GPGPU - Basic Math Tutorial

Dipl. Inform. Dominik Goddeke

Lehrstuhl fir Angewandte Mathematik und Numerik
Lehrstuhl fir Computergrafik
Universitat Dortmund

dom ni k. goeddeke@rat h. uni - dor t nund. de
http://ww. mat hemati k. uni - dor t rund. de/ ~goeddeke

Contents
1 Introduction

1.1 PrereqUiSiteS. o e e
1.2 Hardware requirements e e e e e e e
1.3 Softwarerequirements e e e
1.4 Alternatives e e

Setting up OpenGL
2.1 GLUT . .

2.2 OpenGL EXIENSIONS o v o oo
2.3 Preparing OpenGL for offscreen rendering o ocooie i

GPGPU concept 1: Arrays = textures

3.1 Creatingarraysonthe CPU e e

3.2 Creating floating point textures onthe GPU o v v v viiiie e e
3.3 One-to-one mapping from array index to texture cootéma.
3.4 Using texturesasrendertargets e e e e e

3.5 Transferring data from CPU arrays to GPU TOXIUIES © o o e e e
3.6 Transferring data from GPU textures to CPU aﬁrays
3.7 Ashortexample Programo u vt

GPGPU concept 2: Kernels = shaders

4.2 Creating a shader with the Cg shading languageo oo oo,
4.3 Settingupthe Cgruntime e e
4.4 Setting up a shader for computation with the OpenGL sttgldinguage

GPGPU concept 3: Computing = drawin@

5.1 Preparing the computationalkernel
5.2 Setting inputarrays /textures e
5.3 Setting outputarrays/textures e e e
5.4 Performingthe computation e

GPGPU concept 4: Feedback
6.1 Multiple rendering Passes e e e e
6.2 The ping PongteChniqUe « o o o e

7

Overview of the accompanying example implementatidm

A Appendix

A.1 Error checkingin OpenGL e e
A.2 ErrorcheckingwithFBOS e e e
A.3 Errorcheckingwith Cg e e
A4 Errorchecking With GLSL o o ot ot e e e
A5 ACKNOWIEAGEMENTS o o o o o e e

4.1 Loop-oriented CPU implementation vs. kernel-oriemtath-parallel implementation

11
12
12
12
12

13
13
13

14

2 2 SETTING UP OPENGL

1 Introduction

The goal of this tutorial is to explain the background andnaltessary steps that are required to implement a
simple linear algebra operator on the GRaxpy() as known from the BLAS library. For two vectoxsandy

of lengthN and a scalar valu@pha, we want to compute a scaled vector-vector additpr: y + alphaxx. The
saxpy() operation requires almost no background in linear algednd,serves well to illustrate all entry-level
GPGPU concepts. The techniques and implementation detaidsluced in this tutorial can easily be extended to
more complex calculations on GPUs.

1.1 Prerequisites

This tutorial is based 0®penGL, simply because the target platform should not be limited Windows. Most
concepts explained here however translate directlyitectX.

This tutorial is not intended to explain every single deti@im scratch. It is written for programmers with a basic
understanding oDpenGL, its state machine concepand the way OpenGL models the graphics pipeline.

For a good overview and pointers to reading material, plesfee to the GPGPU community web p@ge

Updates of this tutorial are available on my homepage.

1.2 Hardware requirements

You will need at least a NVIDIA GeForce FX or an ATI RADEON 95@faphics card. Older GPUs do not provide
the features (most importantly, single precision floatingnpdata storage and computation) which we require.
WARNING: Due to immature OpenGL driver support with respiecthe relatively new techniques used in this
tutorial, the accompagnying code will only work partiallg AT1 and GeForce FX hardware. This limitation will
be removed in future driver releases.

1.3 Software requirements

First of all, a C/C++ compiler is required. Visual Studio .NR003, Eclipse 3.1 plus CDT/MinGW, the Intel
C++ Compiler 9.0 and GCC 3.4+ have been successfully testh@to-date drivers for the graphics card are
essential. At the time of writing, using an ATI card only wenkith Windows, whereas NVIDIA drivers support
both Windows and Linux.

The accompanying code uses two external libraf4)T andGLEW which need to be installed. Shader support
for GLSL (see below) is built into the driver, and the Cg tdabian be downloaded from NVIDIA's developer page.

1.4 Alternatives

For a similar example program done in DirectX, refer to Jerigg€r'simplicit Water Surfacédemo (thereis also
a version based on OpenGL available). This is however vetiroented example code and not a tutorial.

GPU metaprogramming languages abstract from the graptooaéxt completely. BotBrookGPU# andSt are
recommended.

2 Setting up OpenGL

21 GLUT

GLUT, theOpenGL Utility Toolkit , provides functions to handle window events, create simp@aus etc. Here,
we just use it to set up a valid OpenGL context (allowing useasdo the graphics hardware through the GL API
later on) with as few code lines as possible. Additionaliis pproach is completely independent of the window
system that is actually running on the computer (MS-Windon&free/Xorg on Linux / Unix and Mac).

Ihttp://ww. gpgpu. or g

2http://wweg. i n. tum de/ Resear ch/ Publ i cati ons/ Li nAl g
Shtt p: // graphi cs. st anf ord. edu/ pr oj ect s/ br ookgpu/
4http://1ibsh. org/

2.2 OpenGL extensions 3

/1 include the GLUT header file
#i ncl ude <G/ glut.h>
/1 call this and pass the command |ine argunents from main()
void initGLUT(int argc, char **argv) {
glutlnit (&rgc, argv);
gl ut Cr eat eW ndow(" SAXPY TESTS");
}

2.2 OpenGL extensions

Most of the features that are required to perform generatifiggooint computations on the GPU are not part
of core OpenGL. OpenGL Extensions however provide a meshato access features of the hardware through
extensions to the OpenGL API. They are typically not supablly every type of hardware and by every driver
release because they are designed to expose new featuheshafrttware (such as those we need) to application
programmers. In eeal application, carefully checking if the necessary extemsire supported and implementing
a fallback to software otherwise is required. In this tuahnive skip this to prevent code obfuscation.

A list of (almost all) OpenGL extensions including specificas and examples is available at the OpenGL Exten-
sion Registny.

The extensions actually required for this implementatidlh e presented when we need the functionality they
provide in our code. The small toglewinfo that ships with GLEW, or any other OpenGL extension viewer, o
even OpenGL itself (an example can be found when followirgittk above) can be used to check if the hardware
and driver support a given extension.

Obtaining pointers to the functions the extensions defirmmiadvanced issue, so in this example, we use GLEW
as an extension loading library that wraps everything welngenicely with a minimalistic interface:

voi d initGLEW (void) {
I/ init GLEW obtain function pointers
int err = glemnit();
/1 Warning: This does not check if all extensions used
/1 in a given inplenentation are actually supported.
/1 Function entry points created by glewnit() will be
/1 NULL in that case!
if (LEWOK !=err) {
printf((char*)glewGetErrorString(err));
exit (ERROR_GLEW ;
}
}

2.3 Preparing OpenGL for offscreen rendering

In the GPU pipeline, the traditional end point of every renmatgoperation is the frame buffer, a special chunk of
graphics memory from which the image that appears on théagispread. Depending on the display settings, the
most we can get is 32 bits of color depth, shared among thegredn, blue and alpha channels of your display:
Eight bits to represent the amount of "red” in a image (sam@ffeen etc.: RGBA) is all we can expect and in fact
need on the display. This already sums up to more than 16omidlifferent colors. Since we want to work with
floating point values, 8 bits is clearly insufficient with pest to precision. Another problem is that the data will
always beclampedto the range 0f0,/255; 255/255] once it reaches the framebuffer.

