨ corresponds to union and¬ to taking complements. The crucial
point is that if we know that SAT𝑅 (𝜑) ⊂ 𝑅𝑛 is semialgebraic, then SAT𝑅 (∃𝑋𝑖𝜑) ⊂ 𝑅𝑛−1 is also
semialgebraic by the Projection Theorem. ■

4.2 Example. The closure of a semialgebraic set 𝑆 in ℝ𝑛 is again semialgebraic. To see this,
write 𝑆 = SATℝ(𝜑) for some ℝ-formula 𝜑 and note that the closure of 𝑆 is the set of satisfying
assignments of the formula

∀𝜀
(
𝜀 > 0⇒ ∃𝑌

(
𝜑(𝑌 ) ∧∑(𝑋𝑖 − 𝑌𝑖)2 < 𝜀

) )
in the free variables 𝑋 = (𝑋1, . . . , 𝑋𝑛). The interior of 𝑆 is likewise algebraic, by a similar argu-
ment or by taking complements. ^

4.3 Example. The closure of a basic open setU(𝑓1, . . . , 𝑓𝑟) can be strictly smaller than the ba-
sic closed setW(𝑓1, . . . , 𝑓𝑟). In other words, relaxing inequalities may not give the closure. For
instance,U(𝑓1, . . . , 𝑓𝑟) could be empty andW(𝑓1, . . . , 𝑓𝑟) non-empty (Example?). For computa-
tional purposes, this can be extremely annoying (see also CAD below). ^

Problem 6. It’s even worse: Can you find an example of a basic open set whose closure is not
basic closed at all? (Maybe not. But it’s somewhere in [ABR96].)

4.4 Theorem (Quantifier elimination). Let 𝐴 be a ring and 𝜑 an 𝐴-formula. Then there exists a
quantifier-free 𝐴-formula 𝜓 with the same free variables as 𝜑 and such that SAT𝑅 (𝜑) and SAT𝑅 (𝜓)
agree for any real closed field that contains 𝐴.

This is another reformulation of the Projection Theorem, with one additional detail: The
quantifier-free formula 𝜓 does not depend on 𝑅. This independence does not follow from the
statement of the ProjectionTheorem, but it does follow from its proof, withminimal extra effort:

Sketch of proof. The proof is the same as that of Thm. 4.1 if one verifies that the formulas obtained
from 𝐴-formulas are again 𝐴-formulas. This is true, because the signature of a matrix whose
entries are polynomial in 𝐴 is determined by polynomial inequalities with coefficients in 𝐴. ■

Elimination is a very versatile tool, as can be already seen in Examples 2.5 and 4.3. Many,
if not most, operations we perform in algebraic geometry can be set up as elimination prob-
lems. Unfortunately, elimination is often too slow in practice. For algebraic geometry over ℂ
or algebraically closed fields, Gröbner bases are the main tool. For real algebraic geometry, the
situation is more complicated and in practice often requires a mix of different methods.
Algorithms for quantifier elimination (or the Projection Theorem) are based on cylindrical

algebraic decomposition, to be discussed later. The complexity is double exponential in 𝑛.
For now, wewill concentrate on somemore abstract consequences of quantifier elimination,

in particular the important Tarski principle:
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4.5 Corollary (Transfer principle of Tarski-Seidenberg). Let 𝐾 be a field and let 𝑅1 and 𝑅2 be
two real closed fields containing 𝐾 and inducing the same ordering on 𝐾 . Then the true 𝐾-sentences
over 𝑅1 are exactly the same as over 𝑅2.

Proof. For any 𝐾-sentence 𝜑, there is a quantifier-free 𝐾-sentence that is equivalent to 𝜑 over
𝑅1 and over 𝑅2. But whether such a sentence is true or false is decided in 𝐾 and does not involve
𝑅1 and 𝑅2 at all. ( Just think about what a “quantifier-free 𝐾-sentence” really is.) ■

In the language of model theory, this is usually stated as: The theory of real closed fields in the
language of ordered rings is model complete.

4.6 Examples. For any system of equations and inequalities defined over ℤ or ℚ, the solv-
ability in real algebraic numbers (over ℝalg) is equivalent to the solvability over ℝ. The set of
solutions will in general be larger, but one will be non-empty if and only if the other is non-
empty. So symbolic computations over ℚ can capture the full picture, in principle. But even
going to something like ℝ{{𝑇}}, introducing the infinitesimal element 𝑇 , changes nothing.
It should be pointed out in this context that the Archimedean axiom itself

∀𝑟 ∈ ℝ∃𝑛 ∈ ℕ : 𝑛 > 𝑟

is not an ℝ-formula, since it specifically asks for the existence of a natural number. So it may
(and does) hold in some real closed fields but not in others. In this sense, algebra cannot detect
this property.
Likewise, we can use any fixed polynomial expression over a real closed field 𝑅 in an 𝑅-

formula, but we cannot express

There exists a polynomial such that. . .

in an 𝑅-formula. Only once a degree 𝑑 is fixed, we can encode

There exists a polynomial of degree at most 𝑑 such that. . .

in an 𝑅-formula. Therefore, bounding degrees in some construction often has great theoretical
consequences, in addition to questions of complexity or practical runtime. ^

5 Digression: Hilbert’s 17th Problem
At the International Congress of Mathematicians in Paris in 1900, David Hilbert presented a list
of 23 Problems he considered to be important and fruitful. Most Hilbert problems have been
solved, but a few are still open (e.g. the Riemann hypothesis). Two of Hilbert’s problems belong
to the area of real algebraic geometry, namely number 16 (still largely open and again included
by Smale in his list of problems) and number 17:

