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Abstract

Among a variety of grid deformation methods, the method proposed by Liao
[4, 7, 17] seems to be one of the most favourables. In this article, we introduce a
generalisation of Liao’s method which allows for generating a desired mesh size dis-
tribution for quite arbitrary grids without giving rise to mesh tangling. Furthermore,
we tackle the efficient implementation of the underlying steps and we discuss accu-
racy aspects like convergence behaviour as well as the robustness of the presented
technique. The benefits of our new method are demonstrated for several applications
and examples.
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1 Introduction

Grid deformation, i.e. the redistribution of the mesh points of a given grid preserving
the mesh topology, is a topic of research since many years and, consequently, a variety
of methods is available today (see [5, 8, 10, 26] among many others). Most of the grid
deformation approaches can be divided into two groups: the group of static methods and
the group of dynamic approaches. Static methods obtain the mapping to the deformed
grid by minimising certain functionals which usually leads to the (often difficult and
expensive) solution of non-linear PDEs. In contrast to this, dynamic methods (e.g.
[9, 16]) use time stepping or pseudo-time stepping approaches to construct the desired
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transformation. Being a member of the latter group, the method developed by Liao and
his coworkers, based on the work of Moser [11], requires the solution of a single Poisson
equation and a decoupled system of ODEs only. Furthermore, it has been shown that
tangled elements cannot occur [19].

There are a couple of reasons to investigate and apply grid deformation in order to
adapt a given computational mesh (r-adaptivity):

A numerical simulation using FEM starts with creating a computational grid. In the
case of 2D, this process can be automatised by available grid generation software, but in
the more interesting and demanding case of a full 3D simulation, the problem of efficient
and robust grid generation is not solved in a satisfying manner yet. Consequently, 3D
grid generation is often one of the most time consuming parts of an FEM simulation. In
this context, fictitious boundary methods seem especially advantageous [22, 25]. Using
such a method, it is not necessary anymore to generate a computational grid whose
geometry is exactly adjusted to the physical boundary, i.e. the boundary of the simulated
object. Instead, one can start with a non-adapted (semi-) structured mesh, because
the physical boundary is implicitly enforced during the calculation. Unfortunately, the
boundary approximation in these methods is of first order only. If the grid is adjusted
and concentrated at the physical boundary by a grid deformation process, the boundary
approximation error can be significantly decreased.

In many applications, local and anisotropic phenomena like shock fronts occur. It
was shown [1, 12, 13] that by anisotropic refinement and alignment according to such
phenomena, the accuracy of the calculation can be vastly improved. Refining the region
of a shock by using hanging nodes solely (h-adaptivity) may suffer from the fact that
the given grid is not aligned with the shock. Therefore, anisotropic refinement in such a
situation requires either remeshing or grid deformation.

In FEM simulation it has turned out that grid adaptivity governed by a posteriori
error estimation is mandatory for reliable and efficient computations. The widely used
method of grid adaptation by allowing hanging nodes on element level, however, has
severe impact on the speed of computation. Recent research [2] shows that in typical
adaptive FEM codes using this method of grid adaptation only a small fraction of the
available processor performance of several GFlop/s can be typically used. One of the rea-
sons for this behaviour is the extensive usage of indirect adressing in such codes which is
necessary to handle the unstructured grids emerging from the adaptation procedure. On
the other hand, by using local generalised tensor product meshes and thereby avoiding
indirect adressing a very significant speed up can be achieved. This has been successfully
implemented in our new FEM package FEAST [2]. In this context, grid deformation is
an ideal tool to grant the geometric flexibility necessary for the grid adaptation process
according to a posteriori error estimators while maintaining logical tensor product struc-
tures of the grid.

In this article, we proceed as follows: In the next section, we describe in detail our
deformation method and its numerical realisation. In section 3, the focus is placed on
the numerical analysis of the grid deformation method. This includes robustness and ac-
curacy considerations. The application of the deformation method to more sophisticated
simulations is tackled in section 4.
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2 Description of our Deformation Method

We first introduce some notations. A computational domain Ω ⊂ R
2 is triangulated by

a mesh T consisting of N quadrilateral elements T of size hT . The mesh is supposed to
be conforming, i.e. no hanging nodes are allowed. The area of an element T is denoted
by m(T ). For the common Lebesgue and Sobolev spaces on a domain D we use the
abbreviations L2(D) and Hk(D). In the special case D = Ω, we write L2 and Hk

instead. The function space of k-fold continuously differentiable functions is referenced
by Ck(D); for an interval I, Ck,α(I), 0 < α < 1, denotes the space of functions with
Hölder-continuous kth derivatives. A domain is said to have an Ck,α-smooth boundary if
the boundary can be parameterised by a function in Ck,α(I). The Jacobian matrix of a
smooth mapping Φ : Ω → Ω is denoted by JΦ, its determinant by |JΦ|.

To formalise the deformation process, we introduce a weighting function g ∈ C1(Ω)
and a monitor function f ∈ C1(Ω). Both functions must be strictly positive in Ω̄. The
reason why f is called monitor function will become clear below.