How can we work around this? We could invent a cumbersomieragtics that maps the sign-mantissa-exponent
data format of an IEEE 32-bit floating point value into therf8tbit channels. But luckily, we don't have to! First,
32-bit floating poit values on GPUs are provided through at&penGL extensions (see section 2). Second, an
OpenGL extension calldXT_framebuffer_object allows us to use aaffscreen buffer as the target for render-
ing operations such as our vector calculations, providitiggrecision and removing all the unwanted clamping
issues. The commonly used abbreviatioRBO, short for framebuffer object.

To use this extension and to turn off the traditional franfisuand use an offscreen buffer (surface) for our
calculations, a few lines of code suffice. Note thiziding FBO number 0 will restore the window-system specific
framebuffer at any time. This is useful for advanced apfibce but beyond the scope of this tutorial.

GLuint fb;

voi d initFBQ(void) {

Il create FBO (of f-screen framebuffer)

gl GenFranebuf f er sEXT(1, &f b);

/1 bind offscreen buffer

gl Bi ndFr amebuf f er EXT(GL_FRAMEBUFFER_EXT, fb);
}

Shttp://o0ss. sgi.con projects/ogl-sanple/registry/

4 3 GPGPU CONCEPT 1: ARRAYS = TEXTURES

3 GPGPU concept 1: Arrays = textures

One-dimensionahrrays are the native CPU data layout. Higher-dimensional arragstypically accessed (at
least once the compiler is done with it) by offsetting conedés in a large 1D array. An example for this is the
row-wise mapping of a two-dimensional arralyi] [j] of dimensions\/ and N into the one-dimensional array

a[i * M+], assuming array indices start with zero (as in C, C++ and Bavaot in Fortran).

For GPUs, the native data layout is a two-dimensional afae- and three-dimensional arrays are also supported,
but they either impose a performance penalty or cannot be disectly with the techniques we employ in this
tutorial. Arrays in GPU memory are callgdxtures or texture samplers Texture dimensions are limited on
GPUs, the maximum value in each dimension can be queriedaniitt of code like this once a valid OpenGL
context is available (that is, once GLUT is initialized):

i nt maxtexsize;
gl Get | nt eger v(GL_MAX_TEXTURE_SI ZE, &maxt exsi ze) ;
printf("CGL_MAX_TEXTURE_SI ZE, %l \n", maxt exsi ze);

On today’s cards, the resulting value is 2048 or 4096 per dgioe. Be warned though that although a given
card seems to support three-dimensional floating pointitestof size 4096*4096*4096, the available graphics
memory is still a hard limit!

On the CPU, we usually talk aboaitray indices, on the GPU, we will neetexture coordinatesto access values
stored in the textures. Texture coordinates need to aceesiscenters.

Traditionally, GPUs work on four-tupels of data simultansly: There are four color channels called red, green,
blue and alpha (RGBA). We will explain later on how we can expthis to speed up our implementation on
certain hardware.

3.1 Creating arrays on the CPU

Let us recall the calculation we want to perforsn= y + alpha * x for a given vector lengtiv. We need two
arrays containing floating point values and a single floaie/é do this:

float+ dataY = new float[N;
float* dataX = new float[N];
float al pha;

Although the actual computation will be performed on the GR# still need to allocate these arrays on the CPU
and fill them with initial values.

3.2 Creating floating point textures on the GPU

This topic requires quite a lot of explanation, so let us fiesall that on the CPU, we simply need two arrays with
floating point values. On the GPU, we utmating point textures to store the data.

The first important complication is that we have a variety iffedent so-calledexture targets available. Even if
we skip the non-native targets and only restrict ourselvéso-dimensional textures, we are left with two choices.
GL_TEXTURE_2D is the traditional OpenGL two-dimensional texture targeferred to asexture2D through-
out this tutorial. ARB_texture_rectangleis an OpenGL extension that provides so-caliexture rectangles
sometimes easier to use for programmers without a graphidsgibbound. There are two conceptual differences
between texture2Ds and texture rectangles, which we listfioe reference. We will work through some examples
later on.

texture2D texture target GL_TEXTURE_2D

texture coordinates Coordinates have to be normalized to the raftgé] by [0; 1], independent of the
dimension[0; M] by [0; N] of the texture.

texture dimensions Dimensions are constrained to powers of two (e.g. 1024 by Ghkess the driver
supports the extensioARB_non_power_of two orunless the driver exposes OpenGL 2.0 which
alleviates this restriction.
texture rectangle texture target GL_ TEXTURE_2D
texture coordinates Coordinates are not normalized.
texture dimensions Dimensions can be arbitrary by definition, e.g. 513 by 1025.

3.2 Creating floating point textures on the GPU 5

The next important decision affects ttexture format. GPUs allow for the simultaneous processing of scalars,
tupels, tripels or four-tupels of data. In this tutorial, Weeus on scalars and four-tupels exemplarily. The easier
case is to allocate a texture that stores a single floatingt palue per texel. In OpenGIGL_LUMINANCE is

the texture format to be used for this. To use all four chagyribe texture format iI6€L_RGBA. This means that
we store four floating point values per texel, one in the rddrachannel, one in the green channel and so on. For
single precision floating point values, a LUMINANCE textuv#l consume 32 bits (4 bytes) of memory per texel,
and a RGBA texture requires 4*32=128 bits (16 bytes) pertexe

Now it gets really tricky: There are three extensions to Gplethat expose true single precision floating point val-
ues asnternal format fortexturesNV_f | oat _buf fer ,ATI _texture_ fl oat andARB texture_fl oat.
Each extension defines a set of enumerants (for example GRAFLR32_NV) and symbols (for example 0x8880)
that can be used to define and allocate textures, as destatbedn. TheNV _float_buffer extension should be
considered legacy for NVIDIA GeForce FX (GeForce 5) classltvare although it is still supported in later gen-
erations of NVIDIA GPUs. This extension can only be used uétkture rectangles. The enumerants for the two
texture formats we are interested in here @te FLOAT_R32_NV andGL_FLOAT_RGBA32_NV. The first
enumerant tells the GL that we want to store a single floatwigtpralue per texel, the latter stores a 4-tupel of
floating point values in each texel. The two extensigm texture float andARB_texture_float are identical
from our point of view except that they define different enuamés for the same symbols. It is a matter of prefer-
ence which one to use, because they are supported on botmd@éH@nd better) and ATI hardware. The enumer-
ants areGL_LUMINANCE_FLOAT32_ATI , GL_RGBA_FLOAT32_ATI andGL_LUMINANCE32F_ARB ,
GL_RGBA32F_ARB respectively. In this tutorial, we use the ARB extension.

