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Abstract. The flowing of powders brings a new challenging and interesting problem to the CFD
community: at very high concentrations and low rate-of-strain, grains are in permanent contact, rolling
on each other. Therefore a frictional stress model must be taken into account. This can be done using
plasticity and similar theories in which the granular material behaviour is assumed to be independent
of the velocity gradient or the rate-of-strain. This is in contrast to viscous Newtonian flow where the
stress specifically depends on the rate-of-strain. Furthermore, unlike fluids, flowing powders do not
exhibit viscosity and, again, this shows that a Newtonian rheology cannot accurately describe granular
flow. It is assumed that the material is incompressible, dry,cohesionless, and perfectly rigid-plastic.
Based on continuum theories, generalized Navier Stokes equations have been derived by replacing the
velocity gradient by the shear rate, and the viscosity depends on pressure and shear rate. Thus the
resulting equation is mathematically more complex than theNavier Stokes equations and is valid only
when the material is deforming. In this note we present numerical algorithms to approximate these
highly nonlinear equations. A Newton linearization technique is applied directly to the corresponding
continuous variational formulations. The approximation of incompressible velocity fields is treated by
using stabilized nonconforming Stokes elements and we use aPressure Schur Complement smoother
as defect correction inside of a direct multigrid approaches to solve the linear saddle-point problems
with high numerical efficiency. The results of several computational experiments for realistic flow
configurations are provided.

PHYSICAL BACKGROUD

1. Mohr-Coulomb criterion for friction

The Mohr theory suggests that the shear stress on a failure reaches some unique function of
normal stress,τ = f(σ), whereτ is the shear stress andσ is the normal stress. This function
can be graphically expressed by the Mohr failure envelope: the tangentof Mohr circles is
shown in Figure1 for differentτ andσ at a failure. The Mohr failure hypothesis states that
the point of tangency of the Mohr failure envelope with the circle at a failuredetermines the
inclination of the failure plane. Coulomb found that there was a stress-independent component
of shear strength and a stress dependent component. He called the latter the internal angle of
friction, φ, and the former seems to be related to the intrinsic cohesion and is denoted by the
symbolc. Then, the Coulomb equation reads

τ = σ tan φ + c (1)
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whereτ is the shear strength of the soil,σ is the applied normal stress, andφ andc are the ma-
terial constants defined as the cohesive strength and the angel of internal friction, respectively;
a material is called non-cohesive ifc = 0. Eq. (1) represents the simple law of friction of two
solids sliding on each other with the shear force proportional to the normal force,η = tanφ
being the friction coefficient.
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Figure 1: Mohr’s circle of stress in(σ, τ)−space and yield for a cohesionless granular material
with an internal friction angleφ

A similar condition also exists at the interface between the granular material andthe walls of
the container: only the angle of internal friction is replaced by the angle of wall friction, φW .
The angle satisfiesφW < φ since the wall is usually less rough than a powder layer; this is
mainly due to the void fraction near the wall.

2. Regimes of powder flow

Analogous to the fluid flow, the powder regimes can be represented as a function of a dimen-
sionless shear rateγo∗ = γo[dp/g]1/2 which contains a gravitational termg and the particle
sizedp, and which plays the similar role as the Reynolds numberRe for fluids (Tardos et al.
[9]). See Fig. 2 for the different regimes.

2.1. Quasi-static regime

This regime is valid when the flow is slow enough that any movement between two static states
can be neglected; then the static equilibrium equation can be applied. With this approach only
stress and condition of the onset of flow can be computed, while no flow fieldcan be predicted
which circumscribes the range of applications of this approach. There are a large number of
analytical and numerical solutions to this case and an important number of literature devoted
to this regime, see for instance [18],[19],[20].
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2.2. Slow and frictional regime

In this regime the frictional forces between particles are predominant, so theinertial effect is
added to the static equations as well as the consideration of the continuity beside a yield condi-
tion. The first model invoking a flow rule was introduced by Schaeffer (1987) [17]. This regime
is very important since it can be used for modeling a wide range of practicalphenomenon and
industrial applications. However, for the serious challenges which arisein this regime, for in-
stance ill-posed partial differential equations and the prediction of stressfluctuations, there is
still a lack of fundamental research so that dealing with these problems requires a multidisci-
plinary treatment. Our contribution has the goal of supporting this part and will be described
in the forthcoming sections.

