On a Time-Simultaneous Multigrid Method in combination with stabilization techniques for the Convection–Diffusion Equation
IMG2022, Lugano

Wiebke Drews, Christoph Lohmann, Stefan Turek

Institute of Applied Mathematics (LS III)
Department of Mathematics
TU Dortmund University

August 26th, 2022
Motivation

Figure Convergence behavior without stabilization.

- solve convection-diffusion equation efficiently → parallelization
- use a time-simultaneous multigrid method\(^1\)
- stabilization for convection-dominated problems

The perfect algorithm is not presented here!

\(^1\)Multigrid Waveform Relaxation (by Lubich, Ostermann (1987)).
Table of contents

1 Motivation

2 **Time-simultaneous multigrid method: heat equation**
 - Preliminaries
 - Building up the algorithm
 - Numerical studies

3 **Time-simultaneous multigrid method: convection-diffusion equation**
 - Numerical studies: upwind discretization
 - Numerical studies: central discretization
 - Higher order stabilization
 - Numerical studies: central + stabilization

4 Conclusion and Outlook
Preliminaries

Convection-diffusion equation in 1D

\[
\frac{\partial}{\partial t} u(x, t) - \varepsilon u_{xx}(x, t) + v(x, t) u_x(x, t) = f(x, t) \quad (x, t) \in \Omega \times (0, T] \\
u(0, t) = u(1, t) = 0 \quad t \in [0, T] \\
u(x, 0) = u_0(x) \quad x \in \Omega
\]

with \(\Omega = (0, 1), T > 0 \).

- finite difference (FD) discretization in space
 \[
 \frac{\partial}{\partial t} M_h u_h(t) + \varepsilon L_h u_h(t) = f_h(t)
 \]

- Crank-Nicolson scheme for discretization in time
 \[
 A u^m + B u^{m-1} = f^m, \quad m = 1, \ldots, K
 \]
 using time step size \(\delta t \) and
 \[
 A := M_h + \frac{1}{2} \delta t \varepsilon L_h, \quad B := -M_h + \frac{1}{2} \delta t \varepsilon L_h, \quad f^m := \frac{1}{2} \delta t \left(f_h^m + f_h^{m-1} \right).
 \]
Preliminaries

Convection-diffusion equation in 1D

\[\partial_t u(x, t) - \varepsilon u_{xx}(x, t) + v(x, t)u_x(x, t) = f(x, t) \quad (x, t) \in \Omega \times (0, T] \]
\[u(0, t) = u(1, t) = 0 \quad t \in [0, T] \]
\[u(x, 0) = u_0(x) \quad x \in \Omega \]

with \(\Omega = (0, 1), T > 0. \)

- finite difference (FD) discretization in space
 \[\partial_t M_h u_h(t) + \varepsilon L_h u_h(t) = f_h(t) \]

- Crank-Nicolson scheme for discretization in time
 \[A u^m + B u^{m-1} = f^m, \quad m = 1, \ldots, K \]

using time step size \(\delta t \) and

\[A := M_h + \frac{1}{2} \delta t \varepsilon L_h, \quad B := -M_h + \frac{1}{2} \delta t \varepsilon L_h, \quad f^m := \frac{1}{2} \delta t \left(f_h^m + f_h^{m-1} \right). \]
Algebraic transformations

Blocking all time steps into a global linear system of equations ...

\[
\begin{pmatrix}
A & B & A \\
B & A & B \\
& & \ddots & \ddots & \ddots \\
& & & B & A
\end{pmatrix}
\begin{pmatrix}
u^1_1 \\
u^2_1 \\
\vdots \\
u^K_1 \\
\vdots \\
\vdots \\
u^1_N \\
u^2_N \\
\vdots \\
u^K_N
\end{pmatrix}
= \begin{pmatrix}
f^1_0 \\
f^2_0 \\
\vdots \\
f^K_0 \\
\vdots \\
\vdots \\
f^1_K \\
f^2_K \\
\vdots \\
f^K_K
\end{pmatrix}
\]

