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1 Introduction

The goal of this tutorial is to explain the background and allnecessary steps that are required to implement a
simple linear algebra operator on the GPU:saxpy() as known from the BLAS library. For two vectorsx andy

of lengthN and a scalar valuealpha, we want to compute a scaled vector-vector addition:y = y+alpha∗x. The
saxpy() operation requires almost no background in linear algebra,and serves well to illustrate all entry-level
GPGPU concepts. The techniques and implementation detailsintroduced in this tutorial can easily be extended to
more complex calculations on GPUs.

1.1 Prerequisites

This tutorial is based onOpenGL, simply because the target platform should not be limited toMS Windows. Most
concepts explained here however translate directly toDirectX .
This tutorial is not intended to explain every single detailfrom scratch. It is written for programmers with a basic
understanding ofOpenGL, its state machine conceptand the way OpenGL models the graphics pipeline.
For a good overview and pointers to reading material, pleaserefer to the GPGPU community web page1.
Updates of this tutorial are available on my homepage.

1.2 Hardware requirements

You will need at least a NVIDIA GeForce FX or an ATI RADEON 9500graphics card. Older GPUs do not provide
the features (most importantly, single precision floating point data storage and computation) which we require.
WARNING: Due to immature OpenGL driver support with respectto the relatively new techniques used in this
tutorial, the accompagnying code will only work partially on ATI and GeForce FX hardware. This limitation will
be removed in future driver releases.

1.3 Software requirements

First of all, a C/C++ compiler is required. Visual Studio .NET 2003, Eclipse 3.1 plus CDT/MinGW, the Intel
C++ Compiler 9.0 and GCC 3.4+ have been successfully tested.Up-to-date drivers for the graphics card are
essential. At the time of writing, using an ATI card only works with Windows, whereas NVIDIA drivers support
both Windows and Linux.
The accompanying code uses two external libraries,GLUT andGLEW which need to be installed. Shader support
for GLSL (see below) is built into the driver, and the Cg toolkit can be downloaded from NVIDIA’s developer page.

1.4 Alternatives

For a similar example program done in DirectX, refer to Jens Krüger’sImplicit Water Surface2 demo (there is also
a version based on OpenGL available). This is however well-commented example code and not a tutorial.
GPU metaprogramming languages abstract from the graphicalcontext completely. BothBrookGPU3 andSh4 are
recommended.

2 Setting up OpenGL

2.1 GLUT

GLUT, theOpenGL Utility Toolkit , provides functions to handle window events, create simplemenus etc. Here,
we just use it to set up a valid OpenGL context (allowing us access to the graphics hardware through the GL API
later on) with as few code lines as possible. Additionally, this approach is completely independent of the window
system that is actually running on the computer (MS-Windowsor Xfree/Xorg on Linux / Unix and Mac).

1http://www.gpgpu.org
2http://wwwcg.in.tum.de/Research/Publications/LinAlg
3http://graphics.stanford.edu/projects/brookgpu/
4http://libsh.org/
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// include the GLUT header file
#include <GL/glut.h>
// call this and pass the command line arguments from main()
void initGLUT(int argc, char **argv) {

glutInit ( &argc, argv );
glutCreateWindow("SAXPY TESTS");

}

2.2 OpenGL extensions

Most of the features that are required to perform general floating-point computations on the GPU are not part
of core OpenGL. OpenGL Extensions however provide a mechanism to access features of the hardware through
extensions to the OpenGL API. They are typically not supported by every type of hardware and by every driver
release because they are designed to expose new features of the hardware (such as those we need) to application
programmers. In areal application, carefully checking if the necessary extensions are supported and implementing
a fallback to software otherwise is required. In this tutorial, we skip this to prevent code obfuscation.
A list of (almost all) OpenGL extensions including specifications and examples is available at the OpenGL Exten-
sion Registry5.
The extensions actually required for this implementation will be presented when we need the functionality they
provide in our code. The small toolglewinfo that ships with GLEW, or any other OpenGL extension viewer, or
even OpenGL itself (an example can be found when following the link above) can be used to check if the hardware
and driver support a given extension.
Obtaining pointers to the functions the extensions define isan advanced issue, so in this example, we use GLEW
as an extension loading library that wraps everything we need up nicely with a minimalistic interface:

void initGLEW (void) {
// init GLEW, obtain function pointers
int err = glewInit();
// Warning: This does not check if all extensions used
// in a given implementation are actually supported.
// Function entry points created by glewInit() will be
// NULL in that case!
if (GLEW_OK != err) {

printf((char*)glewGetErrorString(err));
exit(ERROR_GLEW);

}
}

2.3 Preparing OpenGL for offscreen rendering

In the GPU pipeline, the traditional end point of every rendering operation is the frame buffer, a special chunk of
graphics memory from which the image that appears on the display is read. Depending on the display settings, the
most we can get is 32 bits of color depth, shared among the red,green, blue and alpha channels of your display:
Eight bits to represent the amount of ”red” in a image (same for green etc.: RGBA) is all we can expect and in fact
need on the display. This already sums up to more than 16 million different colors. Since we want to work with
floating point values, 8 bits is clearly insufficient with respect to precision. Another problem is that the data will
always beclampedto the range of[0/255; 255/255] once it reaches the framebuffer.
How can we work around this? We could invent a cumbersome arithmetics that maps the sign-mantissa-exponent
data format of an IEEE 32-bit floating point value into the four 8-bit channels. But luckily, we don’t have to! First,
32-bit floating poit values on GPUs are provided through a setof OpenGL extensions (see section 2). Second, an
OpenGL extension calledEXT_framebuffer_object allows us to use anoffscreen bufferas the target for render-
ing operations such as our vector calculations, providing full precision and removing all the unwanted clamping
issues. The commonly used abbreviation isFBO, short for framebuffer object.
To use this extension and to turn off the traditional framebuffer and use an offscreen buffer (surface) for our
calculations, a few lines of code suffice. Note thatbinding FBO number 0 will restore the window-system specific
framebuffer at any time. This is useful for advanced applications but beyond the scope of this tutorial.