The theoretical background of our approach – like Liao’s approach [4, 7, 17, 18] –
is based on Moser’s work [11]. The aim of the numerical grid deformation algorithm
described below is to construct a bijective transformation Φ : Ω → Ω which satifies

g(x)|JΦ(x)| = f(Φ(x)), x ∈ Ω (1)

as well as
Φ : ∂Ω → ∂Ω. (2)

If such a transformation Φ has been found, the new coordinates ξ of a grid point x
are computed by

ξ := Φ(x). (3)

Applying the area formula to an element T yields

m(Φ(T )) :=

∫

Φ(T )
1 dx =

∫

T
|JΦ(x)|dx, (4)

and using the 1 × 1-Gauss quadrature rule in formula (1), we obtain

g(xc)
m(Φ(T ))

m(T )
= f(Φ(xc)) + O(h2). (5)

Here, xc stands for the center of T . If the function g represents the distribution of the
element area in the mesh, i.e. g(x) = m(T ) + O(h2), x ∈ T , then we have

m(Φ(T )) = f(Φ(xc)) + O(h2), (6)

thus by prescribing the monitor function f , the element T will get – up to a spatially
fixed scaling constant – the size defined by the value of f in the position of the image of
T in the deformed grid.

In the special case g ≡ 1 investigated by Liao, the monitor function f determines the
relative growth or shrinkage of the elements with respect to the previous mesh, i.e., the
mesh on which the deformation takes place. In Liao’s methods, the monitor function f
does in general not describe the absolute distribution of the element size in space. If and
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only if the starting mesh has equidistributed element sizes, the monitor function does
control the absolute element size.

In our new method, considering g to be the area distribution on the undeformed mesh,
f in contrast describes the absolute mesh size distribution of the target grid, which is
clearly independent of the starting grid. Note that condition (2) ensures that boundary
points can move along the boundary only.

Then, based upon [4, 7, 17, 18], the transformation Φ is computed in four steps.

1. Scale the monitor function f or the area function g such that

∫

Ω

1

f(x)
dx =

∫

Ω

1

g(x)
dx. (7)

For the sake of simplicity, we will assume that (7) is fulfilled from now on. Let f̃
and g̃ denote the reciprocals of the scaled functions f and g.

2. Compute a grid-velocity vector field v : Ω → R
n satisfying

−div(v(x)) = f̃(x) − g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (8)

with n being the outer normal vector of the domain boundary ∂Ω, which may
consist of several boundary components.

3. For each grid point x, solve the initial value problem

∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x (9)

with

η(y, s) :=
v(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (10)

4. Define
Φ(x) := ϕ(x, 1). (11)

By this method, we are able to construct a mapping Φ satisfying conditions (1) and (2).

Theorem 2.1. Let the boundary of Ω be C3,α-smooth and let f, g ∈ C1(Ω) be strictly
positive in Ω̄. Then, if the mapping Φ : Ω → Ω constructed above exists, it fulfills
conditions (1) and (2).

Proof: Define the auxiliary function

H(x, t) := |Jϕ(x, t)|
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

. (12)

A direct, but tedious calculation (see Appendix) shows that

∂H(x, t)

∂t
= 0, (13)
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and therefore we obtain

1

g(x)
= g̃(x) = |Jϕ(x, 0)| g̃(ϕ(x, 0))

= H(x, 0)

= H(x, 1)

= |Jϕ(x, 1)| f̃(ϕ(x, 1))

= |JΦ(x)| 1

f(Φ(x))
. (14)

As by (8) the normal component of v vanishes for a boundary point x, it follows due
to formula (9) that ∂nϕ(x, t) = 0 ∀ t ∈ [0, 1]. Therefore, boundary points are moved in
tangential direction only and by this the proof is finished.

The existence of such a mapping Φ is guaranteed by the following theorem from [11].
However, the mapping Φ is not unique.

Theorem 2.2 (Moser). Let 0 < k ∈ N, α > 0. Let Ω ⊂ R
n be a domain with

C3+k,α-smooth boundary. Suppose f, g ∈ Ck,α(Ω̄) with
∫

Ω f =
∫

Ω g. Then there exists a
Ck+1-diffeomorphism Φ which fulfills

g(x)|JΦ(x)| = f(Φ(x)) ∀x ∈ Ω

and
Φ(x) = x ∀x ∈ ∂Ω.

Remark 2.3. Note that the derivation of our new deformation method does not depend
on the dimension. Although we restrict to the two-dimensional case in this article for
the sake of implementational simplicity, our new deformation method is applicable to
three-dimensional meshes without any modification.

3 Numerical Realisation

This section is devoted to the numerical implementation of the four steps described
above. Although the construction of the mapping Φ can be performed in any dimension,
we restrict ourselves to the two-dimensional case. To prove the existence of a smooth
diffeomorphism Φ, Moser uses the smoothness conditions of f, g and the domain Ω stated
above. In practical computations, we relax these conditions. In the examples presented
in this article, the functions f and g are strictly positive and continuous, the domain Ω
may have a Lipschitz boundary.

The first step in constructing Φ is to obtain the functions f and g. In our computa-
tions, the monitor function f is defined to be the bilinear interpolant of an analytically
given function. To compute g, we first determine the element size in a grid point, which
is set as the arithmetic mean of the area of the elements surrounding the grid point.
Then, we define g as the bilinear interpolant of these node values.

The vector field v is computed by solving the pure Neumann problem

−∆w = f̃ − g̃, ∂nw = 0 on ∂Ω (15)
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and setting v := ∇w. To maintain a high degree of flexibility with respect to the under-
lying mesh, we compute problem (15) using its discrete weak formulation

(∇wh,∇ϕh) = (f̃ − g̃, ϕh) ∀ϕh ∈ Q1(T) (16)

by the finite element method on the given mesh T. Here Q1 denotes the function space
created by continuous and elementwise bilinear functions on T. In the following, every
FEM calculation is performed with bilinear conforming finite elements unless stated
differently.