Note: \(K \) time steps \(t^1, t^2, \ldots, t^K \) and \(N \) spatial nodes \(x_1, \ldots, x_N \)

... and rearranging the degrees of freedom...

\[
(u^1_{11}, u^1_{12}, \ldots, u^1_{1N}, u^2_{11}, u^2_{12}, \ldots, u^2_{1N}, \ldots, u^K_{11}, u^K_{12}, \ldots, u^K_{1N})^T
\]

\[
\downarrow
\]

\[
u := (u^1_1, u^2_1, \ldots, u^K_1, u^1_2, u^2_2, \ldots, u^K_2, \ldots, u^1_N, u^2_N, \ldots, u^K_N)^T
\]
Algebraic transformations

results in a **space-only problem** with vector-valued unknowns for each spatial node:

\[
\begin{pmatrix}
\# & \# \\
\# & \# & \ddots \\
\cdots & \cdots & \# \\
\# & \# \\
\end{pmatrix} =: S \in \mathbb{R}^{NK \times NK}
\]

solution:

\[
\mathbf{u} = \mathbf{f}, \quad \text{with} \quad \#
\begin{pmatrix}
\ast \\
\ast & \ast \\
\ast & \ast & \ddots \\
\ast \\
\end{pmatrix} \in \mathbb{R}^{K \times K}
\]

→ apply geometric multigrid method on \(S \) in space!

Aim: design of a highly parallelizable solution strategy!
Time-simultaneous multigrid algorithm

- smoothing
 - number of pre-smoothing and post-smoothing steps: ν_1 and ν_2
 - (damped) block Jacobi method: $x^{(\nu)} = x^{(\nu-1)} + \omega D^{-1}(f - Sx^{(\nu-1)})$
 - block Jacobi preconditioning embedded into GMRES method:
 $$D := \begin{pmatrix} \# & \cdots & \# \\ \# & \cdots & \# \\ \# & \cdots & \# \end{pmatrix}, \quad \# = \begin{pmatrix} * & * & * \\ * & \cdots & \cdots \\ * & * & * \end{pmatrix}_{K \times K}$$

- intergrid transfer operators
 - standard coarsening in space for each time step
 - prolongation:
 $$P^\delta_{\delta t,2h} = P^h_{2h} \otimes I_K$$
 - restriction:
 $$R^\delta_{\delta t,h} = R^h_{2h} \otimes I_K = \frac{1}{2} \left(P^\delta_{\delta t,2h} \right)^\top$$
Theoretical convergence results

- linear multi-step methods: asymptotic convergence rate is the same as in time-stepping approach [Janssen, Vandewalle (1996)]

- Fourier analysis of time-simultaneous two-grid algorithm [Lohmann et al. (2022)]
 - 1D heat equation on uniform mesh
 - damped Jacobi (waveform relaxation) smoothing
 - spectral norm of two-grid iteration matrix J is uniformly bounded:

$$
\|J\|_2 < C < 1, \quad C \neq C(\delta t, h, K)
$$

for $\theta \geq \frac{1}{2}, \omega = \frac{2}{3}, \nu_1 \geq 1.$
Numerical studies on heat equation

Figure $u(x,t)$ for different time steps.

Manufactured solution

$$u(x,t) = \exp\left(-\eta\left(\frac{1}{2} - x + \frac{1}{4} \sin\left(\frac{\pi}{2} t\right)^2\right)\right) \sin(\pi x)$$

where $\eta = 100$.

homogenous Dirichlet boundary conditions

$$u(0,t) = u(1,t) = 0.$$

Discretization: FD in space, Crank-Nicolson scheme in time

- Level: fine level with spatial resolution $h = 2^{-\text{Level}}$
- δt: time step size
- K: number of blocked time steps
Numerical studies on heat equation: $\varepsilon = 1$

