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Abstract. The flowing of powders brings a new challenging and intengsproblem to the CFD
community: at very high concentrations and low rate-ofistrgrains are in permanent contact, rolling
on each other. Therefore a frictional stress model musthentato account. This can be done using
plasticity and similar theories in which the granular miaelbehaviour is assumed to be independent
of the velocity gradient or the rate-of-strain. This is imtast to viscous Newtonian flow where the
stress specifically depends on the rate-of-strain. Furtbe, unlike fluids, flowing powders do not
exhibit viscosity and, again, this shows that a Newtoniaolbgy cannot accurately describe granular
flow. It is assumed that the material is incompressible, dojesionless, and perfectly rigid-plastic.
Based on continuum theories, generalized Navier Stokestieqs have been derived by replacing the
velocity gradient by the shear rate, and the viscosity dépem pressure and shear rate. Thus the
resulting equation is mathematically more complex than\heier Stokes equations and is valid only
when the material is deforming. In this note we present nigakalgorithms to approximate these
highly nonlinear equations. A Newton linearization tecjug is applied directly to the corresponding
continuous variational formulations. The approximatiéinaompressible velocity fields is treated by
using stabilized nonconforming Stokes elements and we essure Schur Complement smoother
as defect correction inside of a direct multigrid approacteesolve the linear saddle-point problems
with high numerical efficiency. The results of several comafional experiments for realistic flow
configurations are provided.

PHYSICAL BACKGROUD

1. Mohr-Coulomb criterion for friction

The Mohr theory suggests that the shear stress on a failure reachesus@mue function of
normal stressr = f(o), wherer is the shear stress andis the normal stress. This function
can be graphically expressed by the Mohr failure envelope: the tamfaviohr circles is
shown in Figurel for different ando at a failure. The Mohr failure hypothesis states that
the point of tangency of the Mohr failure envelope with the circle at a faiflétermines the
inclination of the failure plane. Coulomb found that there was a stress-endent component

of shear strength and a stress dependent component. He called the é&attéerthal angle of
friction, ¢, and the former seems to be related to the intrinsic cohesion and is denoteal by th
symbolc. Then, the Coulomb equation reads

T=octan¢ +c Q)



wherer is the shear strength of the sailjs the applied normal stress, an@ndc are the ma-
terial constants defined as the cohesive strength and the angel o&lriteation, respectively;

a material is called non-cohesivecit= 0. Eq. (1) represents the simple law of friction of two
solids sliding on each other with the shear force proportional to the noora,f; = tan ¢
being the friction coefficient.
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Figure 1: Mohr’s circle of stress ifv, 7) —space and yield for a cohesionless granular material
with an internal friction angle

A similar condition also exists at the interface between the granular materigdhandalls of

the container: only the angle of internal friction is replaced by the angleatiffriction, ¢y .

The angle satisfiegyy < ¢ since the wall is usually less rough than a powder layer; this is
mainly due to the void fraction near the wall.

2. Regimes of powder flow

Analogous to the fluid flow, the powder regimes can be represented astifuof a dimen-
sionless shear ratg”* = ~°[d,/g]'/? which contains a gravitational tergpand the particle
sized,, and which plays the similar role as the Reynolds numiefor fluids (Tardos et al.
[9]). See Fig. 2 for the different regimes.

2.1. Quasi-static regime

This regime is valid when the flow is slow enough that any movement betweenatiostates
can be neglected; then the static equilibrium equation can be applied. With pinésaah only

stress and condition of the onset of flow can be computed, while no flonctglde predicted
which circumscribes the range of applications of this approach. Thera Erge number of
analytical and numerical solutions to this case and an important number ofuiteevoted

to this regime, see for instance [18],[19],[20].



2.2. Slow and frictional regime

In this regime the frictional forces between particles are predominant, sodh@l effect is
added to the static equations as well as the consideration of the continuitg baseld condi-
tion. The first model invoking a flow rule was introduced by Schaeff@8{} [17]. This regime
is very important since it can be used for modeling a wide range of praptieslomenon and
industrial applications. However, for the serious challenges which mriges regime, for in-
stance ill-posed partial differential equations and the prediction of dltegsations, there is
still a lack of fundamental research so that dealing with these problemseggumultidisci-
plinary treatment. Our contribution has the goal of supporting this part d@hdewescribed
in the forthcoming sections.