Question (Hilbert’s 17th Problem). Let 𝑓 ∈ ℝ(𝑋) be a rational function. Assume that 𝑓 is
positive on its domain, i.e. 𝑓 (𝑎) ⩾ 0 for all 𝑎 ∈ ℝ𝑛 at which 𝑓 does not have a pole. Are there
rational functions 𝑔1, . . . , 𝑔𝑟 ∈ ℝ(𝑋) such that

𝑓 = 𝑔21 + · · · + 𝑔2𝑟 ?
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In other words, is every positive rational function a sum of squares? This condition is obvi-
ously sufficient for positivity, but is it necessary?
Hilbert’s 17th problem has a history going back a few years to earlier work of Hilbert on sums

of squares of homogeneous polynomials. It was solved 27 years later by Emil Artin. Its solution
is the starting point for most of the following theory.
Using the Tarski principle, Hilbert’s 17th problem has a short and ingenious solution.

5.1 Theorem (E. Artin 1927). Every positive rational function is a sum of squares.

Proof. Let 𝑓 ∈ ℝ(𝑋) be a rational function and assume that 𝑓 is not a sum of squares. Then
there is some ordering of the fieldℝ(𝑋) in which 𝑓 is a negative element. In other words, sums
of squares are the only elements in a field that are necessarily positive with respect to any order-
ing. This is not very hard to show using Zorn’s lemma; see below for the proof. The fieldℝ(𝑋)
possesses a real closure 𝑅 with respect to this ordering. Since ℝ(𝑋) is a subfield of 𝑅, the vari-
ables 𝑋 = (𝑋1, . . . , 𝑋𝑛) are just elements of 𝑅. That 𝑓 is negative inℝ(𝑋) and therefore in 𝑅 just
means that the polynomial 𝑓 (𝑇) (in a new set of variables𝑇 = (𝑇1, . . . , 𝑇𝑛), if we want) evaluates
negatively at the point 𝑋 ∈ 𝑅𝑛. For fixed 𝑓 , the existence of such a point is an ℝ-sentence. By
the transfer principle, it must also hold over ℝ. So 𝑓 is not positive. ■

This is one of those proofs. . .

https://xkcd.com/1724/

This is not Artin’s original proof, since Tarski’s principle came later (1940). Instead, Artin
used a more algebraic statement later developed into the Artin-Lang Theorem on real places (see
[BCR98, §4.1]). The basic idea, however, is the same.

5.2 Example. Motzkin’s polynomial 𝑓 = 𝑋4𝑌 2 + 𝑋2𝑌 4 − 3𝑋2𝑌 2 + 1 is the best-known ex-
ample of a polynomial that is positive (⩾ 0) on ℝ2 but cannot be written as a sum of squares
of polynomials. By Artin’s theorem, it can be written as a sum of squares of rational functions,
though the proof is not constructive. Explicitly, one can verify that

𝑓 =
𝑋2𝑌 2(𝑋2 + 𝑌 2 + 1) (𝑋2 + 𝑌 2 − 2)2 + (𝑋2 − 𝑌 2)2

(𝑋2 + 𝑌 2)2

is a representation of 𝑓 as a sum of squares inℝ(𝑋, 𝑌 ) (see for example [Mar08] and the lectures
of Didier Henrion for more on positive polynomials). ^

The proof of Artin’s theorem made use of the following lemma, which we include here for
reference (see also [BCR98, §1.1] or [KS22, §1.1]).
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5.3 Lemma. Let 𝐾 be a field of characteristic 0. If 𝑐 ∈ 𝐾 is not a sum of squares in 𝐾 , then there
exists a field ordering ⩽ of 𝐾 with 𝑐 < 0.

Proof. A field ordering ⩽ of 𝐾 can be identified with its positive cone 𝑃⩾ = {𝑎 ∈ 𝐾 | 𝑎 ⩾ 0},
since 𝑎 ⩾ 𝑏 is equivalent to 𝑎 − 𝑏 ⩾ 0 and therefore to 𝑎 − 𝑏 ∈ 𝑃⩾ . A preordering of 𝐾 is a subset
𝑃 ⊂ 𝐾 satisfying the conditions

𝑃 + 𝑃 ⊂ 𝑃, 𝑃 · 𝑃 ⊂ 𝑃, ∀𝑎 ∈ 𝐾 : 𝑎2 ∈ 𝑃, −1 ∉ 𝑃.

Clearly, the positive cone 𝑃⩾ of a field ordering ⩽ is a preordering. Also, Σ = {𝑎21 + · · · +
𝑎2
𝑘
| 𝑎1, . . . , 𝑎𝑘 ∈ 𝐾, 𝑘 ∈ ℕ}, the set of all sums of squares in 𝐾 , is a preordering, provided

that −1 ∉ Σ. (If −1 is a sum of squares in 𝐾 , then every element is a sum squares, since we can
write 𝑎 = ( 𝑎+12 )2− ( 𝑎−12 )2 = ( 𝑎+12 )2 + (−1) · ( 𝑎−12 )2 for any 𝑎 ∈ 𝐾 . So the statement of the lemma
is empty in this case.) For a preordering to be an actual ordering, it must contain either 𝑎 or −𝑎
for every 𝑎 ∈ 𝐾 \ {0}. Thus Σ is, in general, not an ordering.
The crucial step is the following: If 𝑃 is a preordering of 𝐾 and 𝑎 an element of 𝐾 \ 𝑃, then