Results:
- independent of K and fine mesh level
- number of iterations ≤ 5

MG algorithm:
$\nu_1 = \nu_2 = 4$, V-cycle, GMRES smoother, coarse level 1.
Numerical studies on convection-diffusion equation

Convection-diffusion equation in 1D

\[
\partial_t u(x, t) - \varepsilon u_{xx}(x, t) + \frac{v(x,t)}{\varepsilon} u_x(x, t) = f(x, t) \quad (x, t) \in \Omega \times (0, T]
\]

\[
\begin{align*}
 u(0, t) &= u(1, t) = 0 \\
 u(x, 0) &= u_0(x) \\
 t &\in [0, T] \\
 x &\in \Omega
\end{align*}
\]

with \(\Omega = (0, 1), T > 0. \)

\[
\partial_t M_h u_h(t) + \varepsilon L_h u_h(t) + K_h u_h(t) = f_h(t)
\]

- Convection term: Discretized with first order upwind scheme
- Numerical studies with
 - \(v = 1 \) for convenience
 - manufactured solution as above and corresponding right hand side
Numerical studies on convection-diffusion equation

Convection-diffusion equation in 1D

\[
\frac{\partial}{\partial t} u(x, t) - \varepsilon u_{xx}(x, t) + v(x, t) u_x(x, t) = f(x, t) \quad (x, t) \in \Omega \times (0, T]
\]

\[
u(0, t) = u(1, t) = 0 \quad t \in [0, T]
\]

\[
u(x, 0) = u_0(x) \quad x \in \Omega
\]

with \(\Omega = (0, 1), T > 0 \).

\[
\frac{\partial}{\partial t} M_h u_h(t) + \varepsilon L_h u_h(t) + K_h u_h(t) = f_h(t)
\]

- Convection term: Discretized with first order upwind scheme
- Numerical studies with
 - \(v = 1 \) for convenience
 - manufactured solution as above and corresponding right hand side
Numerical studies: upwind discretization, $\varepsilon = 10^{-3}$

Figure Level 7.

Results:

- similar behavior as for heat equation, but only 1st order accuracy
- Goal: higher order of convergence
 → central difference scheme?

MG algorithm:

$\nu_1 = \nu_2 = 4$, V-cycle,
GMRES smoother, coarse level 1.
Numerical studies: upwind discretization, $\varepsilon = 0$

Results:

- similar behavior as for heat equation, but only 1st order accuracy
- Goal: higher order of convergence → central difference scheme?

MG algorithm:
$
u_1 = \nu_2 = 4$, V-cycle, GMRES smoother, coarse level 1.
Numerical studies: central discretization, $\varepsilon = 10^{-3}$

Convection term discretized using second order central discretization.

Figure Level 7.

Figure Level 9.

MG algorithm:

$\nu_1 = \nu_2 = 4$, V-cycle,
GMRES smoother, coarse level 1.
Numerical studies: central difference quotient

Figure Convergence behavior for different values of ε.

- fixed $\nu = 1$, varying ε

→ stability issues arise for convection-dominated problems

TG algorithm:
level = 7, $\delta t = \frac{1}{128}$, $K = 64$
$\nu_1 = \nu_2 = 4$, GMRES smoother.
Higher order stabilization

- add diffusive term with stabilization parameter $\alpha_{add} \geq 0$ and compensation term\(^2\)

\[
(\partial_t u_h, \varphi_h) + \varepsilon(\nabla u_h, \nabla \varphi_h) + (v \cdot \nabla u_h, \varphi_h) + \alpha_{add}(\nabla u_h, \nabla \varphi_h) - \alpha_{add}(g_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h
\]
\[
(g_h - \nabla u_h, \psi_h) = 0 \quad \forall \psi_h \in (V_h)^d
\]

- semi-discrete formulation in matrix form: $M_h \sim \text{id}$, $B_h \sim \text{grad}$, $B_h^\top \sim \text{div}$

\[
\partial_t M_h u_h(t) + \varepsilon L_h u_h(t) + K_h u_h(t) + \alpha_{add}(L_h - B_h^\top M_h^{-1} B_h) u_h(t) = f_h(t) \quad (\star)
\]
\[
\implies L_h - L_{2h} \sim \frac{1}{(2h)^2} [1, -4, 6, -4, 1]
\]