2.3. Intermediate and rapid granular regimes

For the intermediate regime, additional to inter-particle friction energy, colbgienergy is
important, too. For the rapid regime, the short particle-particle contacts actamp while
frictional forces are neglected. This regime is often described via kinetitelm@nd will not
be treated in this paper. It was reported here just to have a complete vidve atifferent
regimes of powder flow (see Figure 2).
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Figure 2: Regimes of powder flow with dimensionless rgte(from Tardos [9])



3. Flow rule: Saint Venant principle

The Saint Venant principle of solid mechanics says that stresses cefmsmdtions prefer-
entially in the same direction. This leads to the co-axiality flow rule condition whiates

that the principal directions of the stress and rate deformation are pamdelieglect the rota-
tion of a material element during deformation. In two-dimensional Cartesiaric@tes, this

condition takes the form, for example:

Tee — Ty,  2(0u/0x — Ov/0y)
T.,,  Ou/dx+0v/dy

(2)

This was postulated by Schaeffer [17] for the deformation of granuléenah However, since
the deformation of the granular material requires that the stresses iredifféirections must
be different, Schaeffer claimed thdahe response of the material to such unequal stresses
should be to contract in the directions of greater stress and to expand indirections of
smaller stress”. This reflects the requirement that the eigenvectors of stress tensotraind s
rate are aligned and it quantitatively links the deviatoric stress and the sitaitensor by the
following formula:

S=)D (3)

4. Rigid perfect plastic
4.1. Plastic deformation

The deformation of a granular material is considered to be plastic in the Heatsef after
deformation the shearing stress is reduced, the material would not slyaeratlency to return
to its original state. Plastic deformation was already proposed by E. C. &mgin 1922, in
the context of non-Newtonian fluids, and in which the rheological beh&vigoverned by the
following equation introduced by Oldroyd in modified state:

Ho

T:—pI—G—(m—Fu)D (4)

4.2. Dilatancy

A simple manifestation of this phenomenon occurs when one leaves dryifastwhile walk-
ing along a wet beach: the deformed sand dilates, therefore spacesheajvains increases,
allowing for upper water to invade the sand. As a consequence, foptgatmry and water
goes down. This is the phenomenon of dilatancy which was explained hyoRksyin 1885,
and demonstrated experimentally: a glass tube attached to a balloon shovibd #rabunt of
excess water decreased when the sand was deformed, thus showahefdh@ation increases
the space between grains. Dilatancy is important in the dynamics of granuiarahantro-
ducing a stick-slip instability at low velocity (see [21]), and it occurs beeaach grain needs
more space in the flowing state than at rest. Then, the flow theory of plasticéyba@pplied
to the constitutive modelling for describing the deformation process of allgnamaterial.



CONSTITUTIVE EQUATIONS FOR POWDER FLOW

1. Equation of motion

The powder is assumed to be an incompressible continuum that obeysvatioseof mass
and momentum (densify, gravity g, velocity u):

Conservation of mass:With the material derivativ%, there holds:

Dp  0p B

Incompressible material: The bulk densityp, is a constant, so that

V-u=0. (6)

Equation of motion: With T = S — pl, there holds:

Du

i VAR | 7
Py V-T+pg (7)

2. Constitutive equations

The constitutive equation is devoted to correlate between the deviatoric ®sw the ve-
locity, through the second invariant of the rate deformatign= %D : D, where the rate of
deformation is given bp = 1(Vu + V7). There are several examples:

Newtonian law: S = 2y,D
Power law: S = 2v(Dy)D, wv(z)=z2"', r>1 (r=1: Bingham law)

Schaeffer’s law: For a powder, a constitutive equation was first introduced by Schid&ifg
which has to obey a

e yield condition:||S| = v/2psin ¢,
e flowrule:S =D with A > 0.