the set 𝑃−𝑎 = {𝑝− 𝑞𝑎 | 𝑝, 𝑞 ∈ 𝑃} is again a preordering, with −𝑎 ∈ 𝑃−𝑎. The first three properties
are checked at once. To see−1 ∉ 𝑃−𝑎, suppose to the contrary that−1 = 𝑝−𝑞𝑎 for some 𝑝, 𝑞 ∈ 𝑃.
Then 𝑞 ≠ 0, since −1 ∉ 𝑃, hence 𝑎 = 𝑞−2 · 𝑞 · (1 + 𝑝) ∈ 𝑃, a contradiction.
We now look at the set of all preorderings of 𝐾 containing the element −𝑐, ordered by in-

clusion. It is not empty, since it contains Σ−𝑐. Ascending unions of preorderings are obviously
preorderings, hence Zorn’s lemma applies and produces a maximal preordering 𝑃 of 𝐾 contain-
ing −𝑐. It is easy to check that 𝑎 ⩽ 𝑏 ⇔ 𝑏 − 𝑎 ∈ 𝑃 is an ordering of 𝐾 : If there were 𝑎 ∈ 𝐾

with neither 𝑎 ∈ 𝑃 nor −𝑎 ∈ 𝑃, then one of 𝑃−𝑎 or 𝑃𝑎 would be a preordering containg −𝑐 that
is larger than 𝑃. ■

Note that the lemma also implies that a field 𝐾 possesses some field ordering if and only if
not every element in 𝐾 is a sum of squares or, equivalently, if −1 is not a sum of squares.

6 Summary: Semialgebraic maps and topology
of semialgebraic sets

Let always 𝑅 be a real closed field.

Definition. Let 𝐴 ⊂ 𝑅𝑚 and 𝐵 ⊂ 𝑅𝑛 be semialgebraic sets. A map 𝜑 : 𝐴 → 𝐵 is called
semialgebraic, if its graph Γ(𝜑) = {(𝑝, 𝑞) ∈ 𝐴× 𝐵 | 𝜑(𝑝) = 𝑞} ⊂ 𝑅𝑚 × 𝑅𝑛 is a semialgebraic set.

6.1 Examples. Every polynomial function is semialgebraic. The square root ℝ⩾0 → ℝ, 𝑥 ↦→√
𝑥 is semialgebraic. The absolute value is semialgebraic. Any step function with a finite number

of steps is semialgebraic. ^

6.2 Example. For a more interesting example, let 𝑆 ⊂ ℝ𝑛 be a non-empty semialgebraic set.
The map

𝑑𝑆 : ℝ𝑛 → ℝ⩾0, 𝑑𝑆 (𝑥) = inf
{
∥𝑥 − 𝑦∥ | 𝑦 ∈ 𝑆

}
is semialgebraic with 𝑑−1

𝑆
(0) = 𝑆 (Exercise). ^

Real Algebraic Geometry (IHP lectures) / Daniel Plaumann (2023) 13



6.3 Proposition. The image of a semialgebraic set under a semialgebraic map is semialgebraic.

Proof. By the Projection Theorem, since the image is a projection of the graph. ■

Now for the topology: Let 𝑅 be a real closed field, for example ℝalg, the real algebraic num-
bers. The field 𝑅 carries a topology induced by its ordering, which is exactly the usual open-ball
topology on 𝑅𝑛 and its subsets. We have already seen that the closure of a semialgebraic set in
ℝ𝑛 in again semialgebraic. This is true over any real closed field: With the order topology on 𝑅𝑛,
the closure is described by the same 𝑅-formula as over ℝ. Topology is great, but we have to be
careful when working over general real closed fields.
The order topology as such does not have very good properties: For 𝑅 ≠ ℝ, the real line is

always totally disconnected. However, this problem (mostly) disappears as long as we restrict
ourselves to semialgebraic sets only. For example:

Definition. A semialgebraic set 𝑆 ⊂ 𝑅𝑛 is semialgebraically connected if the following
holds: If 𝑆1, 𝑆2 ⊂ 𝑆 are two disjoint open subsets of 𝑆 with 𝑆 = 𝑆1 ∪ 𝑆2, then 𝑆1 = ∅ or 𝑆2 = ∅.

With this definition, the real line 𝑅 is easily seen to be connected once again, as are all inter-
vals in 𝑅.

6.4 Theorem. Every semialgebraic set 𝑆 is a finite union of disjoint semialgebraically connected
subsets, which are both closed and open in 𝑆, called the (semialgebraic) connected components of 𝑆.

Proof. See [BCR98, Thm. 2.4.4]. ■

We can talk about continuity of semialgebraic maps as usual (in the order topology). Not
every semialgebraic map is continuous but, because of the tame nature of semialgebraic sets,
discontinuities cannot be too wild, either. (See for example Problem 8 below).
One difference is that, due to the disconnectedness of the topology, we cannot argue with

sequences to describe convergence, closures, continuity, etc.

Definition. Let 𝑆 ⊂ 𝑅𝑛 be a semialgebraic set. A semialgebraic path in 𝑆 is a continuous
semialgebraic map 𝛼 : 𝐼 → 𝑆 defined on a non-empty interval 𝐼 ⊂ 𝑅.