2.3. Intermediate and rapid granular regimes

For the intermediate regime, additional to inter-particle friction energy, collisional energy is
important, too. For the rapid regime, the short particle-particle contacts are important while
frictional forces are neglected. This regime is often described via kinetic models and will not
be treated in this paper. It was reported here just to have a complete view onthe different
regimes of powder flow (see Figure 2).

Stick-Slip

Regime

Uncertain

Boundary

Slow, Frictional Flow

Regime

(Quasi-Static Regime)

t ¹ f (g°)

0 0.15         0.25 3

t ~ g° n
(n<1) t ~ g°

Intermediate Flow Regime

Increasing Fluctuations of (stress and)

strain rate

Fluid-like behavior

Rapid Granular

Flow Regime

t ~ g°2

Dimensionless Shear Rate, g°
*

= g° [dp/g]
1/2Static

Regime

Figure 2: Regimes of powder flow with dimensionless rateγo∗ (from Tardos [9])
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3. Flow rule: Saint Venant principle

The Saint Venant principle of solid mechanics says that stresses cause deformations prefer-
entially in the same direction. This leads to the co-axiality flow rule condition which states
that the principal directions of the stress and rate deformation are paralleland neglect the rota-
tion of a material element during deformation. In two-dimensional Cartesian coordinates, this
condition takes the form, for example:

Txx − Tyy

Txy
=

2(∂u/∂x − ∂v/∂y)

∂u/∂x + ∂v/∂y
(2)

This was postulated by Schaeffer [17] for the deformation of granular material. However, since
the deformation of the granular material requires that the stresses in different directions must
be different, Schaeffer claimed that”the response of the material to such unequal stresses
should be to contract in the directions of greater stress and to expand in thedirections of
smaller stress”.This reflects the requirement that the eigenvectors of stress tensor and strain
rate are aligned and it quantitatively links the deviatoric stress and the strain rate tensor by the
following formula:

S = λD (3)

4. Rigid perfect plastic

4.1. Plastic deformation

The deformation of a granular material is considered to be plastic in the sensethat, if after
deformation the shearing stress is reduced, the material would not show any tendency to return
to its original state. Plastic deformation was already proposed by E. C. Bingham, in 1922, in
the context of non-Newtonian fluids, and in which the rheological behavior is governed by the
following equation introduced by Oldroyd in modified state:

T = −pI + (
µ0

||D|| + µ)D (4)

4.2. Dilatancy

A simple manifestation of this phenomenon occurs when one leaves dry footprints while walk-
ing along a wet beach: the deformed sand dilates, therefore space between grains increases,
allowing for upper water to invade the sand. As a consequence, footsteps get dry and water
goes down. This is the phenomenon of dilatancy which was explained by Reynolds in 1885,
and demonstrated experimentally: a glass tube attached to a balloon showed thatthe amount of
excess water decreased when the sand was deformed, thus showing that deformation increases
the space between grains. Dilatancy is important in the dynamics of granular material, intro-
ducing a stick-slip instability at low velocity (see [21]), and it occurs because each grain needs
more space in the flowing state than at rest. Then, the flow theory of plasticity must be applied
to the constitutive modelling for describing the deformation process of a granular material.
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CONSTITUTIVE EQUATIONS FOR POWDER FLOW

1. Equation of motion

The powder is assumed to be an incompressible continuum that obeys conservation of mass
and momentum (densityρ, gravityg, velocityu):

Conservation of mass:With the material derivativeD∗
Dt , there holds:

Dρ

Dt
=

∂ρ

∂t
+ ∇ · (ρu) = 0 (5)

Incompressible material: The bulk density,ρ, is a constant, so that

∇ · u = 0. (6)

Equation of motion: With T = S − pI, there holds:

ρ
Du

Dt
= ∇ · T + ρg (7)

2. Constitutive equations

The constitutive equation is devoted to correlate between the deviatoric tensor S and the ve-
locity, through the second invariant of the rate deformationDII = 1

2D : D, where the rate of
deformation is given byD = 1

2(∇u + ∇T u). There are several examples:

Newtonian law: S = 2νoD

Power law: S = 2ν(DII )D, ν(z) = z
r
2
−1, r ≥ 1 (r = 1: Bingham law)

Schaeffer’s law: For a powder, a constitutive equation was first introduced by Schaeffer [17]
which has to obey a

• yield condition:||S|| =
√

2p sinφ,

• flow rule: S = λD with λ ≥ 0.