The solution of the corresponding algebraic systems however requires special care, as
the solution of the Neumann problem (15) is unique up to an additive constant only. To
solve (15), we use a modified multigrid method in which after every iteration the side
condition

∫

Ω wh = 0 is imposed by adding a suitable constant [14].
Afterwards, the vector field v is approximated by the recovered gradient vh of the finite

element solution wh. For the reconstruction of the gradient we employ the polynomial
preserving recovery (PPR)-method (cf. [27]), although standard 1st-order interpolation
techniques also performed well in our tests.

In the next step, we approximate the initial value problem (9) by replacing v by its
discrete counterpart vh. This leads to the initial value problem

∂ϕ(x, t)

∂t
= ηh(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x (17)

with

ηh(y, s) :=
vh(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (18)

Note that this ODE system decouples into 1D-ODEs for every coordinate, which can
be solved by standard ODE methods. All numerical solution methods for ODEs require
one or more evaluations of the right hand side per time step. In the proposed grid
deformation method, evaluating the vector field as well as f̃ and g̃ is rather expensive,
as every evaluation requires searching through the grid: To evaluate a finite element
function in a given point in real coordinates, the element this point belongs to has to be
known. Unfortunately, we have to evaluate (from the 2nd time step on) at points which
possibly have been moved to an entirely different region of the grid during the time steps
already performed. Hence, the element the moved point is inside of has to be found.
Note that the evaluations of vh, f̃ and g̃ have to take place on the original grid, where
these functions have been computed. It is important to realise that the grid deformation
process described here needs to search the whole grid (at least one time) per time step
and per grid point. Consequently, searching the grid just by “brute force”, i.e. without
clever search algorithms, leads to unreasonable computational costs (compare Example
3.2) with quadratic complexity, as we will show.

To perform the “brute force” approach, we loop over all elements in the grid. The
search is finished and the loop terminated if the element containing the point is found.
To improve this strategy, we introduce the “improved brute force” approach: Here, we
store the index of the element Told the point has been inside of in the previous time step.
If the point is not inside Told after the current time step, we perform a “brute force”
search. For both search methods, the whole grid has to be searched in the worst case.
Therefore, for a grid consisting of N grid points the search time is O(N2).
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Our raytracing search adopted from computer graphics avoids searching the entire
grid. At first, it is tested if the grid point is inside the element Told where it was in
the previous time step. If this is true, the search is finished. Otherwise, we take the
center of Told and connect it with the moved point. Detecting the element edge e which
intersects with this ray, we move to the element Tnew which shares e with Told. Then,
setting Told := Tnew, we proceed as before.

Special care, however, must be taken to avoid that the ray intersects the element in
an element vertex as the choice of e is not unique in this case. If this occurs, we simply
modify the starting point of the ray heuristically by disturbing the coordinates of the
element center.

Another case requiring special treatment may occur when searching in non-convex
domains. It may happen that, although the grid point before and after the current time
step is located in the domain, the ray between these points leaves the domain. In this
case, we find the second intersection of this ray with the domain boundary by looping
over all boundary elements. In the element containing this second intersection, the search
is continued.

The maximum length of the search path and therefore the maximum amount for a
single search process is O(N). Thus, the total search time behaves like O(N2) in the
worst case, too. But on reasonable grids which have roughly the same resolution in x- and
y-direction, the maximum length of the search path is O(

√
N) and thus the total search

time grows like O(N3/2) in contrast to the brute force approaches, where the search time
still shows quadratic growth.

Potentially, hierarchical search methods based on spatial partitions feature even
higher speed, as the search time per evaluation needs only O(log N) operations yielding
a total search time of O(N log N). In contrast to the raytracing search, these methods
do not benefit from the fact that the movements per deformation time step are usually
small. Therefore, we render the raytracing approach a well suited search method in grid
deformation as compromise.

Test Problem 3.1. As a first test problem, we consider the unit square Ω = [0, 1]2

triangulated by a tensor product mesh with N grid points. As monitor function, we
choose

f(x) = min

{

1, max

{ |d − 0.25|
0.25

, ǫ

}}

, d :=
√

(x1 − 0.5)2 + (x2 − 0.5)2. (19)

The parameter ǫ is set to 0.1. This setting implies that on the deformed grid the largest
cell has 10 times the area of the smallest one.

Example 3.2. To evaluate the time needed for searching the grid during the solution
of the ODE (17), we consider Test Problem 3.1. The computations are performed on a
dual Opteron 250. In this example, ten Runge-Kutta-3 steps with step size fixed to 0.1
are performed yielding 30 evaluations per grid point. We compare the total search time
in seconds, i.e. the search time needed for all evaluations performed in the deformation
process, of the three search algorithms described above on various levels of (regular) refine-
ment. Due to the natural inaccuracy in the measurement of time, all measurements have
been repeated until the relative error of the mean value of the measured times decreased
below 1%.

7



The results are collected in Table 3.1. It is obvious that the raytracing search is by
far faster than the brute force approach, which by its quadratic search time leads to
inappropriate search times (≈ 9 h in our example) for still quite small grids. In contrast
to this, the search amount of the raytracing search is almost O(N) in this example. The
same calculations were additionally performed with 50 instead of 10 Runge-Kutta steps
and a step size of 0.02. The comparison of the search times in this case (Table 3.2) with
the ones discussed above shows that the total search times for the brute force approaches
grows by a factor of 5 corresponding to the number of times steps. Instead of this, the
search time in the case of raytracing search grows only by a factor of 3 for the calculation
with 65536 grid points. This phenomenon stems from the smaller time steps in the latter
calculations resulting in shorter search paths.

To summarise this section, we give a short description of our basic grid deformation
method in algorithmic form.