GLuint fb;

void initFBO(void) {
// create FBO (off-screen framebuffer)
glGenFramebuffersEXT(1, &fb);
// bind offscreen buffer
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

}

5http://oss.sgi.com/projects/ogl-sample/registry/
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3 GPGPU concept 1: Arrays = textures

One-dimensionalarrays are the native CPU data layout. Higher-dimensional arrays are typically accessed (at
least once the compiler is done with it) by offsetting coordinates in a large 1D array. An example for this is the
row-wise mapping of a two-dimensional arraya[i][j] of dimensionsM andN into the one-dimensional array
a[i*M+j], assuming array indices start with zero (as in C, C++ and Javabut not in Fortran).
For GPUs, the native data layout is a two-dimensional array.One- and three-dimensional arrays are also supported,
but they either impose a performance penalty or cannot be used directly with the techniques we employ in this
tutorial. Arrays in GPU memory are calledtextures or texture samplers. Texture dimensions are limited on
GPUs, the maximum value in each dimension can be queried witha bit of code like this once a valid OpenGL
context is available (that is, once GLUT is initialized):

int maxtexsize;
glGetIntegerv(GL_MAX_TEXTURE_SIZE,&maxtexsize);
printf("GL_MAX_TEXTURE_SIZE, %d \n",maxtexsize);

On today’s cards, the resulting value is 2048 or 4096 per dimension. Be warned though that although a given
card seems to support three-dimensional floating point textures of size 4096*4096*4096, the available graphics
memory is still a hard limit!
On the CPU, we usually talk aboutarray indices, on the GPU, we will needtexture coordinatesto access values
stored in the textures. Texture coordinates need to access texel centers.
Traditionally, GPUs work on four-tupels of data simultaneously: There are four color channels called red, green,
blue and alpha (RGBA). We will explain later on how we can exploit this to speed up our implementation on
certain hardware.

3.1 Creating arrays on the CPU

Let us recall the calculation we want to perform:y = y + alpha ∗ x for a given vector lengthN . We need two
arrays containing floating point values and a single float value to do this:

float* dataY = new float[N];
float* dataX = new float[N];
float alpha;

Although the actual computation will be performed on the GPU, we still need to allocate these arrays on the CPU
and fill them with initial values.

3.2 Creating floating point textures on the GPU

This topic requires quite a lot of explanation, so let us firstrecall that on the CPU, we simply need two arrays with
floating point values. On the GPU, we usefloating point textures to store the data.
The first important complication is that we have a variety of different so-calledtexture targetsavailable. Even if
we skip the non-native targets and only restrict ourselves to two-dimensional textures, we are left with two choices.
GL_TEXTURE_2D is the traditional OpenGL two-dimensional texture target,referred to astexture2D through-
out this tutorial. ARB_texture_rectangle is an OpenGL extension that provides so-calledtexture rectangles,
sometimes easier to use for programmers without a graphics background. There are two conceptual differences
between texture2Ds and texture rectangles, which we list here for reference. We will work through some examples
later on.

texture2D texture target GL_TEXTURE_2D

texture coordinates Coordinates have to be normalized to the range[0; 1] by [0; 1], independent of the
dimension[0; M ] by [0; N ] of the texture.

texture dimensions Dimensions are constrained to powers of two (e.g. 1024 by 512) unless the driver
supports the extensionARB_non_power_of_two or unless the driver exposes OpenGL 2.0 which
alleviates this restriction.

texture rectangle texture target GL_TEXTURE_2D

texture coordinates Coordinates are not normalized.

texture dimensions Dimensions can be arbitrary by definition, e.g. 513 by 1025.
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The next important decision affects thetexture format . GPUs allow for the simultaneous processing of scalars,
tupels, tripels or four-tupels of data. In this tutorial, wefocus on scalars and four-tupels exemplarily. The easier
case is to allocate a texture that stores a single floating point value per texel. In OpenGL,GL_LUMINANCE is
the texture format to be used for this. To use all four channels, the texture format isGL_RGBA . This means that
we store four floating point values per texel, one in the red color channel, one in the green channel and so on. For
single precision floating point values, a LUMINANCE texturewill consume 32 bits (4 bytes) of memory per texel,
and a RGBA texture requires 4*32=128 bits (16 bytes) per texel.
Now it gets really tricky: There are three extensions to OpenGL that expose true single precision floating point val-
ues asinternal format for textures,NV_float_buffer ,ATI_texture_floatandARB_texture_float.
Each extension defines a set of enumerants (for example GL_FLOAT_R32_NV) and symbols (for example 0x8880)
that can be used to define and allocate textures, as describedlater on. TheNV_float_buffer extension should be
considered legacy for NVIDIA GeForce FX (GeForce 5) class hardware although it is still supported in later gen-
erations of NVIDIA GPUs. This extension can only be used withtexture rectangles. The enumerants for the two
texture formats we are interested in here areGL_FLOAT_R32_NV andGL_FLOAT_RGBA32_NV . The first
enumerant tells the GL that we want to store a single floating point value per texel, the latter stores a 4-tupel of
floating point values in each texel. The two extensionsATI_texture_float andARB_texture_float are identical
from our point of view except that they define different enumerants for the same symbols. It is a matter of prefer-
ence which one to use, because they are supported on both GeForce 6 (and better) and ATI hardware. The enumer-
ants areGL_LUMINANCE_FLOAT32_ATI , GL_RGBA_FLOAT32_ATI andGL_LUMINANCE32F_ARB ,
GL_RGBA32F_ARB respectively. In this tutorial, we use the ARB extension.
The last problem we have to tackle is the question how to map a vector on the CPU into a texture on the GPU.
We choose the easiest mapping that comes to mind: A vector of lengthN is mapped into a texture of size

√
N

by
√

N for LUMINANCE formats (this means we assumeN is a power of two), and into a texture of size
√

N/4

by
√

N/4 for RGBA formats, again assumingN is chosen so that the mapping ”fits”. For instance,N = 10242

yields a texture of size 512 by 512. We store the corresponding value in the variabletexSize.
The following list summmarizes all the things we just discussed, sorted by the available GPU types: NVIDIA
GeForce FX (NV3x), GeForce 6 and 7 (NV4x, G70) and ATI.