In fact, the flow rule is based on a yield criterion for granular materials of von Mises type,
which is basically derived from a law of sliding friction applied to the individual particles.
Specifically in terms of the principal stressesσi, this condition is written as

3
∑

i=1

(σi − p)2 ≤ k2p2 with p =
1

3
trT (8)

wherek =
√

2 sinφ is a characteristic constant of the material, andσi are the eigenvectors of
Tij . For a material that deforms plastically, equality must hold in Eq. (8):

3
∑

i=1

(σi − p)2 = k2p2 (9)
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Under plane strainp = 1
2(σ1 + σ2), we may consider a strictly 2D-yield condition:

(σ1 − p)2 + (σ2 − p)2 = 2p2 sin2 φ (10)

A constitutive equation related between stress and strain rate was proposed for slow powder
flow by David Schaeffer [17]. This equation obeys the von Mises yield condition and the flow
rule (3)

T = −pI +
√

2p sinφ
D

||D|| if D 6= 0 (11)

In fact, the flow rule is assumed to have the form

T = −pI + λD (12)

whereλ is a coefficient. To satisfy the yield condition of flow rule (3) in terms of von Mises,
i.e. ||S|| =

√
2p sinφ, then there must hold:

λ =

√
2p sinφ

||D|| (13)

We use this correlation to obtain finally the constitutive equationT = −pI +
√

2p sinφ D

ǫ+||D|| ,
whereǫ is a typical (small) regularization parameter.

3. Generalized Navier-Stokes equations

The derived problem formulation can be stated in the framework of the generalized incom-
pressible Navier-Stokes equations (we setρ = 1):

Du

Dt
= −∇p + ∇ · (ν(p, DII )D) + g, ∇ · u = 0 (14)

If we define the nonlinear pseudo viscosityν(·, ·) as a function of the second invariant of the
rate deformationDII and the ’pressure’p, we can show that various materials can be ranged
within different viscosity laws including powder:

• Power law defined forν(z, p) = νoz
r
2
−1

• Bingham law defined forν(z, p) = νoz
− 1

2

• Schaeffer’s law (including the ’pressure’) defined forν(z, p) =
√

2 sinφ pz−
1

2

A comparison of this equation with the Navier-Stokes equations reveals that the ordinary vis-
cous terms, proportional to the viscosity and the velocity gradient, have been replaced by shear-
rate independent terms which is quite remarkable, since it implies that an overall increase in the
velocity leaves the stress unchanged. This also means that these equationsare mathematically
more complex than the Navier-Stokes equations and apply only when the material is deform-
ing, for instance for granular flows in hoppers; these equations are only valid for the mass flow
where the material is flowing throughout the hopper.
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3.1. Mathematical challenges

The main mathematical problems of the incompressible powder model (see Eq. (14)) can be
summarized in the following aspects:

• Mathematical analysis: There is a lack of research concerning the existence and reg-
ularity of solutions for the flow of such fluids except for special cases (see for instance
[5, 8]); furthermore the dynamic equations (14) show some instabilities (seeSchaeffer in
[16, 17]).

• Singular viscosity: The extra part,
√

2p sin φ D

||D|| , of the stress tensorT is well defined
only for non zero values of the rate of strain tensor and for positive pressure. There-
fore, some stabilization techniques of singular phenomena due to nonlinear viscosity are
required. For the pressure, one may think about using a positive viscosity function in
the pressure variable, described byexp(βp), and a small regularisation parameterǫ, that
means p

ǫ+||D|| or exp(βp)
ǫ+||D|| .

• Discretization method: It is well known that the computation of solutions to such in-
compressible systems requires that special care is taken in the choice of theapproxi-
mating spaces in order to make the discrete problem well posed (LBB-condition, for
instance). Moreover, since a large number of FEM spaces satisfying theabove condition
are nonconforming, which however present a locking phenomenon forproblems involv-
ing the rate of deformation tensor (‘Korn’s inequality’), some consistent stabilization
term is required.

• Nonlinear solver: For this highly nonlinear problem coupling the pressure and velocity
even in the viscous term, there is almost no alternative to Newton techniques for treating
such nonlinear viscosities.