In fact, the flow rule is based on a yield criterion for granular materials of Mises type,
which is basically derived from a law of sliding friction applied to the individparticles.
Specifically in terms of the principal stressesthis condition is written as

3

. 1
Z(O‘i —p)? <E*p? with p= 3 tr T (8)
i=1

wherek = \/2sin ¢ is a characteristic constant of the material, apdre the eigenvectors of
T,;. For a material that deforms plastically, equality must hold in Eq. (8):

> (oi —p)? = k*p’ (9)



Under plane straip = %(01 + 032), we may consider a strictly 2D-yield condition:
(01— p)* + (02 — p)* = 2p*sin” ¢ (10)

A constitutive equation related between stress and strain rate was pidpostow powder
flow by David Schaeffer [17]. This equation obeys the von Mises yietdlitton and the flow
rule (3)

D )
T=—pl+V2p sin¢m if D+#0 (11)
In fact, the flow rule is assumed to have the form
T=-pIl+)D (12)

where) is a coefficient. To satisfy the yield condition of flow rule (3) in terms of voneédis
i.e. |S| = v/2psin ¢, then there must hold:

V2psin ¢
A= ——— (13)
ID]
We use this correlation to obtain finally the constitutive equalioa —pI + v/2psin qsﬁ,
wheree is a typical (small) regularization parameter.

3. Generalized Navier-Stokes equations

The derived problem formulation can be stated in the framework of thergieresl incom-
pressible Navier-Stokes equations (weset 1):

Du

Ez—Vp+V'(l/(p,D")D)+g, Vou=0 (14)
If we define the nonlinear pseudo viscosity, -) as a function of the second invariant of the
rate deformationD; and the 'pressure), we can show that various materials can be ranged

within different viscosity laws including powder:

e Power law defined for(z, p) = voz2 7"

(NI

e Bingham law defined for(z, p) = vz~

_1
2

e Schaeffer’s law (including the 'pressure’) defined f@k, p) = v/2sin ¢ pz

A comparison of this equation with the Navier-Stokes equations reveals thatdimary vis-
cous terms, proportional to the viscosity and the velocity gradient, haverbpkaced by shear-
rate independent terms which is quite remarkable, since it implies that arl averease in the
velocity leaves the stress unchanged. This also means that these ecaisior@hematically
more complex than the Navier-Stokes equations and apply only when the miatdgéorm-
ing, for instance for granular flows in hoppers; these equations &ealid for the mass flow
where the material is flowing throughout the hopper.



3.1. Mathematical challenges

The main mathematical problems of the incompressible powder model (seedffgcdh be
summarized in the following aspects:

e Mathematical analysis: There is a lack of research concerning the existence and reg-
ularity of solutions for the flow of such fluids except for special cases for instance
[5, 8)]); furthermore the dynamic equations (14) show some instabilitiesS(&egeffer in
[16, 17]).

e Singular viscosity: The extra party/2p sin qﬁﬁ, of the stress tensdr is well defined
only for non zero values of the rate of strain tensor and for positivespre. There-
fore, some stabilization techniques of singular phenomena due to nonlineasity are
required. For the pressure, one may think about using a positive iiséasction in
the pressure variable, describeddsy(Sp), and a small regularisation parametethat

means—_2 rexp(ﬁp)_
€anS oy O o]

e Discretization method: It is well known that the computation of solutions to such in-
compressible systems requires that special care is taken in the choice agfptioi-
mating spaces in order to make the discrete problem well posed (LBB-canditio
instance). Moreover, since a large number of FEM spaces satisfyirdptve condition
are nonconforming, which however present a locking phenomengrdbiems involv-
ing the rate of deformation tensor (‘Korn’s inequality’), some consisteattikzation
term is required.

e Nonlinear solver: For this highly nonlinear problem coupling the pressure and velocity
even in the viscous term, there is almost no alternative to Newton techniquesdiing
such nonlinear viscosities.

e Linear multigrid solver: Efficient multigrid methods for saddle-point problems are
required which however are nonsymmetric due to the Newton linearizationvhiath
contain a variable viscosity function.