6.5 Theorem (Curve selection lemma). Let 𝑆 ⊂ 𝑅𝑛 be a semialgebraic set, and let 𝑥 ∈ 𝑆. Then
there is a semialgebraic path 𝛼 : [0, 1] → 𝑅𝑛 such that 𝛼(𝑡) ∈ 𝑆 for every 𝑡 ∈ [0, 1) and 𝛼(1) = 𝑥.

The curve selection lemma can be applied in many cases to replace arguments with con-
vergent sequences. Two different proofs are given in [BCR98, §2.5] and [BPR06, Thm. 3.19], but
neither is exactly short.
It should bementioned that connected semialgebraic sets are always (semialgebraically) path-

connected, which follows from the curve selection lemma.
We also have to be careful with the definition of compactness.

Problem 7. Show that the unit interval [0, 1] inℝalg is not compact (with the usual open-cover
definition).

Compactness should be replaced with the property of being closed and bounded. Here,
𝑆 ⊂ 𝑅𝑛 is bounded if there exists an 𝑟 ∈ 𝑅 with ∥𝑥∥ < 𝑟 for all 𝑥 ∈ 𝑆. (Note that if 𝑅 is not
archimedean, such an 𝑟 might be larger than any integer, and we would still call 𝑆 bounded.)
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6.6 Corollary. A semialgebraic 𝑆 ⊂ 𝑅𝑛 is closed and bounded if and only if the following holds:
Any semialgebraic path 𝛼 : [0, 1) → 𝑆 extends to a semialgebraic path 𝛼̃ : [0, 1] → 𝑆 with 𝛼̃ | [0,1) = 𝛼.

Proof. Exercise. ■

6.7 Theorem. If 𝑆 ⊂ 𝑅𝑚 is semialgebraic, closed and bounded and 𝜑 : 𝑅𝑚 → 𝑅𝑛 is a semialgebraic
map, then 𝜑(𝑆) is again closed and bounded.

Proof. [BCR98, Thm. 2.5.8] ■

7 The real Nullstellensatz
Given polynomials 𝑓1, . . . , 𝑓𝑘 ∈ 𝑅[𝑋] , they define both the real algebraic set

𝑍𝑅 = Z(𝑓1, . . . , 𝑓𝑘) = {𝑝 ∈ 𝑅𝑛 | 𝑓1(𝑝) = · · · = 𝑓𝑘(𝑝) = 0}

and the complex algebraic set (affine variety)

𝑍𝐶 = Z𝐶 (𝑓1, . . . , 𝑓𝑘) = {𝑝 ∈ 𝐶𝑛 | 𝑓1(𝑝) = · · · = 𝑓𝑘(𝑝) = 0}

where 𝐶 = 𝑅(
√
−1) is the algebraic closure. If

𝐼 = (𝑓1, . . . , 𝑓𝑘) = {𝑎1𝑓1 + · · · + 𝑎𝑘𝑓𝑘 | 𝑎1, . . . , 𝑎𝑘 ∈ 𝑅[𝑋]}

is the ideal generated by 𝑓1, . . . , 𝑓𝑘 in the polynomial ring 𝑅[𝑋] , then it is clear that every element
of 𝐼 also vanishes on 𝑍 and 𝑍𝐶 :

𝑓 ∈ 𝐼 ⇒ 𝑓 ≡ 0 on 𝑍𝑅
𝑓 ∈ 𝐼 ⇒ 𝑓 ≡ 0 on 𝑍𝐶

(In fact, we have 𝑍𝑅 = Z(𝐼) and 𝑍𝐶 = Z𝐶 (𝐼).) The converse implications are not clear, and in
general not true. For 𝑍𝐶 this is described by:

7.1 Theorem (Hilbert’s Nullstellensatz). For ℎ ∈ 𝑅[𝑋], we have ℎ ≡ 0 on 𝑍𝐶 if and only if
there exists 𝑟 > 0 such that

ℎ𝑟 ∈ 𝐼.

(In many textbooks, this is only proved for polynomials over an algebraically closed field, for
instance in [CLO15, §4.1], but it really holds over any field as long as the points (i.e. solutions) are
considered over an algebraically closed field.) The real analogue is as follows:

7.2 Theorem (Real Nullstellensatz). For ℎ ∈ 𝑅[𝑋], we have ℎ ≡ 0 on 𝑍𝑅 if and only if there
exist 𝑟 > 0 and 𝑠1, . . . , 𝑠𝑙 ∈ 𝑅[𝑋] such that

ℎ2𝑟 + 𝑠21 + · · · + 𝑠2𝑙 ∈ 𝐼.

In both the real and the complex theorem, the reverse implication is easy to see, only the other
requires work. See [BCR98, Thm. 4.1.4] for a proof. An early version of the real Nullstellensatz
goes back to Krivine (1964). The modern version was first proved by Risler (1976).
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7.3 Example. (1) If 𝑓 = 𝑥21 + 𝑥22 , then 𝑍𝑅 = {(0, 0)}. The polynomials that vanish in this point
are just those without constant term, which is the same as the maximal ideal generated by 𝑥1
and 𝑥2. The real Nullstellensatz immediately reflects this, since

𝑥21 + 𝑥22 = 𝑓 ∈ 𝐼

so this is the statement with ℎ = 𝑥1, 𝑟 = 𝑙 = 1 and 𝑠1 = 𝑥2, and likewise for ℎ = 𝑥2.
(2)More generally, wheneverwe apply the trick to rewrite𝑍𝑅 = 𝑍(𝑓1, . . . , 𝑓𝑘) = 𝑍(𝑓 21 +· · · 𝑓 2𝑘 ),

the real Nullstellensatz applies to the (principal) ideal generated by 𝑓 21 + · · · + 𝑓 2𝑘 and certifies that
𝑓1, . . . , 𝑓𝑘 indeed vanish on 𝑍𝑅. ^