The last problem we have to tackle is the question how to magctowon the CPU into a texture on the GPU.
We choose the easiest mapping that comes to mind: A vectength N is mapped into a texture of sizZg N

by v/N for LUMINANCE formats (this means we assumgis a power of two), and into a texture of siQéN/ZL

by \/N/4 for RGBA formats, again assuminy is chosen so that the mapping "fits”. For instande= 10242
yields a texture of size 512 by 512. We store the correspgnditue in the variableexSize

The following list summmarizes all the things we just dised sorted by the available GPU types: NVIDIA
GeForce FX (NV3x), GeForce 6 and 7 (NV4x, G70) and ATI.

NV3x target texture rectangle only
format one to four channels
internal format NV_float buffer

NV4x and better target texture2D and texture rectangle
format one to four channels
internal format NV_float_buffer (see below), ATI_texture_float, ARB_tesdufloat

ATI target texture2D and texture rectangle
format one to four channels
internal format ATI_texture_float

One additional remark: NVIDIA also supports the extengddtB_color_buffer_float on NV4x and better GPUs,
which (among other things) effectively allow8/_float_buffer to be used in combination with texture2Ds.

After this large theory section, it is time to go back to sorode Luckily, allocating a texture is very easy once
we know whichtexture target, texture format andinternal format we want to use:

/1l create a new texture nanme
GLuint texID;
gl GenTextures (1, &exlD);
/1 bind the texture nane to a texture target
gl BindTexture(texture_target,texlD);
/1 turn off filtering and set proper w ap node
/1 (obligatory for float textures atm
gl TexParameteri (texture_target, GL_TEXTURE_M N_FI LTER, GL_NEAREST);
gl TexParameteri (texture_target, GL_TEXTURE_MAG FILTER, GL_NEAREST);
gl TexParameteri (texture_target, GL_TEXTURE_WRAP_S, GL_CLAWP);
gl TexParameteri (texture_target, GL_TEXTURE_ WRAP_T, GL_CLAWP);
/1 and allocate graphics nenory
gl Tex| mage2D(texture_target, 0, internal _format,
texSize, texSize, 0, texture_format, GL_FLOAT, 0);

Let us digest this last OpenGL call one parameter at a timeaNéady know what ext ur e_t ar get should
be. The next parameter (set to 0) tells the GL not to use anynagpevels for this texture. The internal format

6 3 GPGPU CONCEPT 1: ARRAYS = TEXTURES

is clear, and so should be thexSi ze parameter. The next parameter (again set to 0) turns offeoerfdr our
texture because we don’t need them. The texture format elsdbe number of channels, as explained above. The
parametefa. FLOAT should not be misinterpreted: It has nothing to do with trexjmion of the values we want

to store in the texture, it is only relevant on the CPU sideabse it tells the GL that the actual data which gets
passed in later calls is floating point. The last paramettrt(s0) simply tells the GL that we do not want to
specify any data for the texture right now. This call therefiesults in a properly allocated texture corresponding
to the settings we decided upon before.

One last remark: Choosing a proper data layout, that is, gpingfoetween texture formats, texture sizes and
your CPU data, is a very problem-depending question. E&pee shows that for some cases, defining such a
mapping is obvious and in other cases, this takes up mostwftyoe. Suboptimal mappings can seriously impact
performance!

3.3 One-to-one mapping from array index to texture coordinaes

Later on in this tutorial, we update our data stored in tesddny a rendering operation. To be able to control exactly
which data elements we compute or access from texture memenyill need to choose a special projection that
maps from the 3D world (world or model coordinate space) é02b screen (screen or display coordinate space),
and additionally a 1:1 mapping between pixels (which we warender to) and texels (which we access data
from). The key to success here is to choose an orthogonaqiioj and a proper viewport that will enable a one
to one mapping between geometry coordinates (used in rieigdlend texture coordinates (used for data input)
and pixel coordinates (used for data output). The mappibgsed on the only value we have available so far, the
size (in each dimension) we allocate textures with. One ingrthough: With texture2Ds, some scaling for the
texture coordinates as explained above is still requiréds i typically done in another part of the implementation
and we explain it once we get there. With the projection aedpbrt set here, this is however trivial.

To set up the mapping, we essentially setdtomordinate in world space to zero and apply thel mapping: The
following lines can be added to theni t FBOQ() routine:

/1 viewport for 1:1 pixel =texel =geonetry mappi ng
gl Mat ri xMbde(GL_PRQIECTI ON) ;

gl Loadl dentity();

gluOrtho2D(0.0, texSize, 0.0, texSize);

gl Mat ri xMbde(GL_MODELVI EW ;

gl Loadl dentity();

gl Viewport (0, 0, texSize, texSize);

3.4 Using textures as render targets

One key functionality to achieve good performance rateBégobssibility to use textures not only for data input,
but also for data output: With the framebuffer_object exien, we carrender directly to a texture. The only
drawback is: Textures are eithrad-only or write-only. GPU hardware design provides an explanation: Inter-
nally, GPUs schedule rendering tasks into several pipehnarking in parallel, independent of each other. We
will discuss this later on in more detail. Allowing for simaheous reads from and writes into the same texture
would require an awful lot of logic to prevent reading fromr@yiously modified position (read-modify-write).
Even if that chip logic was available, there would be no wajyriplement this (in hardware or software) without
seriously inhibiting performance: GPUs are not instruttitream based von Neumann architecturesdbtd-
stream based architectures In our implementation, we thus need three textures forwedata vectors: One
texture (read-only) is used for the vectaranother read-only texture for the input vecyoand a third write-only
texture that contains the result of the computation. Thigragch basically means that we rewrite our original
calculationy = y + alpha * x 10 thiS: ynew = Yo1d + alpha x x.

The framebuffer object extension provides a very narrowrfate torender to a texture. To use a texture as
render target, we have #itach the texture to the FBO

gl Franebuf f er Text ur e2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHVENTO_EXT,
texture_target, texlD, 0);

The first parameter is obligatory. The second parameteretetite attachment point (up to four different texture at-

tachments are supported per FBO, this depends on the hardn@ican be queried usiy MAX_COLOR_ATTACHMENTS_ EXT).
The third and fourth parameter should be clear; they idgttiié actual texture to attach. The last parameter selects

the mipmap level of the texture, we do not use mipmapping seimply set it to zero.

3.5 Transferring data from CPU arrays to GPU textures 7

Unfortunately, the framebuffer_object specification odéfines texture attachments with the forr@at RGB or
GL_RGBA (the latter being important for us). LUMINANCE attachmewi#i be defined in a follow-up extension.
At the time of writing, NVIDIA hardware and the NVIDIA drivesupport them nontheless, but only in combination
with the enumerants defined MV _float_buffer. In other words, the distinction between formats that dmad

as floating point textures and formats that are allowed asrlpaoint render targets or more precise, floating point
color attachments, is essentiRlenderable texture formatsis an unofficial term to make this distinction.

Note that in order to successfully attach a texture, it jzst to be allocated and defined by meangl@éxim-
age2D() it does not need to contain any useful data. It is a good ggatthink of FBOs astructs of pointers

in order to redirect rendering operations to a texture httemnt, all we (conceptually) need to do is some pointer
manipulation by means of OpenGL calls.