Some of the above points will be discussed in the next sections; for moiiks det [13].

ILL POSEDNESS OF THE INCOMPRESSIBLE GRANULAR FLOW
EQUATIONS BASED ON THE SCHAEFFER MODEL

The material in this section is originally given by Schaeffer [17]. We repere in a compact
form the analysis of instabilities concerning general properties of th@apagquations analo-
gous to the classification of equations into elliptic, hyperbolic and parabdiietdst for linear
instability was performed using the mode analysis and looking for an eigenwétlu a positive

real part for a solution with exponential dependence:

HET)FAE)E (15)



Stokes equation: For a guidance of analysis, let us consider the linearized equationskefsSto

equations:
—plePr ¢ u u
= (16)
ST 0 P 0

The eigenvalua is then obtained as

A= —pulé?

which means that the Stokes equations are linearly well-posed.

Granular case: In contrast the linearized equations of motion of the granular case lead to the
generalized eigenvalue problem [17]

—ﬁ @IHAO(A&)T (I +kA)E u w
= 17
- )0 0G) e

whereA = D/ |D| andk = v/2sin ¢. Similarly computing) as before, one obtains:

V/2sin ¢
IDI

(Aéu §)2 - %|€’2<A§7 5)

A= —
€7 + V2 sin (A€, €)

(18)

The presence of the factoAg, €) leads to an indefinite quadratic form in the numerator since
trA = 0 andtr A2 = 1, so that one can conclude that the two-dimensional granular flow
equations are linearly ill posed (see [17] for more details).

FEM TECHNIQUES FOR THE NUMERICAL SIMULATIONS

The range of practical real world problems which involve granular maseigagrowing, and
since the considered problems become more complex and experimentally rpensieg, one
is particularly interested in the development of new and more powerful ctatipual methods
for solving these problems numerically.

1. Problem formulation

Let us consider the flow of the stationary generalized Navier-Stokdslgonoin (14) in a
bounded domaif2 ¢ R2. If we restrict the sel/ of test functions to be divergence-free
and if we take the constitutive laws into account, the above equations fegne@d to:

/QQV(D" (u),p)D(u) : D(v)dz +/

(u-Vu)vdr = / fvdx, YveV  (19)
Q Q

It is straightforward to penalize the constraitit v = 0 to derive the equivalent mixed formu-
lation of (19):



Find (u,p) € X x M (with spacesX = H}(Q) andM = L?(Q)) so that:

/921/(D|(u),p)D(u) : D('v)dx—i—/(u~Vu)vdx +/deivvdx

Q
= | foudz, Vv e X (20)
Q

/qdivuda::(), Vge M
Q

2. Finite element method discretization

We consider a subdivisidfi € 7;, consisting of quadrilaterals in the domaiy ¢ R?, and we
employ the nonconforming rotated bilineRannacher-Turek element [7]. For any quadrilateral
T, let(¢,n) denote a local coordinate system obtained by joining the midpoints of theiogpos
faces ofT". Then, in thenonparametric case, we set on each elemént

QI(T) = Span{17§7n7£2 _772} : (21)

The degrees of freedom are determined by the nodal functiéﬁéfsb)(-), I' C 074},
Fg =0t / vdry or Ff:=w(mr) (mr midpoint of edgd) (22)
r

such that the finite element space can be written as

Wt .= {v € La(),v € Q1 (T),¥T € Ty, v continuous w.r.t. all

: a,b a,b (23)
nodal functlonaIsFFZf’j(.), andfp ' (v) = 0,VI}.
Here,I'; ; denote all inner edges sharing the two elemeéatsdj, whileI';, denote the bound-
ary edges 0. In this paper, we always employ version 'a’ with the integral mean values
as degrees of freedom. Then, the corresponding discrete functitbbe wpproximated in the
spaces
Vi i= Wi x Wi, Ly := {qy € L*(Q), g7 = const.,VT € T } . (24)