Algorithm 3.3 (Basic grid deformation).

input: • f : monitor function

• GRID : computational grid

output: • GRID : deformed grid

function Deformation(f , GRID) : GRID

compute f̃ − g̃, g̃ = g̃(GRID)

solve (∇wh,∇ϕh) = (f̃ − g̃, ϕh) ∀ϕh ∈ Q1(T)

vh := recovered gradient(wh)

DO FORALL x ∈ GRID

solve ∂ϕ(x,t)
∂t = ηh(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x

Φ(x) := ϕ(x, 1)

ENDDO

RETURN Φ(GRID)

END Deformation

4 Numerical Analysis of the Deformation Method

To investigate the quality of the obtained grids, we consider the fraction

f(x)

area(x)
(20)

where area(x), the element area distribution of the deformed mesh, is obtained in the
way like g on the undeformed grid. If the desired area distribution is achieved, then the
fraction (20) is spatially constant (note that f describes the spatial distribution of the
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N raytracing imp. brute force brute force

256 9.36 · 10−3 8.56 · 10−2 5.65 · 10−2

1024 3.96 · 10−2 2.23 · 100 8.39 · 100

4096 1.70 · 10−1 6.20 · 101 1.30 · 102

16384 8.22 · 10−1 1.39 · 103 2.05 · 103

65536 4.28 · 100 2.69 · 104 3.25 · 104

262144 2.42 · 101 - -

Table 3.1: Total search time needed by the different search methods in the case of Test
Problem 3.1, 10 time steps

N raytracing imp. brute force brute force

256 4.73 · 10−2 1.33 · 10−1 2.82 · 10−1

1024 1.83 · 10−1 2.61 · 100 4.21 · 100

4096 7.32 · 10−1 7.58 · 101 6.49 · 102

16384 3.03 · 100 2.27 · 103 1.02 · 104

65536 1.32 · 101 6.61 · 104 1.62 · 105

262144 6.10 · 101 - -

Table 3.2: Total search time needed by the different search methods in the case of Test
Problem 3.1, 50 time steps

cell sizes up to a spatially fixed constant). To force this constant to be 1, we scale the
function area(x) with a multiplicative constant c to achieve

∫

Ω
a(x) dx =

∫

Ω
f(x) dx, (21)

where a(x) := c · area(x). Now, we define the quality function

q(x) :=
f(x)

a(x)
. (22)

The overall quality of the grid adaptation according to the desired cell size can be mea-
sured by the deviation of q(x) from the constant function 1 leading to the quality measure
Q defined by

Q := ||q − 1||l2 . (23)

In our tests, the discrete l2 norm has been chosen for convenience.

As above, we consider Test Problem 3.1. Now, we investigate how the error induced
by the approximate solution of the ODEs influences the quality parameter Q. To do
so, we compare Q after one deformation cycle on a tensor product grid with 4096 grid
points. As ODE solver, we apply explicit Euler’s method (EE) and several Runge-Kutta
type methods: Heun’s method (HEUN), the classical Runge method of third order (RK3)
and the standard Runge-Kutta method of fourth order (RK4). Furthermore, we employ
Adams-Bashforth methods of order two and three (AB2, AB3) as representatives of
linear multistep methods. The starting values are obtained by Heun’s method. These
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computations are performed with fixed step size. The results are shown in Table 4.1 and
Table 4.2. Note that one Runge-Kutta step requires several costly evaluations of the right
hand side of the ODE per step in contrast to the linear multistep methods. Therefore,
in a corresponding Figure 4.1 we compare Q in relation to the number of vector field
evaluations per grid point instead of the number of time steps. It turns out that the
high order Runge-Kutta methods perform best, even when only few large time steps are
applied.

steps EE AB2 AB3 HEUN RK3 RK4

3 4.96 · 10−1 - 1.98 · 100 8.43 · 10−2 4.54 · 10−2 4.47 · 10−2

4 2.62 · 10−1 1.67 · 10−1 2.41 · 10−1 6.32 · 10−2 4.44 · 10−2 4.42 · 10−2

5 1.93 · 10−1 1.06 · 10−1 1.05 · 10−1 5.46 · 10−2 4.40 · 10−2 4.40 · 10−2

7 1.38 · 10−1 6.96 · 10−2 5.79 · 10−2 4.85 · 10−2 4.40 · 10−2 4.40 · 10−2

10 1.04 · 10−1 5.37 · 10−2 4.69 · 10−2 4.59 · 10−2 4.40 · 10−2 4.40 · 10−2

20 6.81 · 10−2 4.56 · 10−2 4.41 · 10−2 4.44 · 10−2 4.40 · 10−2 4.40 · 10−2

30 5.66 · 10−2 4.46 · 10−2 4.40 · 10−2 4.41 · 10−2 4.40 · 10−2 4.40 · 10−2

40 5.32 · 10−2 4.43 · 10−2 4.40 · 10−2 4.41 · 10−2 4.40 · 10−2 4.40 · 10−2

50 5.07 · 10−2 4.42 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2

70 4.83 · 10−2 4.41 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2

100 4.67 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2 4.40 · 10−2

Table 4.1: Quality measure Q for different step sizes and ODE solvers for Test Problem
3.1, 4096 grid points