NV3x target texture rectangle only

format one to four channels

internal format NV_float_buffer

NV4x and better target texture2D and texture rectangle

format one to four channels

internal format NV_float_buffer (see below), ATI_texture_float, ARB_texture_float

ATI target texture2D and texture rectangle

format one to four channels

internal format ATI_texture_float

One additional remark: NVIDIA also supports the extensionARB_color_buffer_float on NV4x and better GPUs,
which (among other things) effectively allowsNV_float_buffer to be used in combination with texture2Ds.
After this large theory section, it is time to go back to some code. Luckily, allocating a texture is very easy once
we know whichtexture target, texture format andinternal format we want to use:

// create a new texture name
GLuint texID;
glGenTextures (1, &texID);
// bind the texture name to a texture target
glBindTexture(texture_target,texID);
// turn off filtering and set proper wrap mode
// (obligatory for float textures atm)
glTexParameteri(texture_target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(texture_target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(texture_target, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(texture_target, GL_TEXTURE_WRAP_T, GL_CLAMP);
// and allocate graphics memory
glTexImage2D(texture_target, 0, internal_format,

texSize, texSize, 0, texture_format, GL_FLOAT, 0);

Let us digest this last OpenGL call one parameter at a time: Wealready know whattexture_target should
be. The next parameter (set to 0) tells the GL not to use any mipmap levels for this texture. The internal format



6 3 GPGPU CONCEPT 1: ARRAYS = TEXTURES

is clear, and so should be thetexSize parameter. The next parameter (again set to 0) turns off borders for our
texture because we don’t need them. The texture format chooses the number of channels, as explained above. The
parameterGL_FLOAT should not be misinterpreted: It has nothing to do with the precision of the values we want
to store in the texture, it is only relevant on the CPU side because it tells the GL that the actual data which gets
passed in later calls is floating point. The last parameter (set to 0) simply tells the GL that we do not want to
specify any data for the texture right now. This call therefore results in a properly allocated texture corresponding
to the settings we decided upon before.
One last remark: Choosing a proper data layout, that is, a mapping between texture formats, texture sizes and
your CPU data, is a very problem-depending question. Experience shows that for some cases, defining such a
mapping is obvious and in other cases, this takes up most of your time. Suboptimal mappings can seriously impact
performance!

3.3 One-to-one mapping from array index to texture coordinates

Later on in this tutorial, we update our data stored in textures by a rendering operation. To be able to control exactly
which data elements we compute or access from texture memory, we will need to choose a special projection that
maps from the 3D world (world or model coordinate space) to the 2D screen (screen or display coordinate space),
and additionally a 1:1 mapping between pixels (which we wantto render to) and texels (which we access data
from). The key to success here is to choose an orthogonal projection and a proper viewport that will enable a one
to one mapping between geometry coordinates (used in rendering) and texture coordinates (used for data input)
and pixel coordinates (used for data output). The mapping isbased on the only value we have available so far, the
size (in each dimension) we allocate textures with. One warning though: With texture2Ds, some scaling for the
texture coordinates as explained above is still required. This is typically done in another part of the implementation
and we explain it once we get there. With the projection and viewport set here, this is however trivial.
To set up the mapping, we essentially set thez coordinate in world space to zero and apply the1 : 1 mapping: The
following lines can be added to theinitFBO() routine:

// viewport for 1:1 pixel=texel=geometry mapping
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, texSize, 0.0, texSize);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glViewport(0, 0, texSize, texSize);

3.4 Using textures as render targets

One key functionality to achieve good performance rates is the possibility to use textures not only for data input,
but also for data output: With the framebuffer_object extension, we canrender directly to a texture. The only
drawback is: Textures are eitherread-only or write-only . GPU hardware design provides an explanation: Inter-
nally, GPUs schedule rendering tasks into several pipelines working in parallel, independent of each other. We
will discuss this later on in more detail. Allowing for simultaneous reads from and writes into the same texture
would require an awful lot of logic to prevent reading from a previously modified position (read-modify-write).
Even if that chip logic was available, there would be no way toimplement this (in hardware or software) without
seriously inhibiting performance: GPUs are not instruction-stream based von Neumann architectures, butdata-
stream based architectures. In our implementation, we thus need three textures for the two data vectors: One
texture (read-only) is used for the vectorx, another read-only texture for the input vectory and a third write-only
texture that contains the result of the computation. This approach basically means that we rewrite our original
calculationy = y + alpha ∗ x to this:ynew = yold + alpha ∗ x.
The framebuffer object extension provides a very narrow interface torender to a texture. To use a texture as
render target, we have toattach the texture to the FBO:

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHMENT0_EXT,
texture_target, texID, 0);

The first parameter is obligatory. The second parameter defines the attachment point (up to four different texture at-
tachments are supported per FBO, this depends on the hardware and can be queried usingGL_MAX_COLOR_ATTACHMENTS_EXT).
The third and fourth parameter should be clear; they identify the actual texture to attach. The last parameter selects
the mipmap level of the texture, we do not use mipmapping so wesimply set it to zero.
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Unfortunately, the framebuffer_object specification onlydefines texture attachments with the formatGL_RGB or
GL_RGBA (the latter being important for us). LUMINANCE attachmentswill be defined in a follow-up extension.
At the time of writing, NVIDIA hardware and the NVIDIA driversupport them nontheless, but only in combination
with the enumerants defined inNV_float_buffer. In other words, the distinction between formats that are allowed
as floating point textures and formats that are allowed as floating point render targets or more precise, floating point
color attachments, is essential.Renderable texture formatsis an unofficial term to make this distinction.
Note that in order to successfully attach a texture, it just has to be allocated and defined by means ofglTexIm-
age2D(), it does not need to contain any useful data. It is a good analogy to think of FBOs asstructs of pointers,
in order to redirect rendering operations to a texture attachment, all we (conceptually) need to do is some pointer
manipulation by means of OpenGL calls.