Due to the nonconformity of the discrete velocities, the classical discret@Kmequality’
is not satisfied which is important for problems involving the symmetric part ofjthdient
[6]. Therefore, appropriate edge-oriented stabilization techniqees[®s 3, 12, 15]) have to
be included which directly treat the jump across the inter-elementary bdasdé adding the
following bilinear form

1
— illoildo 25
P 7 /166 (25)

for all basis functiong; and¢; of V},. Taking into account an additional relaxation parameter
s = s(v), the corresponding stiffness mati$xis defined via:

Suv)y=s Y ﬁ /E (] [v]do (26)

E€eFEUEp



Here, the jump of a functiom on an edge E is given by

ut-nT+u” -n~ oninternal edge#; ,

[ul=<u-n on Dirichlet boundary edgesp, (27)
0 on Neumann boundary edgéy,

wheren is the outward normal to the edge apyi" and(-)~ indicate the value of the generic
quantity(-) on the two elements sharing the same edge.

3. Nonlinear solver: Newton iteration

In this approach, the nonlinearity is first handled on the continuous leetk:/Lbe the initial
state, then the (continuous) Newton method consists of findiggl” such that

/QZV(D" (ul),pZ)D(u) : D(v)dx

+/ 2010(Dy (ul), p)[D(ul) : D(w)][D(u!) : D(w)]de
Q

+ /2821/(D|| (u'), p")[D(u!) : D(v)]pdz
Q

:/fv—/ZV(D|(ul),pl)D(ul) :D(v)dz, YwveV (28)
Q Q

whereo;v(+,-),i = 1,2, is the partial derivative of related to the first and second variables,
respectively; for more details see [13, 14].

4. New linear auxiliary problem

The resulting auxiliary subproblems in each Newton step consist of firding) € X x M
as solutions of the linear (discretized) systems

{ A(ul, pHyu + A% (ul, pYYu + Bp + §,B* (ul, p)p = Ry (u',ph), (29)
!

BTU :Rp(u apl)v

whereR,(-,-) andR,(-, -) denote the corresponding nonlinear residual terms for the momen-
tum and continuity equations, and the operatdts!, p'), B, A*(u!, p') and B*(u!,p') are
defined as follows:

(A(ul,pl)u,v> = /021/(D| (u),p)D(u) : D(v)dz (30)
(Bp,v) = /va ~vdr (32)

(A*(ul,pl)u,v> = /92811/(D|| (ul),pl)[D(ul) : D(u)][D(ul) : D(v)]dx (32)

(B*(ul, o'y, p) = /Q 2050(Dy (), p)[D(atd) : D(w)]pdz (33)

10



Some remarks: The full Newton method is performed fé = 1 andé, = 1, while the fixed
point method correspondsdg = 0 andd, = 0. Fordy # 0, the linear problem behaves similar
as the classical saddle point problem for power law models, that meansasitible viscosity,
while for §,, # 0 we obtain a new type of problem, involving the nonsymmetric pressure matrix
B*; for more details, see [14, 13, 4].

5. Linear solver

This section is devoted to give a brief description of the involved solutiomigals for the
resulting linear systems. For the nonconforming Stokes eleefi€),, a ‘local pressure
Schur complement’ preconditioner (see [11]) as generalization ofllEdc®anka smoothers’

is constructed on patchél which are ensembles of one or several mesh cells, and this local
preconditioner is embedded as global smoother into an outer block Jacoks/Saidel iter-
ation which acts directly on the coupled systems of generalized Stokes, Gsgen type as
described in [12]. If we denote bi, and ]%p the discrete residuals for the momentum and
continuity equation which include the complete stabilisation term due to the modifieddilin
form S in (26), one smoothing step in defect-correction notation can be desesbed

ul+1 . ul l F + S|*Qz B + 5pB|*Qz ! Ru(ul’pl)
] =[] erm (T )[R e
with matrix F = A+6,A* andA, B, A* and B* are the discrete matrices corresponding to the
operators in (30), (31), (32) and (33). For the preconditioning stgpaopart of the matrix, i.e.
F+S*, isinvolved such that the original FEM data structure is preserved. Adrathmponents

in the multigrid approach, that means intergrid transfer, coarse gridatimmeand coarse grid
solver, are the standard ones and are based on the underlying higabineesh hierarchy and
the properties of the nonconforming finite elements (see [11] and [12héodetails).