• Linear multigrid solver: Efficient multigrid methods for saddle-point problems are
required which however are nonsymmetric due to the Newton linearization andwhich
contain a variable viscosity function.

Some of the above points will be discussed in the next sections; for more details see [13].

ILL POSEDNESS OF THE INCOMPRESSIBLE GRANULAR FLOW
EQUATIONS BASED ON THE SCHAEFFER MODEL

The material in this section is originally given by Schaeffer [17]. We report here in a compact
form the analysis of instabilities concerning general properties of the partial equations analo-
gous to the classification of equations into elliptic, hyperbolic and parabolic. The test for linear
instability was performed using the mode analysis and looking for an eigenvalue with a positive
real part for a solution with exponential dependence:

ei(ξ,x)+λ(ξ)t (15)
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Stokes equation: For a guidance of analysis, let us consider the linearized equations of Stokes
equations:







−µ|ξ|2I ξ

ξT 0











u

p



 = λ





u

0



 (16)

The eigenvalueλ is then obtained as

λ = −µ|ξ|2

which means that the Stokes equations are linearly well-posed.

Granular case: In contrast the linearized equations of motion of the granular case lead to the
generalized eigenvalue problem [17]







− k
||D||

[

|ξ|2

2 I + (Aξ)(Aξ)T
]

(I + kA)ξ

ξT 0











u

p



 = λ





u

0



 (17)

whereA = D/ ||D|| andk =
√

2 sinφ. Similarly computingλ as before, one obtains:

λ = −
√

2 sinφ

||D||

[

(Aξ, ξ)2 − 1
2 |ξ|2(Aξ, ξ)

|ξ|2 +
√

2 sin φ(Aξ, ξ)

]

(18)

The presence of the factor(Aξ, ξ) leads to an indefinite quadratic form in the numerator since
trA = 0 and trA2 = 1, so that one can conclude that the two-dimensional granular flow
equations are linearly ill posed (see [17] for more details).

FEM TECHNIQUES FOR THE NUMERICAL SIMULATIONS

The range of practical real world problems which involve granular materials is growing, and
since the considered problems become more complex and experimentally more expensive, one
is particularly interested in the development of new and more powerful computational methods
for solving these problems numerically.

1. Problem formulation

Let us consider the flow of the stationary generalized Navier-Stokes problem in (14) in a
bounded domainΩ ⊂ R

2. If we restrict the setV of test functions to be divergence-free
and if we take the constitutive laws into account, the above equations from (14) lead to:
∫

Ω
2ν(DII (u), p)D(u) : D(v) dx +

∫

Ω
(u · ∇u)v dx =

∫

Ω
fv dx, ∀v ∈ V (19)

It is straightforward to penalize the constraintdiv v = 0 to derive the equivalent mixed formu-
lation of (19):
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Find (u, p) ∈ X × M (with spacesX = H1
0 (Ω) andM = L2(Ω)) so that:

∫

Ω
2ν(DII (u), p)D(u) : D(v) dx +

∫

Ω
(u · ∇u)v dx +

∫

Ω
p div v dx

=

∫

Ω
fv dx, ∀v ∈ X

∫

Ω
q div u dx = 0, ∀q ∈ M

(20)

2. Finite element method discretization

We consider a subdivisionT ∈ Th consisting of quadrilaterals in the domainΩh ⊂ R
2, and we

employ the nonconforming rotated bilinearRannacher-Turek element [7]. For any quadrilateral
T , let (ξ, η) denote a local coordinate system obtained by joining the midpoints of the opposing
faces ofT . Then, in thenonparametric case, we set on each elementT

Q̃1(T ) := span
{

1, ξ, η, ξ2 − η2
}

. (21)

The degrees of freedom are determined by the nodal functionals{F (a,b)
Γ (·), Γ ⊂ ∂Th},

F a
Γ := |Γ|−1

∫

Γ
vdγ or F b

Γ := v(mΓ) (mΓ midpoint of edgeΓ) (22)

such that the finite element space can be written as

W a,b
h := {v ∈ L2(Ωh), v ∈ Q̃1(T ),∀T ∈ Th, v continuous w.r.t. all

nodal functionalsF a,b
Γi,j

(·), andF a,b
Γi0

(v) = 0,∀Γi0}.
(23)