steps EE AB2 AB3 HEUN RK3 RK4

3 6.60 · 10−1 - - 8.15 · 10−2 3.11 · 10−2 1.89 · 10−2

4 3.12 · 10−1 2.31 · 10−1 2.84 · 10−1 4.86 · 10−2 1.81 · 10−2 1.08 · 10−2

5 2.18 · 10−1 1.21 · 10−1 1.25 · 10−1 3.20 · 10−2 1.52 · 10−2 8.17 · 10−3

7 1.44 · 10−1 6.13 · 10−2 5.81 · 10−2 1.76 · 10−2 9.07 · 10−3 6.12 · 10−3

10 9.96 · 10−1 3.09 · 10−2 2.62 · 10−2 9.97 · 10−3 5.66 · 10−3 5.38 · 10−3

20 5.08 · 10−2 9.84 · 10−3 7.01 · 10−3 5.92 · 10−3 5.34 · 10−3 5.24 · 10−3

30 3.45 · 10−2 6.63 · 10−3 5.44 · 10−3 5.46 · 10−3 5.23 · 10−3 5.23 · 10−3

40 2.63 · 10−2 5.82 · 10−3 5.26 · 10−3 5.35 · 10−3 5.23 · 10−3 5.23 · 10−3

50 2.14 · 10−2 5.54 · 10−3 5.23 · 10−3 5.30 · 10−3 5.23 · 10−3 5.23 · 10−3

70 1.59 · 10−2 5.36 · 10−3 5.23 · 10−3 5.26 · 10−3 5.23 · 10−3 5.23 · 10−3

100 1.19 · 10−2 5.28 · 10−3 5.23 · 10−3 5.25 · 10−3 5.23 · 10−3 5.23 · 10−3

Table 4.2: Quality measure Q for different step sizes and ODE solvers for Test Problem
3.1, 65536 grid points

Remark 4.1. Due to numerical errors, it may happen that some of the intermediate
evaluation points of the Runge-Kutta methods are not inside of the domain. As the
functions to evaluate are not defined in these points, the intermediate points are projected
onto the domain in this case and the calculation proceeds as usual. For more profound
investigations of this phenomenon and of the different ODE solvers, see [14].
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Figure 4.1: Quality measure Q vs. number of vector field evaluations for Test Problem
3.1, 4096 grid points

In practical computations, however, we cannot expect the resulting grid to feature
exactly the cell size distribution prescribed by f . This is due to the fact that we have
to rely on an approximation vh of the vector field v during the computation. Additional
error is induced by the numerical solution of the ODE (17). To further improve the cell
size adjustment, we repeat the deformation algorithm 3.3 on the newly deformed grid
until Q < TOL is reached. We refer to this kind of iterated deformation as correction
iteration.

Algorithm 4.2 (Iterated grid deformation).

input: • f : monitor function

• GRID : computational grid

• NCORR : maximal number of correction steps

• TOL : tolerance for Q

output: • GRID : deformed grid

function IteratedDeformation(f , GRID, NCORR, TOL) : GRID

DO i = 1, NCORR

GRID := Deformation(f , GRID)

Q := Q(GRID)

IF (Q < TOL) EXIT LOOP

ENDDO

RETURN GRID

END IteratedDeformation
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Figure 4.2: Quality measure Q vs. number of correction iterations for Test Problem 3.1

The possibility of defining such an algorithm is one of the biggest advantages of our
method over Liao’s method, which requires the starting grid to have elements with equal
area and therefore prevents any iteration process. Unfortunately, even with iterating
the deformation process, it is by principle reasons impossible to achieve Q = 0 exactly,
which is caused by the fact that in reality the area distribution is a piecewise constant
function. Therefore, the interpolation error in computing g remains and prevents Q from
converging to 0. But for practical applications, Q ≈ 0.05 has turned out to be sufficient
(see below).

Example 4.3. To verify the statements made above, we return to Test Problem 3.1.
From Figure 4.2 depicting the quality parameter Q vs. the number of deformation cycles
for different levels of refinement (NVT = number of vertices), it becomes evident that the
error caused by the approximate computation of Φ can be eliminated by iteration, but the
deviation of Q from 0 caused by the interpolation of the area function remains. Similar
to the computations in example 3.2, we choose RK3 as ODE-solver with time step size
1/10.

In practical computations, it turns out to be sufficient to perform at most two cor-
rection steps. In the case of Test Problem 3.1, when computed on a tensor product grid
with 1024 grid points and using 10 RK3-steps, there is visually merely a small difference
between the grid obtained without correction and the one produced by the first correc-
tion step; the grids created using one and two correction steps do not exhibit any visual
difference at all (see Figure 4.3). In contrast to this, the quality measure Q decays from
1.15 ·10−1 (without correction) to 6.80 ·10−2 (first correction step) and finally 6.10 ·10−2

12



Figure 4.3: Computational grid after zero, one and two correction steps (Test Problem
3.1, 1024 grid points)

(second correction step).

When applying very harsh deformation, e.g. in the case of monitor functions with
extremely steep gradients or monitor functions implying extreme element size differences,
the corresponding vector field v cannot be resolved properly on the undeformed grid.
Thereby, the numerical grid deformation process can be disturbed to that extent that
the deformed elements are no longer convex. This is not due to theoretical limitations
of the method, but due to the numerical error induced by the approximate solution of
the Poisson problem (16). In this context, the error produced by the numerical solution
of the ODE (17) seems to be far less critical. Imposing ǫ = 1/100 instead of 1/10 in
formula (19) of Test problem 3.1, for instance, leads to non-convex elements, regardless
of the number of time steps chosen in the ODE solver. As a remedy, one can solve
the Poisson problem (16) in a more accurate manner, e.g. by using higher order finite
elements or a highly refined mesh. These aproaches require demanding calculations and
render therefore incompetetive. To overcome the limitation described here, we iterate
algorithm IteratedDeformation using the blended monitor function fs defined by

fs(x) := sf(x) + (1 − s)g(x), s ∈ [0, 1] (24)

instead of the monitor function itself. For compatibility reasons, we require f and g to
have the same integral mean value here.
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Algorithm 4.4 (Grid deformation with combined correction).