3.5 Transferring data from CPU arrays to GPU textures

To transfer data (like the two vectors dataX and dataY we created previously) to a texture, we have to bind the
texture to a texture target and schedule the data for transfer with an OpenGL call. It is essential that the array
passed to the function as a pointer parameter is properly dimensioned. In the case of our vectors, LUMINANCE
format implies the array must contain texSize by texSize elements, and for RGBA formats, we need an additional
factor of four more elements. Since we useGL_FLOAT, the data has to be a pointer to an array of floats as defined
above. Note that we have absolutely no control when the data will actually be transferred to graphics memory, this
is entirely left to the driver. We can however be sure that once the GL call returns, we can safely alter the data on
the CPU side without affecting the texture. Additionally weare guaranteed that the data will be available when
we access the texture for the next time. That being said, we can dive into the code. On NVIDIA hardware, the
following code is hardware-accelerated:

glBindTexture(texture_target, texID);
glTexSubImage2D(texture_target,0,0,0,texSize,texSize,

texture_format,GL_FLOAT,data);

The three zeros we pass as parameters define the offset and themipmap level. We will ignore all of them because
we do not use mipmaps and because we transfer a whole vector atonce.
On ATI hardware, the preferred technique is to transfer datato a texture that is already attached to a framebuffer
object by just redirecting the OpenGL render target to the attachment and by issueing a conventional OpenGL
framebuffer image manipulation call:

glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
glRasterPos2i(0,0);
glDrawPixels(texSize,texSize,texture_format,GL_FLOAT,data);

The first call redirects the output. In the the second call, weuse the origin as the reference position because we
download the whole chunk of data into the texture with the last call.
In both cases, the CPU array is mapped row-wise to the texture. More detailed: For RGBA formats, the first four
array elements end up in the red to alpha components of the first texel and so on. For LUMINANCE textures, the
first two texels in a row contain the first two components of thedata vector.

3.6 Transferring data from GPU textures to CPU arrays

The other way round, there are again two alternative ways to implement transfers from GPU textures to CPU
arrays. The traditional OpenGL texturing approach involves binding the texture to a texture target and calling
glGetTexImage(). The parameters should be clear by now:

glBindTexture(texture_target,texID);
glGetTexImage(texture_target,0,texture_format,GL_FLOAT,data);

If the texture to be read back to the host is already attached to a FBO attachment point, we can again perform the
pointer redirection technique:

glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
glReadPixels(0,0,texSize,texSize,texture_format,GL_FLOAT,data);

Since we upload the whole texture from GPU memory to CPU memory, we pass the origin as the first two param-
eters. This technique is recommended.
One word of advice: Data transfers between main memory and GPU memory are expensive compared to compu-
tations on the GPU, so they should be used sparingly.
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3.7 A short example program

Now it is time to lean back a little. I strongly suggest to start toying around before moving on to more advanced
topics. Write a little example program and try to define textures with varying formats, targets and internal formats.
Download data into them and read back the data again to a different CPU array to get acquainted with the techniques
and implementation details. Try to put the different piecesof the puzzle together into a running program! Sections
A.1 through A.4 about error checking in the appendix should be consulted to avoid problems.

For reference, this is the most minimalistic program I have come up with to achieve round trips, exemplarily using
texture rectangles andARB_texture_float:

#include <stdio.h>
#include <stdlib.h>
#include <GL/glew.h>
#include <GL/glut.h>

int main(int argc, char **argv) {
// declare texture size, the actual data will be a vector
// of size texSize*texSize*4
int texSize = 2;
// create test data
float* data = new float[texSize*texSize*4];
float* result = new float[texSize*texSize*4];
for (int i=0; i<texSize*texSize*4; i++)

data[i] = i+1.0;
// set up glut to get valid GL context and
// get extension entry points
glutInit ( &argc, argv );
glutCreateWindow("TEST1");
glewInit();
// viewport transform for 1:1 pixel=texel=data mapping
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, texSize, 0.0, texSize);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glViewport(0, 0, texSize, texSize);
// create FBO and bind it (that is, use offscreen render target)
GLuint fb;
glGenFramebuffersEXT(1, &fb);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
// create texture
GLuint tex;
glGenTextures (1, &tex);
glBindTexture(GL_TEXTURE_RECTANGLE_ARB,tex);
// set texture parameters
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,

GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,

GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,

GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,

GL_TEXTURE_WRAP_T, GL_CLAMP);
// define texture with floating point format
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB,0,GL_RGBA32F_ARB,

texSize,texSize,0,GL_RGBA,GL_FLOAT,0);
// attach texture
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,
GL_TEXTURE_RECTANGLE_ARB, tex, 0);

// transfer data to texture
glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB,0,0,0,texSize,texSize,

GL_RGBA,GL_FLOAT,data);
// and read back
glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
glReadPixels(0, 0, texSize, texSize,GL_RGBA,GL_FLOAT,result);
// print out results
printf("Data before round trip:\n");
for (int i=0; i<texSize*texSize*4; i++)

printf("%f\n",data[i]);
printf("Data after round trip:\n");
for (int i=0; i<texSize*texSize*4; i++)

printf("%f\n",result[i]);
// clean up
delete [] data;
delete [] result;
glDeleteFramebuffersEXT (1, &fb);
glDeleteTextures (1,&tex);
return 0;

}

4 GPGPU concept 2: Kernels = shaders

In this chapter, we discuss the fundamental difference in the computing model between GPUs and CPUs, and
the impact on our way of thinking algorithmically and methodically. Once we have a clear understanding of the
data-parallel paradigm GPUs subject to, programming shaders is fairly easy.
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4.1 Loop-oriented CPU implementation vs. kernel-orienteddata-parallel implementa-
tion

Let us first recall the problem we want to solve:y = y + alpha ∗ x. On the CPU, we typically use a single loop
over all array elements like this:

for (int i=0; i<N; i++)
dataY[i] = dataY[i] + alpha*dataX[i];