Here,Γi,j denote all inner edges sharing the two elementsi andj, whileΓi0 denote the bound-
ary edges of∂Ωh. In this paper, we always employ version ’a’ with the integral mean values
as degrees of freedom. Then, the corresponding discrete functions will be approximated in the
spaces

Vh := W a
h × W a

h , Lh :=
{

qh ∈ L2(Ω), qh|T = const.,∀T ∈ Th

}

. (24)

Due to the nonconformity of the discrete velocities, the classical discrete ’Korn’s Inequality’
is not satisfied which is important for problems involving the symmetric part of thegradient
[6]. Therefore, appropriate edge-oriented stabilization techniques (see [2, 3, 12, 15]) have to
be included which directly treat the jump across the inter-elementary boundaries via adding the
following bilinear form

∑

edgesE

1

|E|

∫

E
[φi][φj ]dσ (25)

for all basis functionsφi andφj of Vh. Taking into account an additional relaxation parameter
s = s(ν), the corresponding stiffness matrixS is defined via:

〈Su, v〉 = s
∑

E∈EI∪ED

1

|E|

∫

E
[u][v]dσ (26)
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Here, the jump of a functionu on an edge E is given by

[u] =











u+ · n+ + u− · n− on internal edgesEI ,

u · n on Dirichlet boundary edgesED,

0 on Neumann boundary edgesEN ,

(27)

wheren is the outward normal to the edge and(·)+ and(·)− indicate the value of the generic
quantity(·) on the two elements sharing the same edge.

3. Nonlinear solver: Newton iteration

In this approach, the nonlinearity is first handled on the continuous level. Let ul be the initial
state, then the (continuous) Newton method consists of findingu ∈ V such that

∫

Ω
2ν(DII (u

l), pl)D(u) : D(v)dx

+

∫

Ω
2∂1ν(DII (u

l), pl)[D(ul) : D(u)][D(ul) : D(v)]dx

+

∫

Ω
2∂2ν(DII (u

l), pl)[D(ul) : D(v)]pdx

=

∫

Ω
fv −

∫

Ω
2ν(DII (u

l), pl)D(ul) : D(v)dx, ∀v ∈ V (28)

where∂iν(·, ·), i = 1, 2, is the partial derivative ofν related to the first and second variables,
respectively; for more details see [13, 14].

4. New linear auxiliary problem

The resulting auxiliary subproblems in each Newton step consist of finding(u, p) ∈ X × M
as solutions of the linear (discretized) systems

{

A(ul, pl)u + δdA
∗(ul, pl)u + Bp + δpB

∗(ul, pl)p = Ru(ul, pl),
BT u = Rp(u

l, pl),
(29)

whereRu(·, ·) andRp(·, ·) denote the corresponding nonlinear residual terms for the momen-
tum and continuity equations, and the operatorsA(ul, pl), B, A∗(ul, pl) andB∗(ul, pl) are
defined as follows:

〈A(ul, pl)u, v〉 =

∫

Ω
2ν(DII (u), p)D(u) : D(v) dx (30)

〈Bp,v〉 =

∫

Ω
p∇ · v dx (31)

〈A∗(ul, pl)u, v〉 =

∫

Ω
2∂1ν(DII (u

l), pl)[D(ul) : D(u)][D(ul) : D(v)] dx (32)

〈B∗(ul, pl)v, p〉 =

∫

Ω
2∂2ν(DII (u

l), pl)[D(ul) : D(v)]p dx (33)

10



Some remarks:The full Newton method is performed forδd = 1 andδp = 1, while the fixed
point method corresponds toδd = 0 andδp = 0. Forδd 6= 0, the linear problem behaves similar
as the classical saddle point problem for power law models, that means with variable viscosity,
while for δp 6= 0 we obtain a new type of problem, involving the nonsymmetric pressure matrix
B∗; for more details, see [14, 13, 4].