3.5 Transferring data from CPU arrays to GPU textures

To transfer data (like the two vectors dataX and dataY wetetepreviously) to a texture, we have to bind the
texture to a texture target and schedule the data for tramsfle an OpenGL call. It is essential that the array
passed to the function as a pointer parameter is properlgrianed. In the case of our vectors, LUMINANCE
format implies the array must contain texSize by texSizenelats, and for RGBA formats, we need an additional
factor of four more elements. Since we @e FLOAT, the data has to be a pointer to an array of floats as defined
above. Note that we have absolutely no control when the diltactually be transferred to graphics memory, this
is entirely left to the driver. We can however be sure thakedahe GL call returns, we can safely alter the data on
the CPU side without affecting the texture. Additionally e guaranteed that the data will be available when
we access the texture for the next time. That being said, welis@ into the code. On NVIDIA hardware, the
following code is hardware-accelerated:

gl BindTexture(texture_target, texID);
gl TexSubl mage2D(texture_target, 0,0, 0, t exSi ze, t exSi ze,
texture_format, GL_FLOAT, data);

The three zeros we pass as parameters define the offset amipthep level. We will ignore all of them because
we do not use mipmaps and because we transfer a whole vechoceat

On ATI hardware, the preferred technique is to transfer tatatexture that is already attached to a framebuffer
object by just redirecting the OpenGL render target to thachment and by issueing a conventional OpenGL
framebuffer image manipulation call:

gl Dr awBuf f er (GL_COLOR_ATTACHVENTO_EXT) ;
gl Rast er Pos2i (0, 0);
gl DrawPi xel s(texSi ze, t exSi ze, texture_format, GL_FLOAT, dat a) ;

The first call redirects the output. In the the second calluge the origin as the reference position because we
download the whole chunk of data into the texture with thedad.

In both cases, the CPU array is mapped row-wise to the texiioee detailed: For RGBA formats, the first four
array elements end up in the red to alpha components of thésfied and so on. For LUMINANCE textures, the
first two texels in a row contain the first two components ofdh&a vector.

3.6 Transferring data from GPU textures to CPU arrays

The other way round, there are again two alternative wayshfeément transfers from GPU textures to CPU
arrays. The traditional OpenGL texturing approach invslbeding the texture to a texture target and calling
glGetTexImage() The parameters should be clear by now:

gl Bi ndText ure(texture_target,texlD);
gl Get Tex| mage(texture_target, 0, texture_fornmat, GL_FLOAT, data);

If the texture to be read back to the host is already attaahad®BO attachment point, we can again perform the
pointer redirection technique:

gl ReadBuf f er (GL_COLOR_ATTACHVENTO_EXT) ;
gl ReadPi xel s(0, 0, texSi ze, t exSi ze, texture_f ormat, GL_FLOAT, dat a) ;

Since we upload the whole texture from GPU memory to CPU mgma pass the origin as the first two param-
eters. This technique is recommended.

One word of advice: Data transfers between main memory and i@&mory are expensive compared to compu-
tations on the GPU, so they should be used sparingly.

8 4 GPGPU CONCEPT 2: KERNELS = SHADERS

3.7 A short example program

Now it is time to lean back a little. | strongly suggest to staying around before moving on to more advanced
topics. Write a little example program and try to define tesuwith varying formats, targets and internal formats.
Download data into them and read back the data again to aehtf€PU array to get acquainted with the techniques
and implementation details. Try to put the different pieckthe puzzle together into a running program! Sections
[A.1through A.4 about error checking in the appendix shoelddnsulted to avoid problems.

For reference, this is the most minimalistic program | hawme up with to achieve round trips, exemplarily using
texture rectangles andRB_texture_float:

#i ncl ude <stdio. h>
#include <stdlib. h>
#i ncl ude <GL/ gl ew. h>
#incl ude <GL/glut.h>

int main(int argc, char xxargv) {
/1 declare texture size, the actual data will be a vector
/'l of size texSizertexSize+4
int texSize = 2;
/] create test data
float+* data = new float[texSizextexSizex4];
float* result = new float[texSizextexSize*4];
for (int i=0; i<texSizertexSizex4; i++)
data[i] = i+1.0;
Il set up glut to get valid GL context and
/1 get extension entry points
glutlinit (&rgc, argv);
gl ut Cr eat eW ndow(" TEST1") ;
glewnit();
/1 viewport transformfor 1:1 pixel =texel =data mappi ng
gl Mat ri xMbde(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uOrtho2D(0.0, texSize, 0.0, texSize);
gl Mat ri xMbde(GL_MODELVI EW ;
gl Loadl dentity();
gl Viewport(0, 0, texSize, texSize);
Il create FBO and bind it (that is, use offscreen render target)
GLuint fb;
gl GenFranebuf f er sEXT(1, &f b);
gl Bi ndFr amebuf f er EXT(GL_FRAMEBUFFER_EXT, fb);
Il create texture
GLui nt tex;
gl GenTextures (1, &ex);
gl Bi ndText ur e(G._TEXTURE_RECTANGLE_ARB, t ex) ;
/1 set texture parameters
gl TexPar anet eri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_M N_FI LTER, GL_NEAREST);
gl TexPar anet eri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_MAG FI LTER GL_NEAREST);
gl TexPar anet eri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_WRAP_S, GL_CLAWP);
gl TexPar anet eri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_WRAP_T, GL_CLAWP);
/1 define texture with floating point format
gl Tex| mage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA32F_ARB,
texSi ze, t exSi ze, 0, GL_RGBA, GL_FLOAT, 0) ;
/1 attach texture
gl Franebuf f er Text ur e2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHVENTO_EXT,
GL_TEXTURE_RECTANGLE_ARB, tex, 0);
/1 transfer data to texture
gl TexSubl mage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, t exSi ze, t exSi ze,
GL_RGBA, GL_FLOAT, dat a) ;
/1 and read back
gl ReadBuf f er (GL_COLOR_ATTACHMVENTO_EXT) ;
gl ReadPi xel s(0, 0, texSize, texSize, GL_RGBA GL_FLOAT,result);
/1 print out results
printf("Data before round trip:\n");
for (int i=0; i<texSizertexSizex4; i++)
printf("%\n", datafi]);
printf("Data after round trip:\n");
for (int i=0; i<texSize*texSizex4; i++)
printf("%\n", result[i]);
Il clean up
delete [] data;
delete [] result;
gl Del et eFranebuf f er sEXT (1, &fb);
gl Del eteTextures (1, & ex);
return 0;

4 GPGPU concept 2: Kernels = shaders

In this chapter, we discuss the fundamental difference éncibmputing model between GPUs and CPUs, and
the impact on our way of thinking algorithmically and metkwadly. Once we have a clear understanding of the
data-parallel paradigm GPUs subject to, programming shaders is fairly. eas

4.1 Loop-oriented CPU implementation vs. kernel-orierteta-parallel implementation 9

4.1 Loop-oriented CPU implementation vs. kernel-orienteddata-parallel implementa-
tion

Let us first recall the problem we want to solye’=y + alpha * x. On the CPU, we typically use a single loop
over all array elements like this:

for (int i=0; i<N; i++)
dataY[i] = dataY[i] + al pha*dataX[i];

Two levels of computation are active at the same time: Oettié loop, thdoop counter is incremented and
compared with the length of our vectors, and inside the leapaccess the arrays at a fixed position which is
determined by the loop counter and perform the actual coatiputwe are interested in: a multiplication and an
addition on each data element. It is important to note that#iculations performed on each data element in the
vectors aréndependentof each other, for a given output position, we access disiipeit memory locations and
there are no data dependencies between elements in thevexstot. If we had avector processorthat is capable

of performing operations on whole vectors of lengttor evenN CPUs,we would not need the loop at all'This
paradigm is commonly calleBIMD (single instruction multiple data). On a side notepartial loop unrollingis

a common technique in high performance computing to all@ctimpiler to make better usage of the extensions
available in today’s CPUs like SSE or SSE2.