7.4 Corollary (Weak Nullstellensatz).

(1) If 𝑍𝐶 = ∅, there exist 𝑎1, . . . , 𝑎𝑘 ∈ 𝑅[𝑋] such that 𝑎1𝑓1 + · · · + 𝑎𝑘𝑓𝑘 = 1.
(2) If 𝑍𝑅 = ∅, there exist 𝑎1, . . . , 𝑎𝑘, 𝑠1, . . . , 𝑠𝑙 ∈ 𝑅[𝑋] such that 𝑎1𝑓1+· · ·+𝑎𝑘𝑓𝑘 − (𝑠21+· · ·+𝑠2𝑙 ) = 1.

Proof. (1) If 𝑍𝐶 = ∅, then 1 “vanishes” on 𝑍𝐶 , so 1𝑟 ∈ 𝐼 for some 𝑟 by the Nullstellensatz, hence
1 ∈ 𝐼 . This proof is slightly bogus in the sense that Hilbert’s Nullstellensatz is almost invariably
proved by showing this weak version first. (2) follows in the same way. ■

There are semialgebraic versions of the real Nullstellensatz that characterize (strict or non-
strict) positivity on basic closed semialgebraic sets. We will skip them here for lack of time. We
will see another application of the real Nullstellensatz at the end of the lecture.

8 Decomposition theorems and semialgebraic dimension
Always let 𝑅 denote a real closed field. There are a number of very strong decomposition theo-
rems for semialgebraic sets and maps. The most basic version is called the cylindrical algebraic
decomposition (CAD).

8.1 Example. Let 𝑆 ⊂ ℝ2 be the closed disk of radius 1 centered at the point (0, 1). When we
project onto the horizontal axis, we can think of 𝑆 as bounded by the graphs of two semialgebraic
functions 𝑎, 𝑏 : [−1, 1] → ℝ. More precisely, we may decompose 𝑆 into the subsets

{(−1, 1)} ∪ {(1, 1)} ∪ Γ(𝑎) ∪ Γ(𝑏) ∪
{
(𝑥1, 𝑥2) ∈ ℝ2 | − 1 < 𝑥1 < 1 and 𝑎(𝑥2) ⩽ 𝑥2 ⩽ 𝑏(𝑥2)

}
where

𝑎(𝑥2) = 1 −
√︃
1 − 𝑥21 and 𝑏(𝑥2) = 1 +

√︃
1 − 𝑥21.
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Definition. Let 𝑆 ⊂ 𝑅𝑛 be semialgebraic and let 𝑎, 𝑏 : 𝑆 → 𝑅 ∪ {±∞} be continuous semi-
algebraic functions with 𝑎 < 𝑏 on 𝑆. The band between 𝑎 and 𝑏 is the set

Band(𝑎, 𝑏) =
{
(𝑥, 𝑡) ∈ 𝑆 × 𝑅 | 𝑎(𝑥) < 𝑡 < 𝑏(𝑥)

}
.

As before, let Γ(𝑏) = {(𝑥, 𝑦) ∈ 𝑆 × 𝑅 | 𝑦 = 𝑏(𝑥)} be the graph of 𝑏.

8.2 Theorem. Let 𝑓1, . . . , 𝑓𝑟 ∈ 𝑅[𝑋,𝑇]. Then there is a decomposition

𝑅𝑛 = 𝑆1 ∪ · · · ∪ 𝑆𝑘

into disjoint semialgebraic sets and for every 𝑖 ∈ {1, . . . , 𝑘} a finite number of continuous semialge-
braic functions

𝑏𝑖 𝑗 : 𝑆𝑖 → 𝑅 ( 𝑗 = 1, . . . , 𝑚𝑖, 𝑚𝑖 ⩾ 0)
with the following properties:

(1) We have 𝑏𝑖1 < 𝑏𝑖2 < · · · < 𝑏𝑖𝑚𝑖
on 𝑆𝑖.

(2) For every 𝑥 ∈ 𝑆𝑖, the following holds:{
𝑏𝑖1(𝑥), . . . , 𝑏𝑖𝑚𝑖

(𝑥)
}
=
{
𝑡0 ∈ 𝑅 | ∃ 𝑗 : 𝑓𝑗(𝑥, 𝑡0) = 0 and 𝑓𝑗(𝑥,𝑇) . 0

}
.

(3) The polynomials 𝑓1, . . . , 𝑓𝑟 have constant sign on every graph Γ(𝑏𝑖 𝑗) and every Band(𝑏𝑖 𝑗, 𝑏𝑖,𝑗+1)
(for 𝑗 = 0, . . . , 𝑚𝑖 + 1), where we let 𝑏𝑖0 = −∞ and 𝑏𝑖,𝑚𝑖+1 = ∞.

We refer to [BCR98, §2.3] and [BPR06, §5.1] for the proof, but just point out one technical
difficulty. If we think of the example with the disk above, it might seem that it is enough to
parametrize all the roots of the polynomials 𝑓1, . . . , 𝑓𝑘 in𝑇 as a function of 𝑋 and examine where
the different roots collide. The problem is that we might run into something like the following:
Let 𝑓 (𝑋,𝑇) = (𝑋 + (𝑇 − 1)2)2 · (𝑋 − (𝑇 + 1)2)2.