input: • NADAP : number of adaptation steps

• GRID : computational grid

• NCORR(i) : maximal number of correction steps in i-th adaptation step

• TOL(i) : tolerance for Q in i-th adaptation step

• S(i) : blending parameter in i-th adaptation step, S(NADAP ) = 1

output: • GRID : deformed grid

function EnhancedDeformation(f , GRID, NCORR, NADAP , TOL, S) : GRID

DO i = 1, NADAP

GRID := IteratedDeformation(fS(i), GRID, NCORR(i), TOL(i))

ENDDO

RETURN GRID

END EnhancedDeformation

To demonstrate the gain of robustness by performing the adaptation iteration, we
investigate the following test problem.

Test Problem 4.5. We consider the domain Ω = [0, 1] × [0, 6] with the grid shown on
top of Figure 4.4. As monitor function, we choose

f(x) = min

{

1, max

{ |d − 0.25|
0.25

, ǫ

}}

, d :=
√

(x1 − 4.5)2 + (x2 − 0.4)2, ǫ = 1/10.

(25)

Example 4.6. Using bilinear elements to compute vh, it is not possible to perform the
deformation prescribed in Test Problem 4.5 in one step as inverted elements emerge due
to numerical inaccuracies. This phenomenon occurs regardless of the ODE solver chosen
and the step size prescribed. The failure in this test problem can be cured by applying
two adaptation steps instead of one. Here, we set NCORR(i) = 0 for i < NADAP and
NADAP = 2 in algorithm 4.4. The blending parameter S(i) is computed by

S(i) =

√

i

NADAP
. (26)

The computational grids consist of 2016 grid points. The grids obtained after both adap-
tation steps and one correction step are shown in Figure 4.4. After the adaptation itera-
tions, a quality measure of Q = 8.42 · 10−2 is reached. The correction step improves this
to 4.41 · 10−2.

5 Examples and Applications

In this section, the emphasis is put on applications of the deformation method described
in the former sections. As mentioned in the introduction, one field of application for
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Figure 4.4: Test Problem 4.5: initial grid, grid after the first and second adaptation step,
and the grid after one correction step (from top to bottom). Zoom into the region around
the circle after the two adaptation steps (left) and a further correction step (right).
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Figure 5.1: Computational grid for the L-domain (left: whole domain, right: zoom into
region of reentrant corner)

grid deformation is a posteriori error control and adaptivity. A classical example to
show the superiority of adaptive FEM is the Laplace equation on the L-domain [−1, 1]2 \
[0, 1]2. Choosing appropriate Dirichlet boundary conditions, the (harmonic) solution is
not H2-regular, but features an edge singularity in the reentrant corner. When adapting
according to the H1-norm, the grid has to be concentrated extremely in this corner to
balance the singularity.

Example 5.1. To demonstrate the benefit of grid deformation in this context, we start
with an equidistant computational grid and deform it using the monitor function

fL(x) = min (1, max(|x|, h · c0)) . (27)

In this equation, h denotes the mesh width on the undeformed grid, c0 is set to 1 · 10−2.
The resulting grid is displayed in Figure 5.1. In Figure 5.2, we show the decay of the
error on the deformed and the undeformed mesh, respectively, vs. the number of grid
points. The adjusted grid is obtained using four adaptation and two correction steps. To
solve the ODEs, five RK3-steps with step size fixed to 0.2 have been employed. Like in all
other examples in this paper, the computation was performed using conforming bilinear
elements.

Figure 5.2 shows that by adapting the mesh via grid deformation convergence of
almost optimal order (0.493 vs. 0.5) can be achieved, while without deformation the
expected detoriation of the convergence order takes place.

In the following, we want to figure out whether grid deformation helps to improve
the accuracy of the computation of derived quantities in practical calculations for the
incompressible Navier-Stokes equations [21]. For this purpose, we consider an example
based on a well known CFD benchmark, which was investigated in [23].

Example 5.2. Consider a channel of length 2.2 and height 0.41 (cf. Figure 5.3). The
upper and lower boundary parts of the channel are treated as rigid walls. On the left
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Figure 5.2: Decay of the gradient error for the L-domain with and without grid defor-
mation vs. number of grid points N

Figure 5.3: Modified CFD benchmark geometry for Example 5.2

a parabolic inflow profile with maximum speed of 0.3 is prescribed, while on the right
boundary segment natural boundary conditions describe the outflow. A rigid body with
the shape of a cylinder with radius 0.05 is put into the flow. The midpoint ~pm := (xm, ym)
of this cylinder is set to xm = 1.1, while ym is modified in the range [0.06, 0.35]. In this
example, we plot the drag and lift coefficients, depending on the y-position of the cylinder.

For the calculation, a finite element approach is used that bases on the rotated bilinear
nonconforming quadrilateral finite element Q̃1 for the velocity whereas the pressure is
approximated by Q0 finite elements. The boundary conditions on the walls of the channel
are implemented the usual way. For the boundary conditions on the cylinder we use, in
contrast, the fictitious boundary method that was introduced in [22]. This enables us to
use our grid deformation technique:

We start with an equally distributed computational mesh which consists of two rect-
angular cells in the coarse grid, forming the whole channel. This coarse grid (labelled as
level 1 ) is refined 4-7 times with regular refinement, resulting in grids labeled as level 5
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to level 8. Table 5.1 summarises information about the grids resulting from this proce-
dure. Level 8, for instance, consists of ∼ 66000 edges and ∼ 32000 elements, which gives
∼ 164000 degrees of freedom for the Q̃1/Q0 approach in 2D.