- (\star) 1D with linear FEM, uniform grid, quadrature based mass-lumping:

\[
M_h^{-1} B_h^\top M_h^{-1} B_h \sim -\frac{1}{(2h)^2} [1, 0, -2, 0, 1] \sim L_{2h}, \quad L_h \sim -\frac{1}{h^2} [1, -2, 1]
\]

\[
\implies L_h - L_{2h} \sim \frac{1}{(2h)^2} [1, -4, 6, -4, 1]
\]

Choice of α_{add} in multigrid algorithm

$$\alpha_{\text{add}} := \alpha \left(\frac{h_f}{h} \right) ^\gamma \Rightarrow \alpha \left(\frac{h_f}{h} \right) ^\gamma (L_h - L_{2h})u_h$$

where $\alpha > 0$, $\gamma = 2$, h_f: mesh size of fine level, h: mesh size of current level.

- stabilization term turns out to be the biharmonic operator with a certain factor
 - $L_h u_h \sim \frac{1}{h^2} (h^2 u_{xx} + Ch^4 u_{xxxx} + O(h^6))$
 - $L_{2h} u_h \sim \frac{1}{4h^2} (4h^2 u_{xx} + 2^4 Ch^4 u_{xxxx} + O(h^6))$
 - $(L_h - L_{2h}) u_h \sim \tilde{C} h^2 u_{xxxx} + O(h^4)$

- solve the same continuous problem on each level, **but** less stabilization on coarser levels

$$\alpha \left(\frac{h_f}{h} \right) ^\gamma (L_h - L_{2h})u_h \sim \alpha \left(\frac{h_f}{h} \right) ^\gamma \tilde{C} h^2 u_{xxxx} = \alpha h_f^2 \tilde{C} u_{xxxx}, \quad \text{for } \gamma = 2$$

- The stabilization term is treated fully implicit!
Numerical studies: stabilization

\[\varepsilon = 0 \]

\[\varepsilon = 1 \]

Figure No stabilization.

- number of iterations hardly increases for small values of \(\varepsilon \)
- the plateau disappears

\[\rightarrow \text{stabilization can help! How to choose } \alpha \text{ quantitatively?} \]

Figure Stabilization with \(\alpha = 0.1 \).
Numerical studies: choice of α

<table>
<thead>
<tr>
<th>$\delta t = h$</th>
<th>$\alpha = 0$</th>
<th>$\alpha = 0.01$</th>
<th>$\alpha = 0.1$</th>
<th>$\alpha = 1$</th>
<th>$\alpha = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>2.0e-03</td>
<td>2.1e-03</td>
<td>6.9e-03</td>
<td>4.8e-02</td>
<td>1.3e-01</td>
</tr>
<tr>
<td>1/128</td>
<td>4.8e-04</td>
<td>5.1e-04</td>
<td>1.7e-03</td>
<td>1.6e-02</td>
<td>7.8e-02</td>
</tr>
<tr>
<td>1/256</td>
<td>1.2e-04</td>
<td>1.3e-04</td>
<td>4.4e-04</td>
<td>4.2e-03</td>
<td>3.4e-02</td>
</tr>
</tbody>
</table>

Table Discrete L_2-error at final time $T = 1$, $\varepsilon = 10^{-3}$.

<table>
<thead>
<tr>
<th>$\delta t = h$</th>
<th>$\alpha = 0$</th>
<th>$\alpha = 0.01$</th>
<th>$\alpha = 0.1$</th>
<th>$\alpha = 1$</th>
<th>$\alpha = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>5.0e-03</td>
<td>2.1e-03</td>
<td>7.0e-03</td>
<td>4.8e-02</td>
<td>1.3e-01</td>
</tr>
<tr>
<td>1/128</td>
<td>1.2e-03</td>
<td>5.1e-04</td>
<td>1.8e-03</td>
<td>1.6e-02</td>
<td>7.9e-02</td>
</tr>
<tr>
<td>1/256</td>
<td>3.0e-04</td>
<td>1.3e-04</td>
<td>4.4e-04</td>
<td>4.2e-03</td>
<td>3.4e-02</td>
</tr>
</tbody>
</table>

Table Discrete L_2-error at final time $T = 1$, $\varepsilon = 0$.