As 𝑋 varies, this polynomial always has exactly two distinct real roots in𝑇 , but there is a discon-
tinuity. This problem is avoided by adding the derivatives (with respect to 𝑇 ) to the description
(see Thom’s Lemma [BCR98, Prop. 2.5.4]).

Definition. Let 𝑆 ⊂ 𝑅𝑛+1 be a semialgebraic set. A cylindrical algebraic decomposition
(CAD) of 𝑆 with respect to the projection 𝜋 : 𝑅𝑛+1 → 𝑅𝑛 is a decomposition of 𝑅𝑛 as in Thm. 8.2,
such that 𝑆 is a union of graphs and bands.

8.3 Corollary. Every semialgebraic set possesses a CAD.

Proof. Apply Thm. 8.2 to all polynomials occuring in the description of the input set. ■
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8.4 Corollary. Every semialgebraic set 𝑆 ⊂ 𝑅𝑛 can be written as the disjoint union of semial-
gebraic sets 𝑆 = 𝑆1 ∪ · · · 𝑆𝑘, where each 𝑆𝑖 is semialgebraically homeomorphic to (0, 1)𝑛𝑖 , for some
𝑛𝑖 ⩾ 0. (Here, (0, 1)0 is a single point).

Proof. Over a semialgebraic set 𝑆𝑖 ⊂ 𝑅𝑘, every graph is semialgebraically homeomorphic to 𝑆𝑖
and every band to 𝑆𝑖 × (0, 1). Applying CAD successively for every projection 𝑅𝑛 → 𝑅𝑛−1 →
· · · → 𝑅2 → 𝑅 yields the claim. ■

A typical example where CAD can often be applied in practice is to determine the topology
of a curve in the real (or real projective) plane; see [BPR06, §11.6] for a detailed analysis.

There aremany natural follow-up questions. For example, one would verymuch like to have
the closure of each cell to be a union of cells. Also, it can be useful to have not just semialgebraic
homeomorphisms, but𝒞∞-diffeomorphisms. (For a real closed field other than 𝑅, one first has
to introduce Nash functions to make sense of this.) All these additional requirements can be
satisfied for semialgebraic sets.

Problem 8. Let 𝜑 : 𝐴 → 𝐵 be a semialgebraic map. Show that 𝐴 can be decomposed into a
finite union 𝐴 = 𝑆1 ∪ · · · ∪ 𝑆𝑘 of semialgebraic subsets in such a way that the restriction of 𝜑 to
each 𝑆𝑖 is continuous.

There are also decomposition results for semialgebraic maps: Let 𝑆 and 𝐵 be two semial-
gebraic sets and let 𝜑 : 𝑆 → 𝐵 be a semialgebraic map. We want to think of 𝜑 as a family of
semialgebraic sets 𝜑−1({𝑥}) as 𝑥 varies over the base 𝐵.

8.5 Theorem (Hardt-trivialization). Let 𝜑 : 𝑆 → 𝐵 be a semialgebraic map. There exists a
semialgebraic partition 𝐵 =

⋃𝑟
𝑖=1 𝐵𝑖 and for each 𝑖 = 1, . . . , 𝑟 a semialgebraic homeomorphism

Θ𝑖 : 𝐵𝑖 × 𝐹𝑖 → 𝜑−1(𝐵𝑖)

for some semialgebraic set 𝐹𝑖 which is a local trivialization of 𝜑, i.e. 𝜑 ◦ Θ𝑖 equals the first projection
𝐵𝑖 × 𝐹𝑖 → 𝐵𝑖. In particular, all fibres of 𝜑 over 𝐵𝑖 are semialgebraically homeomorphic to 𝐹𝑖.

Further refinements are possible; see [BCR98, Thm. 9.3.2].

8.6 Example. Let 𝑅[𝑋]⩽𝑑 be the space of polynomials of degree at most 𝑑 in 𝑛 variables,
which we may identify with 𝑅𝑁 , 𝑁 =

(𝑛+𝑑
𝑛

)
. The zero set Z(𝑓 ) for 𝑓 ∈ 𝑅[𝑋]⩽𝑑 is a real

hypersurface of degree at most 𝑑 in 𝑅𝑛. We let

𝒳 = {(𝑓 , 𝑎) ∈ 𝑅[𝑋]⩽𝑑 × 𝑅𝑛 | 𝑓 (𝑎) = 0}

which is a semialgebraic subset of 𝑅𝑁 × 𝑅𝑛. The fibres of the projection 𝜋 : 𝒳 → 𝑅[𝑋]⩽𝑑 onto
the first factor are exactly the hypersurfaces of degree at most 𝑑, i.e. 𝜋−1({𝑓 }) = {𝑓 } × Z(𝑓 ). A
Hardt trivialization of this projection immediately implies that there can be only finitely many
semialgebraic homeomorphism classes of such hypersurfaces. ^

Problem 9. Discuss the possibilities for extending this argument to larger classes of semialge-
braic sets than just hypersurfaces.
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8.7 Example. Let 𝐶 ⊂ ℝ𝑛 be a convex body (compact, convex with non-empty interior). We
may wish to approximate 𝐶 by a polytope, so we pick points on the boundary 𝑥1, . . . , 𝑥𝑟 ∈ 𝜕𝐶

and form the convex hull 𝑃𝑟 = Conv(𝑥1, . . . , 𝑥𝑟). By choosing more and more points reasonably
distributed over the boundary, we can approximate𝐶 to any given precision. We may even turn
this into a continuous family 𝜑 : 𝑆 → [1,∞) of polytopes with 𝜑−1({𝑘}) � 𝑃𝑘 for every positive
integer 𝑘, with a linear interpolation between 𝑃𝑘 and 𝑃𝑘+1. The set 𝐶 is the limit of this family
(e.g. in the Hausdorff metric).
But even though each individual 𝑃𝑘 is a semialgebraic set, this cannot possibly be a semial-

gebraic family, unless the set {𝑥1, 𝑥2, . . . } of vertices is finite. In fact, the trivialization theorem
above can be used to show that the number of vertices must be bounded in every semialgebraic
family of polytopes. (How would you show this?) ^

Decomposition theorems are also useful to characterize the dimension of a semialgebraic set.