The core idea of GPU computing for the problem we want to ®dklthis tutorial should now be clear: We
separate the outer loop from the inner calculations The calculations we do inside the loop are extracted into a
computational kernel:y newi] = y old[i] + al pha * x[i].Be aware that the kernel is no longer
avector expressionbut conceptually acalar templateof the underlying math that forms a single output value
from a set of input valuesFor a single output element, there are no data dependenciesiti other output
elements, and all dependencies to input elements can be delsed relatively.

In our example, the array index of a given output element éntidal to the array indices of the input values,
or more precisely, the input positions from all arrays aenittal from the point of view of an output element.
Another, less trivial dependency arises from the standBréihite Difference schemey[i] = - x[i-1] +
2xx[i] - x[i+1]. Informally, the corresponding kernel would B&€ompute each value in the vectgrby
multiplying the the value ot by two at that position, and subtract the the value to thedefi the value to the
right”.

The programmable part of the GPU we want to use in our compuogtthe so-calleftagment pipeline, consists

of many parallel processing units, up to 24 in the GeForceD@&X. The hardware and driver logic however
that schedules each data item into the different pipelinest programmable! So from a conceptual point of
view, all work on the data items is performed independentthout any influence among the various “fragments
in flight through the pipeline”. In the previous chapter wedalissed that we use textures as render targets (the
end point of the pipeline) and that we store our vectors itutes. Thus, another useful analogy that is valid for
our kind of computations is: The fragment pipeline behaues & vector processor of the size of our textures.
Although internally the computation is split up among thaitable fragment processors, we cannot control the
order in which fragments are processed. All we know howey#ré “address”, the coordinates (pixel coordinates
in screen space) in the target texture where an individualitkem will end up. We can therefore assume all work
is done in parallel without any data interdependence. Thiagigm is commonly referred to aata-parallel
computing.

Now that we have extracted the computational kernel fronpooiolem, we can discuss the way the programmable
fragment pipeline is actually programmed. Kernels tratesia shaders on the GPU, so what we have to do is to
write an actual shader and include it into our implementatla this tutorial, we discuss how to achieve this with
the Cg shading language and the OpenGL shading languaged_JGhs following two subsections are therefore
partly redundant, the idea is that you pick one and skip therdbecause advantages and disadvantages of each
language and runtime are beyond the scope of this tutorial.

4.2 Creating a shader with the Cg shading language

To use shaders with Cg, we have to distinguish betweestthding languageand theCg runtime which we use to
prepare the shader. There are two types of shaders avatabtesponding to the two programmable stages of he
graphics pipeline. In this tutorial, we rely on tfieed function pipeline in thevertex stageand only program the
fragment shader. The fragment pipeline is much better suited for the kindahputations we pursue, using the
vertex stage is an advanced topic beyond the scope of thisalitAdditionally, the fragment pipeline traditionally
provides more computational horsepower.

10 4 GPGPU CONCEPT 2: KERNELS = SHADERS

Let us start with writing the shader code itself. Recall tiatkernel on the CPU contains some arithmetics, two
lookups into the data arrays and a constant floating poingevalVe already know that textures are the equivalent
of arrays on GPUs, so we use texture lookups instead of avodyps. In graphics terms, veample the textures

at given texture coordinates We will postpone the question of how correct texture cauatks are calculated
automatically by the hardware until the next chapter. Td déth the constant floating point value, we have two
options: We can inline the value into the shader source cadedgnamically recompile the shader whenever it
changes, or, more efficiently, we can pass the value as arrmjfarameter. The following bit of code contrasts a
very elaborate version of the kernel and the shader source:

float saxpy (
float2 coords : TEXCOORDO,
uni f orm sanpl er 2D t ext ur eY,
uni f orm sanpl er 2D t ext ur eX,
uni formfloat alpha) : COLOR

float result;
float yval=y_old[i]; float y = tex2D(textureY, coords);
float xval =x[i]; float x = tex2D(textureX, coords);
y_newf i] =yval +al pha*xval ; result =y + al pharx;
return result;
}

Conceptually, a fragment shader like the one above is a tiogrpm that is executed for each fragment. In our
case, the program is callechxpy. It receives several input parameters and returns a float.colon syntax is
calledsemantics binding Input and output parameters are identified with variouestariables of the fragment.
We called this "address" in the previous section. The outplute of the shader has to be bound to @@LOR
semantics, even though this is not too intuitive in our caseeswe do not use colors in the traditional sense.
Binding a tuple of floats (float2 in Cg syntax) to thEXCOORDO semantics will cause the runtime to assign the
texture coordinates that were computed in a previous stitfpe graphics pipeline to each fragment. More on that
later, for now, we can safely assume that we sample the esxatprecisely the coordinates we want. The way we
declare the textures in the parameter list and the actulfwsampling function depends on ttexture target

we use: Fottexture2D, the keywords arsanpl er 2D andt ex2D(nane, coor ds) , for texture rectangles

we need to useanpl er RECT andt exRECT(nane, coor ds) accordingly.

To use four-channeled textures instead of luminance tegfwwe just replace the type of the variable that holds
the result of a texture lookup (and of course the return vakith float4. Since GPUs are able to perform all
calculations on four-tuples in parallel, the shader sotocéexture rectangles and RGBA textures reads:

float4 saxpy (
float2 coords : TEXCOORDO,
uni f or m sanpl er RECT textureY,
uni f or m sanpl er RECT t extureX,

uniformfloat alpha) : COOR
{
float4 result;
float4 y = texRECT(textureY, coords);
float4 x = texRECT(textureX, coords);

result =y + al pharx;

/1 equival ent: result.rgba=y.rgba+al pha*x.rgba

11 or: result.r=y.r+al pha*x.y; result.g=...
return result;

}

We store the shader source in a char array or in a file to actéssn our OpenGL program through the Cg
runtime.