5. Linear solver

This section is devoted to give a brief description of the involved solution techniques for the
resulting linear systems. For the nonconforming Stokes elementQ̃1/Q0, a ‘local pressure
Schur complement’ preconditioner (see [11]) as generalization of so-called ‘Vanka smoothers’
is constructed on patchesΩi which are ensembles of one or several mesh cells, and this local
preconditioner is embedded as global smoother into an outer block Jacobi/Gauss-Seidel iter-
ation which acts directly on the coupled systems of generalized Stokes, resp., Oseen type as
described in [12]. If we denote bỹRu andR̃p the discrete residuals for the momentum and
continuity equation which include the complete stabilisation term due to the modified bilinear
form S in (26), one smoothing step in defect-correction notation can be describedas

[

ul+1

pl+1

]

=

[

ul

pl

]

+ ωl
∑

i

(

F + S∗
|Ωi

B̃ + δpB̃
∗
|Ωi

B̃T
|Ωi

0

)−1
[

R̃u(ul, pl)

R̃p(u
l, pl)

]

(34)

with matrixF = Ã+δdÃ
∗ andÃ, B̃, Ã∗ andB̃∗ are the discrete matrices corresponding to the

operators in (30), (31), (32) and (33). For the preconditioning step only a part of the matrix, i.e.
F+S∗, is involved such that the original FEM data structure is preserved. All other components
in the multigrid approach, that means intergrid transfer, coarse grid correction and coarse grid
solver, are the standard ones and are based on the underlying hierarchical mesh hierarchy and
the properties of the nonconforming finite elements (see [11] and [12] forthe details).

NUMERICAL SIMULATIONS

The purpose of this section is to show that our numerical approaches based on FEM tech-
niques are well suited to address the illustrated type of nonlinear powder problems and leads to
comparative results with related experiments. Therefore, we consider thefollowing two con-
figurations, namely powder flow in a couette device with an obstacle and granular flow in a
hopper.

1. Boundary condition

The boundary conditions in any incompressible fluid simulation are expressed either in terms
of the fluid velocity or the pressure at the boundary, but generaly both of them cannot be used
at the same boundary since the velocities are influenced by pressure gradient (see [22]). For
the Navier Stokes equations with Dirichlet velocity data, the pressure is unique up to a constant
which however can be chosen arbitrarily. In contrast, for the flow of thegeneralized Navier
Stokes equations with pressure dependent viscosity, the choice of fixingthe pressure cannot be
done by random choice (see Table1).
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1.1. Wall boundary conditions

The fundamental assumption in fluid mechanics for flow past solids is a ”no-slip” boundary
condition, which means that is the tangential component of the fluid velocity equals of the
solid at the surface. This well-accepted no-slip boundary condition may not be suitable for
highly sheared flow, but the error due to the ”no-slip” assumption is relatively small in big
systems or if we are more interested in the flow far away from the wall. An alternative and
more suitable condition is to apply slip with friction parameterβ:

v · τ + β−1n · (2ν(DII , p)D(v) − pI) · τ = 0 on Γwall (35)

Moreover, the closing of the equations is required, because the related Dirichlet problem of
Navier Stokes equations is well known to possess no unique pressure solution due to the con-
traint div v = 0. The uniquess is assured by fixing the pressure with the choice of mean
pressure to be zero which however cannot be taken for the flow with pressure dependent vis-
cosity, namely the Schaeffer law, since it leads to negative values of the pressure in some parts
of the computational domain. The first remedy is to make the choice of mean pressure positive
to assure a positive pressure in all regions of the computational domain. However, the question
arises of the physical meaning of any choice for the mean pressure to getthe closure of the
equations with Dirichlet boundary condition since the mean pressure is partof the viscosity
and, therefore, influences significantly the global flow behaviour.

1.2. Inflow and Outflow boundary conditions

Numerical simulations of flow problems usually require the flow out of one or more boundary
parts of the computational domain. At such ”outflow” boundaries there arises the question of
what constitutes a good boundary condition. The simplest and most commonly used outflow
condition is that of a ”natural” boundary, see [22] for an overview:

2ν(DII , p)n · D(v) − pn = 0 on Γout (36)

This boundary condition represents a smooth continuation of the flow through the boundary
and occurs in the variational formulation of problem if one does not prescribe any boundary
condition for the velocity at the outlet, known in the literature by the name ”natural” or ”do
nothing” boundary condition. It must be stressed that the ”do nothing” outflow boundary con-
dition has no physical basis, rather it is a mathematical statement that may or may not provide
the desired flow behavior. Particularly, ”do nothing” boundary conditions have proven to lead
to very satisfactory results in modeling parallel flows, see e.g., Turek [11,23], but they must
always be viewed with suspicion since they contain the hidden condition that the mean pressure
is zero across the outflow boundary. In particular, the condition of mean pressure to be zero
across the outflow leads to negative values of the pressure, which causes problems for the nu-
merical simulation of flow with pressure dependent viscosity, namely the Schaeffer model. As
a natural remedy for this situation, one may consider a condition in which the mean pressure
across the outflow coincides with the atmospheric pressure, that meanspatm > 0:

2ν(DII , p)n · D(v) − pn = patmn on Γout (37)

The above examples suggest that the ability to specify a pressure conditionat one or more parts
of the computational domain is an important aspect. This can be done in terms ofprescribed
pressure drops with corresponding variational formulations of very general type [22].
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2. Drag force in powder flow

As we described before, granular materials can flow like fluids and resistthe motion of objects
moving through them. Since this retarding force, known as drag force, is easily measured
experimentally for a granular medium in a couette device with an immersed cylinder[1], for
this reason we choose this configuration for our computation: Although oursimulation is only
in 2D, a lot of characteristics of granular flow can be examined numerically.
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Figure 3: The dependence of drag force with grain velocity in a couette flow around a cylinder
for different material laws and for different cylinder diameter

As expected, the drag force for Schaeffer and Bingham flow acting onthe cylinder is indepen-
dent of the grain velocity, contrary to the (newtonian) Stokes flow.

”When mechanical ploughs replaced draught animals, it was observed that ploughing at
greater speeds does not require greater forces!”(Schaeffer 1987)

In Table 1, we show this behaviour more in detail: Here, we perform tests for various pre-
scribed mean pressure values to obtain a unique solution, and for several rotational speeds. As
explained before, the Stokes and Bingham model lead to drag forces which are independent
of the given mean pressure while the Schaeffer model shows the expected dependence since
the pressure is part of the viscous term. However, this observation is onlytrue for low speed.
Therefore, we increase continuously the velocity grain and plot the behaviour of the drag force
for the Schaeffer model. In Figure 4 we distinguish between three regimes for the Schaeffer
model with convection: The first one with slow velocity grain in which the drag force remains
constant with increasing speed, the second with intermediate velocity grain, here the drag force
shows an exponential increase with the velocity grain and the third one with higher velocity
grain in which the drag force shows a linear increase with the velocity grain.In contrast, if
we totally neglect the convection term the drag force remains constant with anabsolute value
which is independent of the velocity grain.

3. Granular flow in a hopper

Flow of granular material in hoppers under gravity is quite complex and experimental ap-
proaches show limitations in understanding some phenomena for this type of geometry. Our
investigation is to understand some typical phenomena related to granular material, namely
oscillating phenomena and instabilities, as for instance shear banding instabilities.
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Figure 4: The dependence of the drag force from the velocity grain forthe Schaeffer model
with (‘con’) and without (‘dif’) convection

pressure 0.5 1 5 10 100

Speed Stokes law without convection
0.01 0.12575D+01 0.12575D+01 0.12575D+01 0.12575D+01 0.12575D+01
0.05 0.62877D+01 0.62877D+01 0.62877D+01 0.62877D+01 0.62877D+01
0.1 0.12575D+02 0.12575D+02 0.12575D+02 0.12575D+02 0.12575D+02
0.2 0.25151D+02 0.25151D+02 0.25151D+02 0.25151D+02 0.25151D+02
0.4 0.50302D+02 0.50302D+02 0.50302D+02 0.50302D+02 0.50302D+02
0.5 0.62877D+02 0.62877D+02 0.62877D+02 0.62877D+02 0.62877D+02

Speed Bingham law without convection
0.01 0.35828D+01 0.35828D+01 0.35828D+01 0.35828D+01 0.35828D+01
0.05 0.38137D+01 0.38137D+01 0.38137D+01 0.38137D+01 0.38137D+01
0.1 0.38222D+01 0.38222D+01 0.38222D+01 0.38222D+01 0.38222D+01
0.2 0.38252D+01 0.38252D+01 0.38252D+01 0.38252D+01 0.38252D+01
0.4 0.38264D+01 0.38264D+01 0.38264D+01 0.38264D+01 0.38264D+01
0.5 0.38265D+01 0.38265D+01 0.38265D+01 0.38265D+01 0.38265D+01