Two levels of computation are active at the same time: Outside the loop, theloop counter is incremented and
compared with the length of our vectors, and inside the loop,we access the arrays at a fixed position which is
determined by the loop counter and perform the actual computation we are interested in: a multiplication and an
addition on each data element. It is important to note that the calculations performed on each data element in the
vectors areindependentof each other, for a given output position, we access distinct input memory locations and
there are no data dependencies between elements in the result vector. If we had avector processorthat is capable
of performing operations on whole vectors of lengthN or evenN CPUs,we would not need the loop at all!This
paradigm is commonly calledSIMD (single instruction multiple data) . On a side note:partial loop unrollingis
a common technique in high performance computing to allow the compiler to make better usage of the extensions
available in today’s CPUs like SSE or SSE2.
The core idea of GPU computing for the problem we want to tackle in this tutorial should now be clear: We
separate the outer loop from the inner calculations. The calculations we do inside the loop are extracted into a
computational kernel: y_new[i] = y_old[i] + alpha * x[i]. Be aware that the kernel is no longer
a vector expressionbut conceptually ascalar templateof the underlying math that forms a single output value
from a set of input values.For a single output element, there are no data dependencies with other output
elements, and all dependencies to input elements can be described relatively.
In our example, the array index of a given output element is identical to the array indices of the input values,
or more precisely, the input positions from all arrays are identical from the point of view of an output element.
Another, less trivial dependency arises from the standard 1D Finite Difference scheme:y[i] = - x[i-1] +
2*x[i] - x[i+1]. Informally, the corresponding kernel would be:”Compute each value in the vectory by
multiplying the the value ofx by two at that position, and subtract the the value to the leftand the value to the
right”.
The programmable part of the GPU we want to use in our computations, the so-calledfragment pipeline, consists
of many parallel processing units, up to 24 in the GeForce 7800GTX. The hardware and driver logic however
that schedules each data item into the different pipelines is not programmable! So from a conceptual point of
view, all work on the data items is performed independently,without any influence among the various “fragments
in flight through the pipeline”. In the previous chapter we discussed that we use textures as render targets (the
end point of the pipeline) and that we store our vectors in textures. Thus, another useful analogy that is valid for
our kind of computations is: The fragment pipeline behaves like a vector processor of the size of our textures.
Although internally the computation is split up among the available fragment processors, we cannot control the
order in which fragments are processed. All we know however is the “address”, the coordinates (pixel coordinates
in screen space) in the target texture where an individual data item will end up. We can therefore assume all work
is done in parallel without any data interdependence. This paradigm is commonly referred to asdata-parallel
computing.
Now that we have extracted the computational kernel from ourproblem, we can discuss the way the programmable
fragment pipeline is actually programmed. Kernels translate to shaders on the GPU, so what we have to do is to
write an actual shader and include it into our implementation. In this tutorial, we discuss how to achieve this with
the Cg shading language and the OpenGL shading language (GLSL) The following two subsections are therefore
partly redundant, the idea is that you pick one and skip the other because advantages and disadvantages of each
language and runtime are beyond the scope of this tutorial.

4.2 Creating a shader with the Cg shading language

To use shaders with Cg, we have to distinguish between theshading languageand theCg runtime which we use to
prepare the shader. There are two types of shaders available, corresponding to the two programmable stages of he
graphics pipeline. In this tutorial, we rely on thefixed function pipeline in thevertex stageand only program the
fragment shader: The fragment pipeline is much better suited for the kind of computations we pursue, using the
vertex stage is an advanced topic beyond the scope of this tutorial. Additionally, the fragment pipeline traditionally
provides more computational horsepower.
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Let us start with writing the shader code itself. Recall thatthe kernel on the CPU contains some arithmetics, two
lookups into the data arrays and a constant floating point value. We already know that textures are the equivalent
of arrays on GPUs, so we use texture lookups instead of array lookups. In graphics terms, wesample the textures
at given texture coordinates. We will postpone the question of how correct texture coordinates are calculated
automatically by the hardware until the next chapter. To deal with the constant floating point value, we have two
options: We can inline the value into the shader source code and dynamically recompile the shader whenever it
changes, or, more efficiently, we can pass the value as a uniform parameter. The following bit of code contrasts a
very elaborate version of the kernel and the shader source:

float saxpy (
float2 coords : TEXCOORD0,
uniform sampler2D textureY,
uniform sampler2D textureX,
uniform float alpha ) : COLOR

{
float result;

float yval=y_old[i]; float y = tex2D(textureY, coords);
float xval=x[i]; float x = tex2D(textureX, coords);
y_new[i]=yval+alpha*xval; result = y + alpha*x;

return result;
}

Conceptually, a fragment shader like the one above is a tiny program that is executed for each fragment. In our
case, the program is calledsaxpy. It receives several input parameters and returns a float. The colon syntax is
calledsemantics binding: Input and output parameters are identified with various state variables of the fragment.
We called this "address" in the previous section. The outputvalue of the shader has to be bound to theCOLOR
semantics, even though this is not too intuitive in our case since we do not use colors in the traditional sense.
Binding a tuple of floats (float2 in Cg syntax) to theTEXCOORD0 semantics will cause the runtime to assign the
texture coordinates that were computed in a previous stage of the graphics pipeline to each fragment. More on that
later, for now, we can safely assume that we sample the textures at precisely the coordinates we want. The way we
declare the textures in the parameter list and the actual lookup/sampling function depends on thetexture target
we use: Fortexture2D, the keywords aresampler2D andtex2D(name,coords), for texture rectangles,
we need to usesamplerRECT andtexRECT(name,coords) accordingly.
To use four-channeled textures instead of luminance textures, we just replace the type of the variable that holds
the result of a texture lookup (and of course the return value) with float4. Since GPUs are able to perform all
calculations on four-tuples in parallel, the shader sourcefor texture rectangles and RGBA textures reads:

float4 saxpy (
float2 coords : TEXCOORD0,
uniform samplerRECT textureY,
uniform samplerRECT textureX,
uniform float alpha ) : COLOR

{
float4 result;
float4 y = texRECT(textureY, coords);
float4 x = texRECT(textureX, coords);
result = y + alpha*x;
// equivalent: result.rgba=y.rgba+alpha*x.rgba
// or: result.r=y.r+alpha*x.y; result.g=...
return result;

}

We store the shader source in a char array or in a file to access it from our OpenGL program through the Cg
runtime.