4.3 Setting up the Cg runtime

This subsection describes how to set up the Cg runtime in @mGp application. First, we need to include the Cg
headers (it is sufficient to includég/ cgG.) and add the Cg libraries to our compiler and linker optiofisen,
we declare some variables:

Il Cg vars

CGecont ext cgCont ext ;

CGprofile fragnentProfile;

CGpr ogr am f r agnent Pr ogr am

CGpar anet er yParam xParam al phaParam

char+ programsource = "float saxpy([....] return result; } ";

The CCcont ext is the entry point for the Cg runtime, since we want to progtam fragment pipeline, we
need aragment profile (Cg is profile-based) andgrogram container for the program we just wrote. For the
sake of simplicity, we also declare three handles to therpeters we use in the shader that are not bound to any
semantics, and we use a global variable that contains thieskaurce we just wrote. We encapsulate all the Cg
runtime initialization in one function:

4.4 Setting up a shader for computation with the OpenGL stigldnguage 11

void initCGvoid) {

Il set up Cg

cgContext = cgCreateContext();

fragmentProfile = cgGLGet Lat est Profil e(CG_GL_FRAGMENT) ;

cgGLSet Opti mal Options(fragnentProfile);

Il create fragnent program

fragnent Program = cgCr eat eProgram (
cgCont ext, CG SOURCE, program source,
fragnentProfile, "saxpy", NULL);

/1 1oad program

cgGLLoadPr ogram (fragment Progran) ;

/1 and get parameter handl es by nane

yParam = cgGet NanmedPar anet er (fragnent Program "textureY");

xParam = cgGet NanmedPar anet er (fragnent Program "textureX');

al phaPar am = cgGet NanedPar amet er (fragnent Program "al pha");

4.4 Setting up a shader for computation with the OpenGL shadig language

It is not neccessary to include any additional header fildboaries to use the OpenGL Shading Language, it is
builtinto the driver. Three OpenGL extensio®fB_shader_objectsARB_vertex_shaderandARB_fragment_shade)
define the API, and the GLSL specification defines the langitag. Both API and language are part of core
OpenGL 2.0, but we use the older enumerants nontheless.

We define a series of global variables for fregram object, theshader objectandhandlesto the data variables

we want to access in the shaders. The first two objects ardysilapa containers managed by OpenGL, one
program can consist of exactly one vertex and fragment shiaglh subtypes can consist of several shader sources,

a shader can in turn be part of several programs etc.:

Il GLSL vars

GLhandl eARB pr ogr antbj ect ;
GLhandl eARB shader Obj ect ;

GLint yParam xParam al phaParam

Writing the actual shaders is similar to using the Cg shathnguage, so we just present two example shaders.
The two main differences are probably that all variables w&g explicitly through the runtime are declared
globally, and that instead of parameter bindings to GL stat@bles, we use a set of reserved variable names that
are bound implicitely to the current GL state.

/1 shader for |uninance data and texture rectangles Il shader for RGBA data and texture2D

uni f orm sanpl er Rect textureY; uni for m sanpl er 2D text ureY;

uni f orm sanpl er Rect textureX; uni f or m sanpl er 2D t ext ur eX;

uni form float al pha; uni form float al pha;

voi d mai n(void) { voi d mai n(void) {
float y = textureRect(textureY,gl_TexCoord[O0].st).x; vecd y = texture2D(textureY, gl_TexCoord[OQ].st);
float x = textureRect(textureX, gl _TexCoord[O0].st).x; vecd x = texture2D(textureX, gl_TexCoord[OQ].st);
gl _FragCol or.x = y + al pha*x; gl _FragCol or =y + al pha*x;

}

We can encapsule the initialization of the GLSL runtime agaio a single function. The GLSL API is designed
to mimic the traditional compilation and linking processr Betails please refer to the Orange Book or take a look
at the various GLSL tutorials available on the internet.

voi d initG.SL(void) {
/1 create program obj ect
progranmObj ect = gl Creat eProgr anObj ect ARB() ;
Il create shader object (fragnent shader) and attach to program
shader Obj ect = gl Cr eat eShader Obj ect ARB(GL_FRAGVENT_SHADER_ARB) ;
gl Att achObj ect ARB (progranthj ect, shader Object);
Il set source to shader object
gl Shader Sour ceARB(shader Obj ect, 1, &program source, NULL);
/1 conpile
gl Conpi | eShader ARB(shader Obj ect) ;
/1 1ink program object together
gl Li nkPr ogr amARB(pr ogr anbj ect) ;
/1 Get location of the texture sanplers for future use
yParam = gl Get Uni f or mLocat i onARB(pr ogr antChj ect, "textureY");
xParam = gl Get Uni f or nLocat i onARB(pr ogr anbj ect, "textureX"');
al phaParam = gl Get Uni f or nLocat i onARB(pr ogr anChj ect, "al pha");

5 GPGPU concept 3: Computing = drawing

In this chapter, we will discuss how everything we learnetthenprevious chapters of this tutorial is pieced together
to perform the scaled vector-vector additpmew = y_old + alpha x x. In the accompanying implementation,
this is encapsulated in theer f or nConput at i on() routine. Four steps are required: The kernel is activated,
input and output arrays are assigned using the shader miatighfinally, the computation is triggered by rendering
a suitable geometry. This last step is embarrassingly simafier all the foundations we laid in the previous
chapters.

12 5 GPGPU CONCEPT 3: COMPUTING = DRAWING

5.1 Preparing the computational kernel

To activate the kernel using the Cg runtime, fregment profile we created previously isnabledand the shader
we wrote and already loadedbsund. Only one shader can be active at the same time. More cofreaty one
vertex and one fragment shader can be active at a given tirhe/drely on the fixed function pipeline at the vertex
stage in this tutorial, as mentioned before. This requirsstjvo lines of code:

/1 enable fragment profile
cgGLEnabl eProfil e(fragnentProfile);
/1 bind saxpy program

cgGLBi ndProgr an{ f r agnent Progr anj ;

Using the GLSL runtime, this is even easier: If our progranectwas linked successfully, all we have to do is to
install the program as part of the rendering pipeline:

gl UsePr ogr anhj ect ARB(pr ogr anbj ect) ;

5.2 Setting input arrays / textures

Using the Cg runtime, linking and enabling the input arreyaliresy ol d andx and the uniform value (the right
hand side of the equation, texture identifigraol dTex| DandxTex| D respectively) is straight-forward use of
the Cg runtime:

/1 enable texture y_old (read-only)

cgGLSet Text ur ePar anet er (yParam y_ol dTexI D);
cgGLEnabl eText ur ePar anet er (yPar anj ;

/1 enable texture x (read-only)

cgGLSet Text ur ePar anet er (xParam xTex| D) ;
cgGLEnabl eText ur ePar anet er (xPar anj ;

/1 enabl e scal ar al pha

cgSet Par anet er 1f (al phaParam al pha) ;

In GLSL, we have to bind our textures to different texturetsifthe Cg runtime does this automatically for us) and
pass these units to our uniform parameters:

/1 enable texture y_old (read-only)

gl Acti veText ur e(GL_TEXTUREO) ;

gl Bi ndText ur e(textureParaneters.texTarget, yTex| D[readTex]);
gl Uni fornili ARB(yParam 0); // texunit 0

/1 enable texture x (read-only)

gl Acti veText ur e(GL_TEXTUREL) ;

gl Bi ndText ur e(t extureParamet ers. t exTarget, xTex| D) ;

gl Uni f or mli ARB(xParam 1); // texunit 1

/1 enabl e scal ar al pha

gl Uni f or mLf ARB(al phaPar am al pha) ;