- the error is reduced by a factor of $\approx 4 \rightarrow$ 2nd order of convergence observed
- loss of accuracy for larger α

\rightarrow do not choose α too large
Numerical studies: choice of α

Table Level 5, $\varepsilon = 10^{-3}$.

<table>
<thead>
<tr>
<th>δt</th>
<th>$K = 256$</th>
<th>$K = 512$</th>
<th>$K = 1024$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>100</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td>100</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>$\alpha = 0.1$</td>
<td>15</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$\alpha = 10$</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Table Level 7, $\varepsilon = 10^{-3}$.

<table>
<thead>
<tr>
<th>δt</th>
<th>$K = 256$</th>
<th>$K = 512$</th>
<th>$K = 1024$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>100</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td>22</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>$\alpha = 0.1$</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$\alpha = 10$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Without stabilization
- increasing/many iterations for large K
- δt- and level-dependency

TG algorithm:
$\nu_1 = \nu_2 = 4$, GMRES smoother, maximum number of iterations: 100.

With stabilization
- number of iterations decreases as $\alpha \to \infty$
- independent of number of blocked time steps K and δt for sufficiently large α
- similar convergence behavior for different fine levels

\rightarrow do not choose α too small
Numerical studies: choice of α

<table>
<thead>
<tr>
<th>α</th>
<th>K</th>
<th>δt</th>
<th>$1/32$</th>
<th>$1/128$</th>
<th>$1/512$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>256</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.01</td>
<td>256</td>
<td>100</td>
<td>27</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>100</td>
<td>54</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>100</td>
<td>100</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>256</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>15</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>256</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>256</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Table Level 5, $\varepsilon = 10^{-3}$.

Without stabilization

- increasing/many iterations for large K
- δt, ε-dependency

TG algorithm:

$\nu_1 = \nu_2 = 4$, GMRES smoother, maximum number of iterations: 100.

With stabilization

- number of iterations decreases as $\alpha \to \infty$
- independent of number of blocked time steps K and δt for sufficiently large α
- good convergence results even for smallest ε

\rightarrow do not choose α too small

Table Level 5, $\varepsilon = 0$.
Numerical studies: stabilization multigrid

<table>
<thead>
<tr>
<th>α = 0</th>
<th>δt</th>
<th>$1/32$</th>
<th>$1/128$</th>
<th>$1/512$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>α = 0.01</td>
<td>$K = 256$</td>
<td>100</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>100</td>
<td>56</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>α = 0.1</td>
<td>$K = 256$</td>
<td>24</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>36</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>44</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>α = 1</td>
<td>$K = 256$</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>α = 10</td>
<td>$K = 256$</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α = 0</th>
<th>δt</th>
<th>$1/32$</th>
<th>$1/128$</th>
<th>$1/512$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>100</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>α = 0.01</td>
<td>$K = 256$</td>
<td>100</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>α = 0.1</td>
<td>$K = 256$</td>
<td>50</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>100</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>74</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>α = 1</td>
<td>$K = 256$</td>
<td>13</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>16</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>22</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>α = 10</td>
<td>$K = 256$</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Table Level 5, $\varepsilon = 10^{-3}$.

Table Level 7, $\varepsilon = 10^{-3}$.

- Two-grid result can also be observed for multigrid.
- But stabilization on coarse grid may not be enough for stable convergence rates.
 $\alpha_{add} := \alpha \left(\frac{h_f}{h} \right)^{\gamma} \Rightarrow$ choosing $\gamma = 0$ or 1 can help!