4.3 Setting up the Cg runtime

This subsection describes how to set up the Cg runtime in an OpenGL application. First, we need to include the Cg
headers (it is sufficient to includeCg/cgGL) and add the Cg libraries to our compiler and linker options.Then,
we declare some variables:

// Cg vars
CGcontext cgContext;
CGprofile fragmentProfile;
CGprogram fragmentProgram;
CGparameter yParam, xParam, alphaParam;
char* program_source = "float saxpy( [....] return result; } ";

The CGcontext is the entry point for the Cg runtime, since we want to programthe fragment pipeline, we
need afragment profile (Cg is profile-based) and aprogram container for the program we just wrote. For the
sake of simplicity, we also declare three handles to the parameters we use in the shader that are not bound to any
semantics, and we use a global variable that contains the shader source we just wrote. We encapsulate all the Cg
runtime initialization in one function:
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void initCG(void) {
// set up Cg
cgContext = cgCreateContext();
fragmentProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
cgGLSetOptimalOptions(fragmentProfile);
// create fragment program
fragmentProgram = cgCreateProgram (

cgContext, CG_SOURCE, program_source,
fragmentProfile, "saxpy", NULL);

// load program
cgGLLoadProgram (fragmentProgram);
// and get parameter handles by name
yParam = cgGetNamedParameter (fragmentProgram, "textureY");
xParam = cgGetNamedParameter (fragmentProgram, "textureX");
alphaParam = cgGetNamedParameter (fragmentProgram, "alpha");

}

4.4 Setting up a shader for computation with the OpenGL shading language

It is not neccessary to include any additional header files orlibraries to use the OpenGL Shading Language, it is
built into the driver. Three OpenGL extensions (ARB_shader_objects, ARB_vertex_shaderandARB_fragment_shader)
define the API, and the GLSL specification defines the languageitself. Both API and language are part of core
OpenGL 2.0, but we use the older enumerants nontheless.
We define a series of global variables for theprogram object, theshader objectandhandlesto the data variables
we want to access in the shaders. The first two objects are simply data containers managed by OpenGL, one
program can consist of exactly one vertex and fragment shader, both subtypes can consist of several shader sources,
a shader can in turn be part of several programs etc.:

// GLSL vars
GLhandleARB programObject;
GLhandleARB shaderObject;
GLint yParam, xParam, alphaParam;

Writing the actual shaders is similar to using the Cg shadinglanguage, so we just present two example shaders.
The two main differences are probably that all variables we assign explicitly through the runtime are declared
globally, and that instead of parameter bindings to GL statevariables, we use a set of reserved variable names that
are bound implicitely to the current GL state.

// shader for luminance data and texture rectangles // shader for RGBA data and texture2D
uniform samplerRect textureY; uniform sampler2D textureY;
uniform samplerRect textureX; uniform sampler2D textureX;
uniform float alpha; uniform float alpha;

void main(void) { void main(void) {
float y = textureRect(textureY,gl_TexCoord[0].st).x; vec4 y = texture2D(textureY, gl_TexCoord[0].st);
float x = textureRect(textureX,gl_TexCoord[0].st).x; vec4 x = texture2D(textureX, gl_TexCoord[0].st);
gl_FragColor.x = y + alpha*x; gl_FragColor = y + alpha*x;

} }

We can encapsule the initialization of the GLSL runtime again into a single function. The GLSL API is designed
to mimic the traditional compilation and linking process. For details please refer to the Orange Book or take a look
at the various GLSL tutorials available on the internet.

void initGLSL(void) {
// create program object
programObject = glCreateProgramObjectARB();
// create shader object (fragment shader) and attach to program
shaderObject = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
glAttachObjectARB (programObject, shaderObject);
// set source to shader object
glShaderSourceARB(shaderObject, 1, &program_source, NULL);
// compile
glCompileShaderARB(shaderObject);
// link program object together
glLinkProgramARB(programObject);
// Get location of the texture samplers for future use
yParam = glGetUniformLocationARB(programObject, "textureY");
xParam = glGetUniformLocationARB(programObject, "textureX");
alphaParam = glGetUniformLocationARB(programObject, "alpha");

}

5 GPGPU concept 3: Computing = drawing

In this chapter, we will discuss how everything we learned inthe previous chapters of this tutorial is pieced together
to perform the scaled vector-vector additiony_new = y_old+ alpha ∗x. In the accompanying implementation,
this is encapsulated in theperformComputation() routine. Four steps are required: The kernel is activated,
input and output arrays are assigned using the shader runtime and finally, the computation is triggered by rendering
a suitable geometry. This last step is embarrassingly simple after all the foundations we laid in the previous
chapters.
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5.1 Preparing the computational kernel

To activate the kernel using the Cg runtime, thefragment profile we created previously isenabledand the shader
we wrote and already loaded isbound. Only one shader can be active at the same time. More correctly, only one
vertex and one fragment shader can be active at a given time, but we rely on the fixed function pipeline at the vertex
stage in this tutorial, as mentioned before. This requires just two lines of code:

// enable fragment profile
cgGLEnableProfile(fragmentProfile);
// bind saxpy program
cgGLBindProgram(fragmentProgram);

Using the GLSL runtime, this is even easier: If our program object was linked successfully, all we have to do is to
install the program as part of the rendering pipeline:

glUseProgramObjectARB(programObject);

5.2 Setting input arrays / textures

Using the Cg runtime, linking and enabling the input arrays/texturesy_old andx and the uniform value (the right
hand side of the equation, texture identifiersy_oldTexID andxTexID respectively) is straight-forward use of
the Cg runtime:

// enable texture y_old (read-only)
cgGLSetTextureParameter(yParam, y_oldTexID);
cgGLEnableTextureParameter(yParam);
// enable texture x (read-only)
cgGLSetTextureParameter(xParam, xTexID);
cgGLEnableTextureParameter(xParam);
// enable scalar alpha
cgSetParameter1f(alphaParam, alpha);

In GLSL, we have to bind our textures to different texture units (the Cg runtime does this automatically for us) and
pass these units to our uniform parameters:

// enable texture y_old (read-only)
glActiveTexture(GL_TEXTURE0);
glBindTexture(textureParameters.texTarget,yTexID[readTex]);
glUniform1iARB(yParam,0); // texunit 0
// enable texture x (read-only)
glActiveTexture(GL_TEXTURE1);
glBindTexture(textureParameters.texTarget,xTexID);
glUniform1iARB(xParam, 1); // texunit 1
// enable scalar alpha
glUniform1fARB(alphaParam,alpha);

5.3 Setting output arrays / textures

Defining the output array (the left side of the equation) is essentially the same operation like the one we discussed
to transfer data to a texture already attached to our FBO. Simple pointer manipulation by means of GL calls is all
we need. In other words, we simply redirect the output: If we did not do so yet, we attach the target texture to our
FBO and use standard GL calls to use it as the render target:

// attach target texture to first attachment point
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,
texture_target, y_newTexID, 0);

// set the texture as render target
glDrawBuffer (GL_COLOR_ATTACHMENT0_EXT);

5.4 Performing the computation

Let us briefly recall what we did so far. We enabled a1 : 1 mapping between the target pixels, the texture
coordinates and the geometry we are about to draw. We also prepared a fragment shader we want to execute
for each fragment. All that remains to be done is: Render asuitable geometrythat ensures that ourfragment
shader is executed for each data element we stored in the target texture. In other words, wemake sure
that each data item is transformed uniquely into a fragment. Given our projection and viewport settings, this
is embarrassingly easy: All we need is afilled quad that covers the whole viewport! We define the quad with
standard OpenGL (immediate mode) rendering calls. This means we directly specify the four corner vertices of
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the quad. We also assign texture coordinates as vertex attributes to the four vertices. The four vertices will be
transformed to screen space by the fixed function vertex stage which we did not program. Therasterizer, a fixed-
function part of the graphics pipeline located between the vertex and fragment stage, will then perform a bilinear
interpolation for each pixel that is covered by the quad, interpolating both the position (in screen space) of the
pixels and the vertex attributes (texture coordinates) from the vertex data. It generates a fragment for each pixel
covered by the quad. The interpolated values will be passed automatically to the fragment shader because we used
the binding semantics when we wrote the shader. In other words, rendering a simple quad serves as adata stream
generator for the fragment program. Because of the viewport and projection settings we implemented, the whole
output array / texture) is covered by the quad, and is thus transformed into a fragment automatically, including
interpolated attributes such as texture coordinates. Consequently, the fragment program execution is triggered for
each output position in the array:By rendering a simple textured quad, we achieve that the kernel is executed
for each data item in the original vector / texture! This is what we wanted to achieve throughout the whole
tutorial.
Usingtexture rectangles(texture coordinates are identical to pixel coordinates),we use a few code lines like this:

// make quad filled to hit every pixel/texel
glPolygonMode(GL_FRONT,GL_FILL);
// and render quad
glBegin(GL_QUADS);

glTexCoord2f(0.0, 0.0);
glVertex2f(0.0, 0.0);
glTexCoord2f(texSize, 0.0);
glVertex2f(texSize, 0.0);
glTexCoord2f(texSize, texSize);
glVertex2f(texSize, texSize);
glTexCoord2f(0.0, texSize);

glVertex2f(0.0, texSize);
glEnd();

Using texture2Ds (and therefore normalized texture coordinates), this is equivalent to:

// make quad filled to hit every pixel/texel
glPolygonMode(GL_FRONT,GL_FILL);
// and render quad
glBegin(GL_QUADS);

glTexCoord2f(0.0, 0.0);
glVertex2f(0.0, 0.0);
glTexCoord2f(1.0, 0.0);
glVertex2f(texSize, 0.0);
glTexCoord2f(1.0, 1.0);
glVertex2f(texSize, texSize);
glTexCoord2f(0.0, 1.0);
glVertex2f(0.0, texSize);

glEnd();

One remark for advanced programmers: In our shaders, we onlyuse one set of texture coordinates. It is possible to
define several sets of (different) texture coordinates per vertex, refer to the documentation ofglMultiTexCoord()
for details.

6 GPGPU concept 4: Feedback

After the calculation is performed, the resulting values are stored in the target texturey_new.

6.1 Multiple rendering passes

In a proper application, the result is typically used as input for a subsequent computation. On the GPU, this means
we perform anotherrendering passand bind different input and output textures, eventually a different kernel etc.
The most important ingredient for this kind ofmultipass rendering is theping pong technique.

6.2 The ping pong technique

Ping pong is a technique to alternately use the output of a given rendering pass as input in the next one. In our
case, this means that we swap the role of the two texturesy_new andy_old, since we do not need the values in
y_old any more once the new values have been computed. There are three possible ways to implement this kind
of data reuse (take a look at Simon Green’s FBO slides6 for additional material on this):

• Use one FBO with one attachment per texture that is rendered to, and bind a different FBO in each rendering
pass usingglBindFramebufferEXT().

6http://download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_FrameBuffer_Object.pdf
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• Use one FBO, reattach the render target texture in each pass usingglFramebufferTexture2DEXT().

• Use one FBO and multiple attachment points, switch usingglDrawBuffer().