NUMERICAL SIMULATIONS

The purpose of this section is to show that our numerical approached basFEM tech-
niques are well suited to address the illustrated type of nonlinear powaldeprs and leads to
comparative results with related experiments. Therefore, we considésllitging two con-
figurations, namely powder flow in a couette device with an obstacle andlgrdiow in a
hopper.

1. Boundary condition

The boundary conditions in any incompressible fluid simulation are explest$er in terms
of the fluid velocity or the pressure at the boundary, but generaly Hdtiem cannot be used
at the same boundary since the velocities are influenced by pressdrengr@ee [22]). For
the Navier Stokes equations with Dirichlet velocity data, the pressure iseinjto a constant
which however can be chosen arbitrarily. In contrast, for the flow ofgéeeralized Navier
Stokes equations with pressure dependent viscosity, the choice oftfvdpgessure cannot be
done by random choice (see Tablel).

11



1.1. Wall boundary conditions

The fundamental assumption in fluid mechanics for flow past solids is alifpiob®undary
condition, which means that is the tangential component of the fluid velocitgle@d the
solid at the surface. This well-accepted no-slip boundary condition mapeiguitable for
highly sheared flow, but the error due to the "no-slip” assumption is relgtismall in big
systems or if we are more interested in the flow far away from the wall. An aligenand
more suitable condition is to apply slip with friction parameter

v-7+ 6 'n- 2v(Dy,p)D(w) —pl)-7=0 on Tyau (35)

Moreover, the closing of the equations is required, because the relaiedl® problem of
Navier Stokes equations is well known to possess no unique pressutiersdue to the con-
traintdive = 0. The uniquess is assured by fixing the pressure with the choice of mean
pressure to be zero which however cannot be taken for the flow widsyre dependent vis-
cosity, namely the Schaeffer law, since it leads to negative values ofelsipe in some parts

of the computational domain. The first remedy is to make the choice of meaupegmsitive

to assure a positive pressure in all regions of the computational domaivevdn the question
arises of the physical meaning of any choice for the mean pressure thegetosure of the
equations with Dirichlet boundary condition since the mean pressure i®fpte viscosity

and, therefore, influences significantly the global flow behaviour.

1.2. Inflow and Outflow boundary conditions

Numerical simulations of flow problems usually require the flow out of one aerboundary

parts of the computational domain. At such "outflow” boundaries therestise question of
what constitutes a good boundary condition. The simplest and most comnssdyoutflow

condition is that of a "natural” boundary, see [22] for an overview:

2v(Dy,p)n-D(v) —pn=0 on Ty (36)

This boundary condition represents a smooth continuation of the flow thrinegboundary
and occurs in the variational formulation of problem if one does not plesany boundary
condition for the velocity at the outlet, known in the literature by the name "nlétarddo
nothing” boundary condition. It must be stressed that the "do nothinglosuboundary con-
dition has no physical basis, rather it is a mathematical statement that may ooimapvide
the desired flow behavior. Particularly, "do nothing” boundary condéioave proven to lead
to very satisfactory results in modeling parallel flows, see e.g., Turek2]l but they must
always be viewed with suspicion since they contain the hidden condition that¢hn pressure
is zero across the outflow boundary. In particular, the condition of mezsspre to be zero
across the outflow leads to negative values of the pressure, whichksganablems for the nu-
merical simulation of flow with pressure dependent viscosity, namely theeBehanodel. As
a natural remedy for this situation, one may consider a condition in which the preasure
across the outflow coincides with the atmospheric pressure, that mgans 0:

2V(l)ll ,p)n : D(U) — PN = PatmM  ON Doyt (37)

The above examples suggest that the ability to specify a pressure comditioa or more parts
of the computational domain is an important aspect. This can be done in tepresaibed
pressure drops with corresponding variational formulations of very general type [22].
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2. Drag force in powder flow

As we described before, granular materials can flow like fluids and thsishotion of objects
moving through them. Since this retarding force, known as drag forcegsiéyameasured
experimentally for a granular medium in a couette device with an immersed cy|ibjgéor
this reason we choose this configuration for our computation: Althougkiowdation is only
in 2D, a lot of characteristics of granular flow can be examined numerically.