MG algorithm:
$\nu_1 = \nu_2 = 4$, F-cycle,
GMRES smoother, coarse level 1, maximum number of iterations: 100.
Numerical studies: stabilization multigrid

<table>
<thead>
<tr>
<th>δt</th>
<th>1/32</th>
<th>1/128</th>
<th>1/512</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>$\alpha = 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>36</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>43</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>49</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>32</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>32</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>32</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>$\alpha = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>48</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>49</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>50</td>
<td>44</td>
<td>36</td>
</tr>
</tbody>
</table>

Table Level 7, $\varepsilon = 10^{-3}$, $\gamma = 1$.

<table>
<thead>
<tr>
<th>δt</th>
<th>1/32</th>
<th>1/128</th>
<th>1/512</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>100</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>100</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>$\alpha = 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>36</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>43</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>49</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>32</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>32</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>32</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>$\alpha = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 256$</td>
<td>48</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>$K = 512$</td>
<td>49</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>$K = 1024$</td>
<td>50</td>
<td>44</td>
<td>36</td>
</tr>
</tbody>
</table>

Table Level 7, $\varepsilon = 10^{-3}$, $\gamma = 2$.

- two-grid result can also be observed for multigrid
- but stabilization on coarse grid may not be enough for stable convergence rates
 $\alpha_{add} := \alpha \left(\frac{h_f}{h} \right)^\gamma \Rightarrow$ choosing $\gamma = 0$ or 1 can help!

MG algorithm:

$\nu_1 = \nu_2 = 4$, F-cycle, GMRES smoother, coarse level 1, maximum number of iterations: 100.
From another point of view: Heaviside step function

Figure No stabilization.

Figure Stabilization with $\alpha = 0.01$.

- Level 6, $\delta t = \frac{1}{128}$
- oscillations in the numerical solution
- small α can lead to a smoother numerical solution
- too large α can make it worse
→ trade-off: solution vs. convergence behavior
From another point of view: Heaviside step function

Figure No stabilization.

Figure Stabilization with $\alpha = 0.1$.

- small α can lead to a smoother numerical solution
- too large α can make it worse

→ trade-off: solution vs. convergence behavior

<table>
<thead>
<tr>
<th>α</th>
<th>δt</th>
<th>$1/32$</th>
<th>$1/128$</th>
<th>$1/512$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$K = 256$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.1</td>
<td>$K = 256$</td>
<td>18</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$K = 512$</td>
<td>24</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>$K = 1024$</td>
<td>28</td>
<td>19</td>
<td>14</td>
</tr>
</tbody>
</table>

Table Level 7, $\varepsilon = 0$.
Conclusion

Summary

- presented multigrid algorithm works fine for convection-diffusion equation if diffusion parameter is sufficiently large
- difficulties with convection-dominated problems → stabilization can help!
- choice of stabilization parameter is crucial

Outlook and more aspects

- extension to 2D and 3D problems
- studies on the reduction of the computational efficiency
- stabilization in time using u_{tttt}
- combination of this time-simultaneous algorithm and other parallel-in-time methods

Figure Convergence behavior with stabilization.
References

J. Dünnebacke, S. Turek, C. Lohmann, A. Sokolov, P. Zajac.
Increased space-parallelism via time-simultaneous Newton-multigrid methods for nonstationary nonlinear PDE problems.

M. Fast, O. Mierka, S. Turek.
Mathematical Modeling of Coolant Flow in Drilling Processes with Temperature Coupling.

J. Janssen, S. Vandewalle.
Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case.

V. John, S. Kaya, W. Layton.
A two-level variational multiscale method for convection-dominated convection–diffusion equations.

C. Lohmann, J. Dünnebacke, S. Turek.
Fourier analysis of a time-simultaneous two-grid algorithm using a damped Jacobi waveform relaxation smoother for the one-dimensional heat equation.

C. Lubich, A. Ostermann.
Multi-grid dynamic iteration for parabolic equations.