Definition. The dimension of a semialgebraic set 𝑆 ≠ ∅ is the largest integer 𝑑 such that
there exists an injective semialgebraic map 𝐵𝑑 → 𝑆, where 𝐵𝑑 ⊂ 𝑅𝑑 is the open unit ball. Also,
we let dim(∅) = −∞.

This definition is geometrically plausible and it is not too difficult to prove (although not
trivial!) that dim(𝑅𝑛) = 𝑛 and to establish some further natural properties (see [BPR06, §5.3]).
Also, it is clear that the dimension can be computed using CAD: Since any band has non-

empty interior, while all graphs have empty interior, just keep applying CAD to 𝑆 and its pro-
jections until you encounter a band (c.f. Cor. 8.4). Of course, this may be a rather expensive
computation. A similar but more optimized algorithm is described together with a full com-
plexity analysis in [BPR06, §14.5].

There is another useful characterization of dimension that can be computationally more
tractable, provided that the semialgebraic set is presented in a good way. The following will be
more of an informal discussion than a self-contained theorem. We know that every semialge-
braic set is a finite union of sets of the form

𝑆𝑖 = Z(𝑓1, . . . , 𝑓𝑘) ∩ U(𝑔1, . . . , 𝑔𝑙).

This is an open subset of the real algebraic setZ(𝑓1, . . . , 𝑓𝑘). If 𝑆𝑖 is non-empty, its dimensionwill
hopefully agreewith that ofZ(𝑓1, . . . , 𝑓𝑘). The “dimension” of an algebraic set is easier to compute
using commutative algebra: It is the Krull dimension of the factor ring 𝑅[𝑋]/(𝑓1, . . . , 𝑓𝑘), which
can be computed, for example, using Hilbert polynomials (see [CLO15, Ch. 9]).
However, there is a big catch: This computes the algebraic dimension dimalg(𝑍𝐶) of the

complex algebraic variety 𝑍𝐶 = Z𝐶 (𝑓1, . . . , 𝑓𝑘) ⊂ 𝐶𝑛, where 𝐶 = 𝑅(
√
−1). We are only inter-

ested in the real points, and that dimension may well be smaller.
A simple example in the plane shows what can go wrong.

8.8 Example. We will take the cubic polynomials

𝑓1 = (𝑥1 − 𝑥2)2 −
(
𝑥1 + 3

2 𝑦 − 1
) (
(𝑥1 − 3

2𝑥2)
2 − 1

2
)

and
𝑓2 = (𝑥1 − 𝑥2)2 −

(
𝑥1 + 3

2 𝑦 − 1
) (
𝑥1 + 3

2𝑥2)
)2
.
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(Of course, I could have made these simpler. But I do not want to think about the equations,
only the pictures.) Close to the origin, the real algebraic curvesZ(𝑓1) andZ(𝑓2) look like this:

Z(𝑓1) Z(𝑓2)

Both are one-dimensional. (Also, we could easily compute a CAD to determine the topology
exactly.) If we now add a quadratic inequality 𝑔 ⩾ 0 with

𝑔 = 3 − 8𝑥21 − 4𝑥1𝑥2 − 13𝑥22

defining an oval region around the origin, we obtain the semialgebraic sets

Z(𝑓1) ∩ U(𝑔) Z(𝑓2) ∩ U(𝑔)

If we determine the dimension in the naive way indicated above, we see that we will get it
wrong in the second example: The set Z(𝑓2) ∩ U(𝑔) is only a point, even though Z(𝑓2) is
one-dimensional. This happens, because the point we selected is a singularity of the curve. ^

8.9 Example. Note that rewriting a real algebraic set Z(𝑓1, . . . , 𝑓𝑘) into the single equation
Z(𝑓 21 + · · · + 𝑓 2

𝑘
) will usually change the algebraic dimension. The algebraic dimension of the

complex varietyZ𝐶 (𝑓 21 +· · ·+𝑓 2𝑘 ) is always 𝑛−1, nomatterwhat 𝑓1, . . . , 𝑓𝑘 are (except if they are all
constant). It is a complex hypersurface. All real points on this hypersurface are (usually) singular.
The simplest example is replacing the pointZ(𝑥1, 𝑥2) by the singular conicZ(𝑥21 + 𝑥22). ^

So what does this mean for the dimension of the semialgebraic set

𝑆 = Z(𝑓1, . . . , 𝑓𝑘) ∩ U(𝑔1, . . . , 𝑔𝑙)

in general? In theory, we may simply replace the real algebraic set Z(𝑓1, . . . , 𝑓𝑘) by the real
Zariski closure of 𝑆, which is the smallest real algebraic set containing 𝑆. If we do that, the
semialgebraic and the algebraic dimension will always agree (see the following theorem). In
fact, in [BCR98, §2.8] this is taken as the definition of the semialgebraic dimension. In practice,
computing the real Zariski closure is another difficult computational task, relying on a version
of the real Nullstellensatz (Thm. 7.2).
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Let us summarize our findings for real algebraic sets in a final theorem, together with some
additional characterizations.