5.3 Setting output arrays / textures

Defining the output array (the left side of the equation) seesially the same operation like the one we discussed
to transfer data to a texture already attached to our FBOpl8ipointer manipulation by means of GL calls is all
we need. In other words, we simply redirect the output: If wkribt do so yet, we attach the target texture to our
FBO and use standard GL calls to use it as the render target:

/1 attach target texture to first attachnent point

gl Franebuf f er Text ur e2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHVENTO_EXT,
texture_target, y_newTex|D, 0);

/1 set the texture as render target

gl DrawBuf fer (GL_COLOR ATTACHVENTO_EXT);

5.4 Performing the computation

Let us briefly recall what we did so far. We enabled a 1 mapping between the target pixels, the texture
coordinates and the geometry we are about to draw. We alsmee a fragment shader we want to execute
for each fragment. All that remains to be done is: Rendsuitable geometryhat ensures that odragment
shader is executed for each data element we stored in the tagtexture. In other words, wamake sure
that each data item is transformed uniquely into a fragment Given our projection and viewport settings, this
is embarrassingly easy: All we need idilied quad that covers the whole viewport! We define the quad with
standard OpenGL (immediate mode) rendering calls. Thisnseee directly specify the four corner vertices of

13

the quad. We also assign texture coordinates as vertelRudési to the four vertices. The four vertices will be
transformed to screen space by the fixed function vertexestdngch we did not program. Thrasterizer, a fixed-
function part of the graphics pipeline located between #reéex and fragment stage, will then perform a bilinear
interpolation for each pixel that is covered by the quadgripblating both the position (in screen space) of the
pixels and the vertex attributes (texture coordinatesghftbe vertex data. It generates a fragment for each pixel
covered by the quad. The interpolated values will be passexratically to the fragment shader because we used
the binding semantics when we wrote the shader. In othersyoeddering a simple quad serves aata stream
generatorfor the fragment program. Because of the viewport and ptiojesettings we implemented, the whole
output array / texture) is covered by the quad, and is thustoamed into a fragment automatically, including
interpolated attributes such as texture coordinates. €prently, the fragment program execution is triggered for
each output position in the arraBy rendering a simple textured quad, we achieve that the keral is executed

for each data item in the original vector / texture! This is what we wanted to achieve throughout the whole
tutorial.

Usingtexture rectangles(texture coordinates are identical to pixel coordinates)use a few code lines like this:

/1 make quad filled to hit every pixel/texel
gl Pol ygonMvbde(GL_FRONT, GL_FI LL);
/1 and render quad
gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.0, 0.0);
gl Vertex2f (0.0, 0.0);
gl TexCoor d2f (t exSi ze, 0.0);
gl Vertex2f (texSize, 0.0);
gl TexCoor d2f (t exSi ze, texSize);
gl Vertex2f (texSi ze, texSize);
gl TexCoor d2f (0. 0, texSize);
gl Vertex2f (0.0, texSize);
gl End();

Using texture2Ds (and therefore normalized texture coatéis), this is equivalent to:

/1 make quad filled to hit every pixel/texel
gl Pol ygonMvbde(GL_FRONT, GL_FI LL);
/1 and render quad
gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.0, 0.0);
gl Vertex2f (0.0, 0.0);
gl TexCoor d2f (1.0, 0.0);
gl Vertex2f (texSize, 0.0);
gl TexCoor d2f (1.0, 1.0);
gl Vertex2f (texSi ze, texSize);
gl TexCoor d2f (0.0, 1.0);
gl Vertex2f (0.0, texSize);
gl End();

One remark for advanced programmers: In our shaders, wausalgne set of texture coordinates. It is possible to
define several sets of (different) texture coordinates peey, refer to the documentationgdf Mul t i TexCoor d()
for details.

6 GPGPU concept 4: Feedback

After the calculation is performed, the resulting valuesstored in the target textuye new.

6.1 Multiple rendering passes

In a proper application, the result is typically used as tripua subsequent computation. On the GPU, this means
we perform anotherendering passand bind different input and output textures, eventuallyfi@eent kernel etc.
The most important ingredient for this kind wiultipass renderingis theping pongtechnique.

6.2 The ping pong technique

Ping pongis a technique to alternately use the output of a given rémgi@ass as input in the next one. In our
case, this means that we swap the role of the two texturegewandy_ol d, since we do not need the values in
y_ol d any more once the new values have been computed. There eeegtbssible ways to implement this kind
of data reuse (take a look at Simon Green’s FBO sfidesadditional material on this):

e Use one FBO with one attachment per texture that is rendereaht! bind a different FBO in each rendering
pass usingl Bi ndFr anebuf f er EXT() .

6ht t p: / / downl oad. nvi di a. coni devel oper/ present at i ons/ 2005/ GDC/ QpenGL_Day/ OpenGL_Fr aneBuf f er _bj ect . pdf

14 7 OVERVIEW OF THE ACCOMPANYING EXAMPLE IMPLEMENTATION

e Use one FBO, reattach the render target texture in each peggll Fr amebuf f er Text ur e2DEXT() .
e Use one FBO and multiple attachment points, switch uginbr awBuf f er () .

Since there are up to four attachment points available p€r &Bd since the last approach turns out to be fastest,
we will explain how to ping pong between different attachiserTo do this, we first need a set of management
variables:

/1 two textures identifiers referencing y_old and y_new

GLuint yTexI D[2];

/1 ping pong managenent vars

int witeTex = 0;

int readTex = 1;

GLenum at t achment poi nts[] = { GL_COLOR _ATTACHVENTO_EXT, GL_COLOR_ATTACHMENT1_EXT };

During the computation, all we need to do now is to pass theecbyvalue from these two tupels to the correspond-
ing OpenGL calls, and to swap the two index variables afteh gass:

/1 attach two textures to FBO
gl Framebuf f er Text ur e2DEXT(GL_FRAMEBUFFER_EXT,
attachment poi nts[writeTex],
texture_Target, yTexIDlwiteTex], 0);
gl Franebuf f er Text ur e2DEXT(GL_FRAMEBUFFER_EXT,
att achment poi nt s[readTex] ,
texture_Target, yTexlD[readTex], 0);
/1 enable fragment profile, bind program[...]
/1 enable texture x (read-only) and uniform parameter [...]
/1 iterate conputation several tines
for (int i=0; i<numterations; i++) {
Il set render destination
gl DrawBuf fer (attachmentpoints[witeTex]);
/1 enable texture y_old (read-only)
cgG.Set Text ur ePar anet er (yParam yTex| D[readTex]);
cgGLEnabl eText ur ePar anet er (yPar an) ;
/1 and render nultitextured viewport-sized quad
Il swap role of the two textures (read-only source becones
/1l wite-only target and the other way round):
swap() ;

7 Overview of the accompanying example implementation

The accompanying example prog‘%lm;es all concepts explained in this tutorial to perform tiWwing opera-
tions:

¢ Create one floating point texture per vector.

Transfer initial data to these textures.

Create a shader using Cg.

Iterate the computation several times to demonstrate tigegang technique.

Transfer the results back to main memory.

Compare the results with a CPU reference solution.