Speed Schaeffer law without convection
0.01 0.44745D+00 0.89491D+00 0.44746D+01 0.89492D+01 0.89492D+02
0.05 0.50419D+00 0.10084D+01 0.50419D+01 0.10084D+02 0.10084D+03
0.1 0.50629D+00 0.10126D+01 0.50628D+01 0.10126D+02 0.10126D+03
0.2 0.50756D+00 0.10151D+01 0.50755D+01 0.10151D+02 0.10151D+03
0.4 0.50836D+00 0.10167D+01 0.50835D+01 0.10167D+02 0.10167D+03
0.5 0.50849D+00 0.10170D+01 0.50849D+01 0.10170D+02 0.10170D+03

Table 1: The dependence of the drag force from various rotational velocities at different mean
pressure values
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Figure 5:Schaeffer law:The plot of the pressure, the pseudo viscosity, the first and the fourth
component of the stress at t=0.03s

Figure 6:Bingham law: The plot of the pressure, the pseudo viscosity, the first and the fourth
component of the stress at t=0.03s

For the Schaeffer model, Figure 5 shows that the flow is significantly influenced by the pressure
in the material law, in contrast to the Bingham model (see Figure 6) which is independent of
it. To go deeper in understanding the instability phenomena we plot for different times the
average stress for both models in Figure 7 and Figure 8. These instabilities may be explained
by the stability analysis of Schaeffer [16] who shows the previously illustrated ill-posedness
of the problem. However, since we observe that these instabilities arise from the artificial
inflow/outflow regions, the influence of the applied boundary conditions is not clear yet. Since
the inflow and outflow boundary condition supplied to the hopper do not have any physical
meaning, they could be the source of the appearance of the oscilations, too. So, we recently
examine a new silo geometry with a long bin on the bottom and the top of the hopper to
diminish the influence of the boundary consitions onto the flow behaviour in theconstriction.

Figure 7:Schaeffer law:Snapshots of the average stress at t=0.0s, 0.012s, 0.03s and 0.06s
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Figure 8:Bingham law: Snapshots of the average stress at t=0.0s, 0.012s, 0.03s and 0.06s

SUMMARY

Our conclusion is that finite element methods together with special material laws are use-
ful tools for the numerical simulation of incompressible granular powder, since the complete
structure of the flow is involved, i.e. the velocity, the pressure as well as thestress. Although
our computer simulation is only two-dimensional it can confirm well-known physical behav-
ior, namely the independence of the drag force from the velocity grain andthe propagation of a
pressure wave in the hopper which may lead to a shear banding instability. Atfirst glance, the
shear banding phenomenon gives the impression to be treated mathematically asa discontinu-
ity, but this would cause severe problems for numerical algorithms. On the other hand, shear
bands might not be a true physical discontinuity, rather than a change in theinvolved physical
system which could be captured with a compressible model.

Furthermore, the proposed incompressible model for granular and powder flow presents some
other disadvantages, like for instance the wrong prediction of the flow ratethrough a sym-
metric silo by more than a factor of 4 in comparison with experiments. This gives another
motivation to proceed toward compressible granular materials which can be specified via the
yield conditionq(p, ρ) given in Table 2 (see [9] for the details).

Powder properties Non-cohesive Cohesive
Incompressible p sinφ p sinφ + c cos φ

Compressible p sinφ

[

2 − p

ρ
1

β

]

p sinφρ
1

β − C (p−ρ
1

β )2

ρ
1

β

Table 2: Yield condition for incompressible and compressible powder (0.001 < β < 0.01)

Then, the flow can be described by a generalized compressible Navier-Stokes-like equation
(38) where a mass conservation equation (39) must hold. However, this isnot enough because
the densityρ is now a dependent variable, rather than a constant in an incompressible fluid:

ρ
Du

Dt
= −∇p + ∇ ·

[

q(p, ρ)
∣

∣

∣

∣D − 1
n∇ · uI

∣

∣

∣

∣

(

D − 1

n
∇ · uI

)

]

+ ρg n = 2, 3 (38)

∂ρ

∂t
+ ∇ · (ρu) = 0 (39)
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In order to complete the system, an additional equation is required in the form of the so-called
normality condition:

∇ · u =
∂q(p, ρ)

∂p

∣

∣

∣

∣

∣

∣

∣

∣

D − 1

n
∇ · uI

∣

∣

∣

∣

∣

∣

∣

∣

(40)

Since the presented mathematical and computational methodology in this paper can be nat-
urally extended to these compressible granular and powder flow models, our next step is to
present the corresponding results and comparisons in forthcoming papers.
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