8.10 Theorem. Let 𝑍 = Z(𝑓1, . . . , 𝑓𝑘) ⊂ 𝑅𝑛 be an algebraic set, let 𝑍𝐶 = Z𝐶 (𝑓1, . . . , 𝑓𝑘) be the
complex variety defined by the same equations, and assume that 𝑍𝐶 is irreducible (not a finite union
of smaller varieties defined over 𝑅).

(1) We have dim(𝑍) ⩽ dimalg(𝑍𝐶) with equality if and only if the real algebraic set 𝑍 contains a
regular point of 𝑍𝐶 .

(2) Assuming that the ideal 𝐼 = (𝑓1, . . . , 𝑓𝑘) generated by 𝑓1, . . . , 𝑓𝑘 in 𝑅[𝑋] is a prime ideal, the
following statements are equivalent:
(i) The algebraic set 𝑍 contains a regular point of 𝑍𝐶 .
(ii) There exists a point 𝑥 ∈ 𝑍 such that the Jacobi matrix of the system 𝑓1, . . . , 𝑓𝑘 evaluated

at 𝑥 has rank 𝑛 − dimalg(𝑍𝐶).
(iii) The ideal 𝐼 is real radical, which means that if 𝑓 ∈ 𝑅[𝑋] vanishes at all points of 𝑍,

then it is contained in 𝐼 .
(iv) The element −1 is not a sum of squares in the function field 𝑅(𝑍), which is the field of

fractions of the factor ring 𝑅[𝑋]/𝐼 . (Equivalently, 𝑅(𝑍) admits an ordering; Lemma 5.3.)

Sketch of proof and references. Most of what is needed for a proof can be found in [BCR98], but
some results are stated differently.
(1) follows from [BCR98, Prop. 7.6.2].
(2) The equivalence of (i) and (ii) is a standard result in Algebraic Geometry, or may be taken

as the definition of regular; see for example [Har77, §I.5].
If (i) does not hold, then 𝑍 contains only singular points of 𝑍𝐶 . The singular locus is a proper

subvariety of 𝑍𝐶 , defined over 𝑅. Hence there are polynomials in 𝑅[𝑋] vanishing on 𝑍 but not
on all of 𝑍𝐶 . This shows the implication (iii)⇒(i).
(i),(ii)⇒(iii) can be seen more or less directly for 𝑅 = ℝ from the implicit function theorem:

Around a real regular point 𝑧 ∈ 𝑍, the set 𝑍 will be an embedded real submanifold of ℝ𝑛 of
dimension dimalg(𝑍𝐶). Therefore, it cannot be contained in any subvariety of 𝑍𝐶 of smaller
dimension, which implies (iii). Alternatively, one can again use [BCR98, Prop. 7.6.2].
The equivalence of (iii) and (iv) is a special case of the real Nullstellensatz (Thm. 7.2). If 𝐼 is

not real radical, then there exists some ℎ ∈ 𝑅[𝑋] which vanishes on all of 𝑍 but is not contained
in 𝐼 . By the real Nullstellensatz, there is an identity ℎ2𝑟 + 𝑠21 + · · · + 𝑠2

𝑙
∈ 𝐼 for some polynomials

𝑠1, . . . , 𝑠𝑙 ∈ 𝑅[𝑋]. Modulo 𝐼 , this reads −ℎ2𝑟 ≡ 𝑠21 + · · · + 𝑠2𝑙 , where ℎ is non-zero. Dividing by ℎ
2𝑟

gives −1 = (𝑠1/ℎ𝑟)2 + · · · + (𝑠𝑙/ℎ𝑟)2 ∈ 𝑅(𝑍).
The other implication is the easy direction of the Nullstellensatz: If −1 = (𝑠1/ℎ1)2 + · · · +

(𝑠𝑙/ℎ𝑙)2 in 𝑅(𝑍), then we can multiply with ℎ2 for ℎ = ℎ1 · · · ℎ𝑙 and find −ℎ2 = 𝑠21 + · · · + 𝑠2
𝑙

modulo 𝐼 . This implies that ℎ vanishes at all points of 𝑍. But ℎ is not in 𝐼 , because 𝐼 is prime and
ℎ1, . . . , ℎ𝑙 ∉ 𝐼 . Hence 𝐼 is not real radical. ■

In conclusion, using all of the above, we may suggest the following practical procedure to
compute the dimension of a semialgebraic set 𝑆 given in the standard form

𝑆 = Z(𝑓1, . . . , 𝑓𝑘) ∩ U(𝑔1, . . . , 𝑔𝑙).
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Step 1. Decompose the algebraic set Z(𝑓1, . . . , 𝑓𝑘) into its irreducible components and find
prime ideal defining each component. This amounts to a primary decomposition of the ideal
(𝑓1, . . . , 𝑓𝑘) in the real polynomial ring 𝑅[𝑋].

Step 2. Check ifU(𝑔1, . . . , 𝑔𝑙) contains a real regular point for each component, using one of
the criteria in the Thm. 8.10. If yes, then dim(𝑆) is the algebraic dimension ofZ(𝑓1, . . . , 𝑓𝑘).
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