Variable parts of the implementation In the code, a series of structs are used to store the pogsitdeneters

to OpenGL calls such as the enumerants from the variousrfpptint texture extensions, the texture format, the
slightly different shaders they imply etc. This is an exaenpl such a struct for the luminance format, texture
rectangles and thdV_float_buffer extension:

rect_nv_r_32. nane

L "TEXRECT - float_NV - R - 32";
rect_nv_r_32.texTarget

GL_TEXTURE_RECTANGLE_ARB;

GL_FLOAT_R32_NV;

GL_LUM NANCE;

“float saxpy ("\

"in float2 coords : TEXCOORDO, " \

"uni f orm sanpl er RECT textureY," \

"uni f orm sanpl er RECT textureX, " \

"uniformfloat alpha) : COLOR {" \
\
\

rect_nv_r_32.texl nternal For mat

rect_nv_r_32.texFor mat

rect_nv_r_32.shader_source

"float y = texRECT (textureY, coords);"
"float x = texRECT (textureX, coords);"
“return y+al pharx; }";

To extract a working version for a special case, just do acbesand replace, or use the second command line param-
eter which is just a string literal likeect _nv_r _32. Inthe application, the global varialflext ur ePar amet er s
points to the struct actually used.

7available on my homepage

15

Command line parameters The program uses command line parameters for configurdfigou run the pro-
gram without any parameters, it will print out an explanatid the various parameters. Be warned though that the
parsing code for the command line is rather unstable (vgripiroper parsing code is clearly beyond the scope of
this tutorial) and will probably crash if calling conventimare ignored. Please refer to the batch files included for
examples.

The test mode The program can be used to test, for a given GPU and driver icatidn, which internal for-
mats and texture layouts can be used together with the fraffieelobject extension. There is a batch file called
run_t est. bat that calls the program with different command line paramssi@d generates a reportfile. It can
in fact be used as a shell script on Linux with just minor chemg

The benchmark mode This mode is included just for fun. It times a sequence of astaons and prints out
MFLOP/s rates for given problem sizes. Like every benchnitishould be taken with a grain of salt. Please refer
to ther un_bench. bat script file for examples.

16 A APPENDIX

A Appendix

A.1 Error checking in OpenGL

Itis highly recommended to add calls to this useful functiogour own codes very often while debugging.

void checkGLErrors(const char *label) {

GLenum err Code;

const GLubyte xerrStr;

if ((errCode = gl GetError()) != GL_NO ERROR) {
errStr = gluErrorString(errCode);
printf("OpenGL ERROR ");
printf((char*)errStr);
printf("(Label: ");
printf(label);
printf(")\n.");

A.2 Error checking with FBOs

The EXT_framebuffer_object extension defines a neat debugging routine which I just és¢ lfor reference. To
decode the error messages, reading the section atzonebuffer completenessin the specification is recom-
mended.

bool checkFranebufferStatus() {
GLenum st at us;
st at us=(GLenun) gl CheckFr amebuf f er St at usEXT(GL_FRAMEBUFFER_EXT) ;
switch(status) {
case GL_FRAVEBUFFER COVPLETE_EXT:
return true;
case GL_FRAVEBUFFER_| NCOVPLETE_ATTACHVENT _EXT:
printf("Franmebuffer inconplete,inconplete attachnent\n");
return fal se;
case GL_FRAMEBUFFER_UNSUPPORTED_EXT:
printf("Unsupported franebuffer format\n");
return fal se;
case GL_FRAMVEBUFFER | NCOVPLETE_M SSI NG _ATTACHVENT _EXT:
printf("Framebuffer inconplete, nssing attachment\n");
return fal se;
case GL_FRAVEBUFFER | NCOVPLETE_DI MENSI ONS_EXT:
printf("Franmebuffer inconplete,attached i nages
nust have sane di nensions\n");
return fal se;
case GL_FRAVEBUFFER_| NCOVPLETE_FORVATS_EXT:
printf("Framebuffer inconplete,attached i mages
nust have same format\n");
return fal se;
case GL_FRAMEBUFFER | NCOVPLETE_DRAW BUFFER_EXT:
printf("Framebuffer inconplete, n ssing draw buffer\n");
return fal se;
case GL_FRAVEBUFFER | NCOMPLETE_READ_BUFFER_EXT:
printf("Franmebuffer inconplete,nissing read buffer\n");
return fal se;

return fal se;

A.3 Error checking with Cg

Error checking with Cg is done slightly different. A selfitten error handler is passed to the Cg runtime as an
error callback function .

Il register the error callback once the context has been created
cgSet Error Cal | back(cgError Cal | back) ;

/'l cal I back function
voi d cgErrorCal | back(void) {
CGerror lastError = cgGetError();
if(lastError) {
printf(cgGetErrorString(lastError));
printf(cgGetLastListing(cgContext));
}
}

A.4 Error checking with GLSL

To see the results of the compilation, use this function:

A.5 Acknowledgements 17

voi d printlnfoLog(G.handl eARB obj) {
int infol ogLength = 0;
int charsWitten = 0;
char +infolLog;
gl Get Obj ect Par anet eri vARB(obj ,
GL_OBJECT_I NFO_LOG LENGTH_ARB,
& nf ol ogLengt h);
if (infologLength > 1) {
infoLog = (char) malloc(infol ogLength);
gl Get I nf oLogARB(obj , i nfol ogLength,
&charsWitten, infolog);
printf(infoLog);
printf("\n");
free(infolLog);

You can use queries like this for most states, refer to thelGddEumentation and specification for more details.
Another very important query is to check if the program ccagdinked:

GLi nt success;
gl Get Obj ect Par amet er i vVARB(pr ogr antbj ect ,
GL_OBJECT_LI NK_STATUS_ARB,
&success) ;
if (!success) {
printf("Shader could not be Iinked!\n");

A.5 Acknowledgements

Writing this tutorial would have been impossible without@ntributors at the GPGPU. org discussion forums.
They answered all my questions patiently, and without th&tiarting to work in the GPGPU field (and conse-
quently, writing this tutorial) would have been impossible

	Introduction
	Prerequisites
	Hardware requirements
	Software requirements
	Alternatives

	Setting up OpenGL
	GLUT
	OpenGL extensions
	Preparing OpenGL for offscreen rendering

	GPGPU concept 1: Arrays = textures
	Creating arrays on the CPU
	Creating floating point textures on the GPU
	One-to-one mapping from array index to texture coordinates
	Using textures as render targets
	Transferring data from CPU arrays to GPU textures
	Transferring data from GPU textures to CPU arrays
	A short example program

	GPGPU concept 2: Kernels = shaders
	Loop-oriented CPU implementation vs. kernel-oriented data-parallel implementation
	Creating a shader with the Cg shading language
	Setting up the Cg runtime
	Setting up a shader for computation with the OpenGL shading language

	GPGPU concept 3: Computing = drawing
	Preparing the computational kernel
	Setting input arrays / textures
	Setting output arrays / textures
	Performing the computation

	GPGPU concept 4: Feedback
	Multiple rendering passes
	The ping pong technique

	Overview of the accompanying example implementation
	Appendix
	Error checking in OpenGL
	Error checking with FBOs
	Error checking with Cg
	Error checking with GLSL
	Acknowledgements