Since there are up to four attachment points available per FBO and since the last approach turns out to be fastest,
we will explain how to ping pong between different attachments. To do this, we first need a set of management
variables:

// two textures identifiers referencing y_old and y_new
GLuint yTexID[2];
// ping pong management vars
int writeTex = 0;
int readTex = 1;
GLenum attachmentpoints[] = { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT };

During the computation, all we need to do now is to pass the correct value from these two tupels to the correspond-
ing OpenGL calls, and to swap the two index variables after each pass:

// attach two textures to FBO
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

attachmentpoints[writeTex],
texture_Target, yTexID[writeTex], 0);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
attachmentpoints[readTex],
texture_Target, yTexID[readTex], 0);

// enable fragment profile, bind program [...]
// enable texture x (read-only) and uniform parameter [...]
// iterate computation several times
for (int i=0; i<numIterations; i++) {

// set render destination
glDrawBuffer (attachmentpoints[writeTex]);
// enable texture y_old (read-only)
cgGLSetTextureParameter(yParam, yTexID[readTex]);
cgGLEnableTextureParameter(yParam);
// and render multitextured viewport-sized quad
// swap role of the two textures (read-only source becomes
// write-only target and the other way round):
swap();

}

7 Overview of the accompanying example implementation

The accompanying example program7 uses all concepts explained in this tutorial to perform the following opera-
tions:

• Create one floating point texture per vector.

• Transfer initial data to these textures.

• Create a shader using Cg.

• Iterate the computation several times to demonstrate the ping pong technique.

• Transfer the results back to main memory.

• Compare the results with a CPU reference solution.

Variable parts of the implementation In the code, a series of structs are used to store the possibleparameters
to OpenGL calls such as the enumerants from the various floating point texture extensions, the texture format, the
slightly different shaders they imply etc. This is an example of such a struct for the luminance format, texture
rectangles and theNV_float_buffer extension:

rect_nv_r_32.name = "TEXRECT - float_NV - R - 32";
rect_nv_r_32.texTarget = GL_TEXTURE_RECTANGLE_ARB;
rect_nv_r_32.texInternalFormat = GL_FLOAT_R32_NV;
rect_nv_r_32.texFormat = GL_LUMINANCE;
rect_nv_r_32.shader_source = "float saxpy ("\

"in float2 coords : TEXCOORD0," \
"uniform samplerRECT textureY," \
"uniform samplerRECT textureX," \
"uniform float alpha ) : COLOR {" \
"float y = texRECT (textureY, coords);"\
"float x = texRECT (textureX, coords);"\
"return y+alpha*x; }";

To extract a working version for a special case, just do a search and replace, or use the second command line param-
eter which is just a string literal likerect_nv_r_32. In the application, the global variabletextureParameters
points to the struct actually used.

7available on my homepage
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Command line parameters The program uses command line parameters for configuration.If you run the pro-
gram without any parameters, it will print out an explanation of the various parameters. Be warned though that the
parsing code for the command line is rather unstable (writing proper parsing code is clearly beyond the scope of
this tutorial) and will probably crash if calling conventions are ignored. Please refer to the batch files included for
examples.

The test mode The program can be used to test, for a given GPU and driver combination, which internal for-
mats and texture layouts can be used together with the framebuffer object extension. There is a batch file called
run_test.bat that calls the program with different command line parameters and generates a report file. It can
in fact be used as a shell script on Linux with just minor changes.

The benchmark mode This mode is included just for fun. It times a sequence of computations and prints out
MFLOP/s rates for given problem sizes. Like every benchmark, it should be taken with a grain of salt. Please refer
to therun_bench.bat script file for examples.
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A Appendix

A.1 Error checking in OpenGL

It is highly recommended to add calls to this useful functionin your own codes very often while debugging.

void checkGLErrors(const char *label) {
GLenum errCode;
const GLubyte *errStr;
if ((errCode = glGetError()) != GL_NO_ERROR) {

errStr = gluErrorString(errCode);
printf("OpenGL ERROR: ");
printf((char*)errStr);
printf("(Label: ");
printf(label);
printf(")\n.");

}
}

A.2 Error checking with FBOs

TheEXT_framebuffer_object extension defines a neat debugging routine which I just list here for reference. To
decode the error messages, reading the section aboutframebuffer completenessin the specification is recom-
mended.

bool checkFramebufferStatus() {
GLenum status;
status=(GLenum)glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
switch(status) {

case GL_FRAMEBUFFER_COMPLETE_EXT:
return true;

case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT:
printf("Framebuffer incomplete,incomplete attachment\n");
return false;

case GL_FRAMEBUFFER_UNSUPPORTED_EXT:
printf("Unsupported framebuffer format\n");
return false;

case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT:
printf("Framebuffer incomplete,missing attachment\n");
return false;

case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
printf("Framebuffer incomplete,attached images

must have same dimensions\n");
return false;

case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
printf("Framebuffer incomplete,attached images

must have same format\n");
return false;

case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
printf("Framebuffer incomplete,missing draw buffer\n");
return false;

case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
printf("Framebuffer incomplete,missing read buffer\n");
return false;

}
return false;

}

A.3 Error checking with Cg

Error checking with Cg is done slightly different. A self-written error handler is passed to the Cg runtime as an
error callback function .

// register the error callback once the context has been created
cgSetErrorCallback(cgErrorCallback);

// callback function
void cgErrorCallback(void) {

CGerror lastError = cgGetError();
if(lastError) {

printf(cgGetErrorString(lastError));
printf(cgGetLastListing(cgContext));

}
}

A.4 Error checking with GLSL

To see the results of the compilation, use this function:
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void printInfoLog(GLhandleARB obj) {
int infologLength = 0;
int charsWritten = 0;
char *infoLog;
glGetObjectParameterivARB(obj,

GL_OBJECT_INFO_LOG_LENGTH_ARB,
&infologLength);

if (infologLength > 1) {
infoLog = (char *)malloc(infologLength);
glGetInfoLogARB(obj, infologLength,

&charsWritten, infoLog);
printf(infoLog);
printf("\n");
free(infoLog);

}
}

You can use queries like this for most states, refer to the GLSL documentation and specification for more details.
Another very important query is to check if the program couldbe linked:

GLint success;
glGetObjectParameterivARB(programObject,

GL_OBJECT_LINK_STATUS_ARB,
&success);

if (!success) {
printf("Shader could not be linked!\n");

}
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