Level #vertices #edges #elements #DOF

5 561 1072 512 2656
6 2145 4192 2048 10432
7 8385 16576 8192 41344
8 33153 65920 32768 164608

10 525825 1050112 524288 2624512

Table 5.1: Statistics about the computational grids for Example 5.2

The resulting grid is now deformed with the help of an appropriate monitor function
(see below) using 3 adaptation and 2 correction steps. After the deformation process,
we use the fictitious boundary method to impose boundary conditions for all cells in the
inner of the cylinder. A steady state simulation is performed based on this setting to
obtain drag and lift coefficients on the cylinder. Afterwards the position of the cylinder
is moved vertically and the grid is re-adapted like above, based on the previous mesh.
Then, the calculation is repeated to obtain the next pair of results for drag and lift. We
start with ym = 0.06 and increase y in steps of 0.005 until we reach ym = 0.35.

Remark 5.3. In theory, the grid deformation method formulated above should not pro-
duce tangled elements, and all examples shown so far produced appropriate results when
adapting and re-adapting the grid. Nevertheless, when performing more and more re-
adaptation steps and additionally moving the center of the object like in this example,
the grid gets more and more disturbed due to unavoidable numerical errors arising from
anisotropic cells. As fast and effective remedy, we simply perform several Laplacian grid
smoothing steps (cf. [20]) before each adaptation/correction step. This greatly helps to
keep the quality of the mesh appropriate throughout the whole simulation.

To obtain reference values for drag and lift with this configuration, we perform simula-
tions for all these y-positions at level 10 without using any grid deformation. We repeated
this reference simulation with different discretisation techniques (upwind, streamline-
diffusion) and found no significant numerical difference. The simulations with (and with-
out) grid deformation on lower levels are all performed using the upwind stabilisation
technique (cf. [21]).

Test Problem 5.4. For a point ~x = (x, y) consider the following functions:

h1(~x) := max

{

1

40
, 4 · dist(~x)

}

h2(~x) := max

{

1

8
,

7

8
x − 37

40

}

with
dist(~x) := | |~x − ~pm| − 0.05 |

describing the minimum distance of ~x to the boundary of the cylinder. So, h1 describes
simply the distance of ~x to the cylinder, while h2 is 1/8 in the upstream part of the channel
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and increasing linearly behind the cylinder, resulting in a value of h2(2.2) = 1 at the end
of the channel. Using these functions we create now three different test configurations:

(A) Calculation of drag and lift without any grid deformation.

(B) Calculation of drag and lift with the monitor function

f1(~x) := min{1, h1(~x)}.

(C) Calculation of drag and lift with the monitor function

f2(~x) := min{1, h1(~x), h2(~x)}.

Test configuration (A) is obviously the simplest one without any deformation. Test
configuration (B) refines the mesh only around the cylinder, while test configuration
(C) refines not only around the cylinder, but also in the upstream part of the channel
(cf. Figure 5.4). The last test configuration therefore introduces the additional a priori
knowledge about the test problem that additional error is to be expected in the inflow
(cf. [3]).

Figure 5.4: Appearance of the mesh (here level 6) for test configuration (A), (B) and (C)
(from top to bottom)

Figure 5.5 to 5.7 show the calculated drag and lift coefficients for level 6-8 for the
different test configurations. The calculated values obtained with the help of the grid
adaptation are obviously much closer to the reference solution than in the case of no grid
adaptation at all. Furthermore, it can be seen that with additional adaptation in the
upstream part the quality of the calculated values increases even more: At level 7, there
is merely a visual difference between the drag coefficients obtained by grid adaptation to
those calculated on level 10 without.

To quantify these visual impressions with numerical values we also measured the
difference of the calculated drag and lift coefficients with the reference values. Table
5.2 depicts the error on the different levels, comparing the drag and lift coefficients of
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Figure 5.5: Comparison of the drag coefficients (left) and lift coefficients (right) for y-
position 0.06..0.35 on level 6. The pictures show the reference curve calculated on level
10 and the coefficients obtained by test configuration (A), (B) and (C).
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Figure 5.6: Same as Figure 5.5, but for level 7.
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Figure 5.7: Same as Figure 5.5, but for level 8.
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Lv. ‖Sd − DA‖LB
‖Sd − DB‖LB

‖Sd − DC‖LB

5 1.027E-01 9.311E-02 5.447E-02
6 3.635E-02 2.917E-02 8.960E-03
7 2.063E-02 6.896E-03 2.744E-03
8 7.800E-03 4.608E-03 1.003E-03

Lv. ‖Sl − LA‖LB
‖Sl − LB‖LB

‖Sl − LC‖LB

5 6.454E-02 2.398E-02 4.895E-02
6 5.564E-02 1.849E-02 1.864E-02
7 2.076E-02 7.249E-03 6.727E-03
8 6.986E-03 4.807E-03 2.085E-03

Table 5.2: ‖ · ‖l2-norm of the difference between the reference drag/lift vector and the
drag/lift vector calculated with the three different grid deformation configurations.

the reference calculation on level 10 with those of the three test configurations. Sd and
Sl describe the vector that consists of the 59 reference drag (and lift) values for all the
y-coordinates 0.06, 0.11,... DA, DB and DC represent the drag coefficient vectors for the
three test configurations, while LA, LB and LC denote the lift coefficient vectors.

Table 5.2 shows clearly the advantage of the adapted grids. The error on lower levels,
especially level 6 and 7, are mostly by orders better than on the undeformed grid. The
additional a priori knowledge used in test configuration (C) increases the accuracy of all
drag coefficients even more while improving the lift coefficients significantly starting at
level 7. Here it can be seen that the drag and lift coefficients of test configuration (C)
are roughly comparable with those calculated without grid deformation on a grid that
is refined 1-2 times more. It can be expected that using a sophisticated error indicator,
even higher accuracy will be within reach.

As a final remark we also want to highlight another aspect that can be seen when
analysing these results. The values calculated with the grid deformation method are not
only more accurate, the resulting curves are also much smoother. While on low levels
the drag (and also the lift) curves are oscillating heavily around the reference values,
those calculated with the grid deformation show a by far less oscillating behaviour. The
reason for this zig-zagging on low levels without using grid deformation quickly becomes
clear when analysing the method: For the drag and lift evaluation, the fictitious boundary
method performs a volume integration about all cells inside of the cylinder. When moving
the cylinder to another position on the uniform grid, large cells ”jump” inside or outside
of the cylinder, thus disturbing the calculation method. These disturbances nearly vanish
or at least are damped very much when there are only ”small” cells around the boundary
of the cylinder, as it happens on higher levels of refinement or when concentrating cells
around the interface.

This observation gives rise to usability of the grid deformation method in combina-
tion with optimisation algorithms. There are a number of optimisation algorithms in
the context of PDE constrained optimisation which rely on the accurate evaluation of
functionals (like drag or lift) and/or their derivatives (see e.g. [15, 6]). Here, the grid
deformation method can clearly help to dampen numerical noise arising from an inappro-
priate triangulation on lower levels, which otherwise could lead to non-optimal behaviour
of those algorithms (cf. [15, 24]).
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6 Conclusion and outlook

In this paper, we presented a new mesh deformation method which relies on solving
only Poisson problems for the deformation and 1D-IVPs for every grid point in every
dimension. The deformation process is controlled by a monitor function which quantita-
tively prescribes the cell size distribution of the resulting mesh. We described in detail
implementational aspects and showed the accuracy and robustness of our new method
on several examples. In this context, we analysed the effects of the deformation method
on the accuracy of a flow simulation, governed by the Navier-Stokes equation. We have
seen that solutions calculated on properly deformed meshes exhibit similar quality as
solutions on undeformed meshes refined once or twice more.

The deformation method proposed in this article, although presented in the 2D con-
text, is not restricted to two-dimensional meshes, but can be applied in any dimensions.
Therefore, the investigation of our deformation method in three dimensions has been
recently started. Another matter of future investigation will be the embedding of a pos-
teriori error control. Here, the monitor function is not given analytically like in this
paper, but has to be derived from a computed error distribution. Furthermore, to in-
crease the flexiblity of the adaptation process a combination of the deformation method
with h-adaptivity is currently being investigated, which will lead to a full rh-adaptivity
approach. This algorithm will become part of the new hardware-oriented FEM package
FEAST.
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8 Appendix

Lemma 8.1. Formula (13) holds.

Proof: From equation (10), we have

v(x) = η(x, t)
(

tf̃(x) + (1 − t)g̃(x)
)

. (28)

Applying the chain rule and the div-Operator, we find

div(v(x)) = div
[

η(x, t) ·
(

t ˜f(x) + (1 − t)g̃(x)
)]

=
[

tf̃(x) + (1 − t)g̃(x)
]

div η(x, t)

+
(

t∇f̃(x) + (1 − t)∇g̃(x) , η(x, t)
)

.

Therefore it follows

div (v(ϕ(x, t))) = div (η(ϕ(x, t), t))
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+
(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) , η(ϕ(x, t))
)

. (29)
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Starting from the ODE (9), we have by Abel’s formula

|Jϕ(x, t)| = exp

∫ t

0
tr(Jη(ϕ(x, s), s))ds

= exp

∫ t

0
div η(ϕ(x, s), s)ds (30)

and by differentiation of (30) we obtain

∂

∂t
|Jϕ(x, t)| = |Jϕ(x, t)|divη(ϕ(x, t), t)). (31)

Therefore, we obtain

∂

∂t
H(x, t) =

(

∂

∂t
|Jϕ(x, t)|

)

·
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+|Jϕ(x, t)| ·
[

f̃(ϕ(x, t)) + t

(

(∇f̃)(ϕ(x, t)),
∂

∂t
ϕ(x, t)

)

−g̃(ϕ(x, t)) + (1 − t)

(

(∇g̃)(ϕ(x, t)),
∂

∂t
ϕ(x, t)

)]

(31)
= |Jϕ(x, t)| · div η(ϕ(x, t), t) ·

[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+|Jϕ(x, t)| ·
[

f̃(ϕ(x, t)) − g̃(ϕ(x, t)) +

(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) ,
∂

∂t
ϕ(x, t)

) ]

(9)
= |Jϕ(x, t)| ·

[

div η(ϕ(x, t), t)
[

tf̃(ϕ(x, t)) + (1 − t)g̃(ϕ(x, t))
]

+f̃(ϕ(x, t)) − g̃(ϕ(x, t))

+
(

t∇f̃(ϕ(x, t)) + (1 − t)∇g̃(ϕ(x, t)) , η(ϕ(x, t), t)
)

]

(29)
= |Jϕ(x, t)|

[

div v(ϕ(x, t)) + f̃(ϕ(x, t)) − g̃(ϕ(x, t))
]

(8)
= 0
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