0.7 T
Schaeffer ——
0.6
0.5
0.4
0.3

0.2
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.05 0.1 0.15 0.2

Couette device Velocity Cylinder diameter

Figure 3: The dependence of drag force with grain velocity in a couetteaffound a cylinder
for different material laws and for different cylinder diameter

As expected, the drag force for Schaeffer and Bingham flow actirtbeaylinder is indepen-
dent of the grain velocity, contrary to the (newtonian) Stokes flow.

"When mechanical ploughs replaced draught animals, it was observedtthloughing at
greater speeds does not require greater forcefSthaeffer 1987)

In Table 1, we show this behaviour more in detail: Here, we perform testgafious pre-
scribed mean pressure values to obtain a unigue solution, and forlgetatianal speeds. As
explained before, the Stokes and Bingham model lead to drag forceb at@dndependent
of the given mean pressure while the Schaeffer model shows the exhiendence since
the pressure is part of the viscous term. However, this observation igraslyor low speed.
Therefore, we increase continuously the velocity grain and plot the/imhraof the drag force
for the Schaeffer model. In Figure 4 we distinguish between three regonélsef Schaeffer
model with convection: The first one with slow velocity grain in which the d@gd remains
constant with increasing speed, the second with intermediate velocity gea@nthe drag force
shows an exponential increase with the velocity grain and the third one witlehiglocity
grain in which the drag force shows a linear increase with the velocity gtaigontrast, if
we totally neglect the convection term the drag force remains constant wihsatute value
which is independent of the velocity grain.

3. Granular flow in a hopper

Flow of granular material in hoppers under gravity is quite complex andrewpetal ap-
proaches show limitations in understanding some phenomena for this typeroétyg. Our
investigation is to understand some typical phenomena related to granularaimaizmely
oscillating phenomena and instabilities, as for instance shear banding instbilitie
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Figure 4: The dependence of the drag force from the velocity graithoSchaeffer model
with (‘con’) and without (‘dif’) convection

| pressur 0.5 \ 1 \ 5 ] 10 \ 100 \
Speed Stokes law without convection
0.01 | 0.12575D+01] 0.12575D+01| 0.12575D+01| 0.12575D+01| 0.12575D+01
0.05 | 0.62877D+01| 0.62877D+01| 0.62877D+01| 0.62877D+01| 0.62877D+01
0.1 0.12575D+02| 0.12575D+02| 0.12575D+02| 0.12575D+02| 0.12575D+02
0.2 0.25151D+02| 0.25151D+02| 0.25151D+02| 0.25151D+02| 0.25151D+02
0.4 0.50302D+02| 0.50302D+02| 0.50302D+02| 0.50302D+02| 0.50302D+02
0.5 0.62877D+02| 0.62877D+02| 0.62877D+02| 0.62877D+02| 0.62877D+02
Speed Bingham law without convection
0.01 | 0.35828D+01| 0.35828D+01| 0.35828D+01| 0.35828D+01| 0.35828D+01
0.05 0.38137D+01| 0.38137D+01| 0.38137D+01| 0.38137D+01| 0.38137D+01
0.1 0.38222D+01| 0.38222D+01| 0.38222D+01| 0.38222D+01| 0.38222D+01
0.2 0.38252D+01| 0.38252D+01| 0.38252D+01| 0.38252D+01| 0.38252D+01
0.4 0.38264D+01| 0.38264D+01| 0.38264D+01| 0.38264D+01| 0.38264D+01
0.5 0.38265D+01| 0.38265D+01| 0.38265D+01| 0.38265D+01| 0.38265D+01
Speed Schaeffer law without convection
0.01 0.44745D+00| 0.89491D+00| 0.44746D+01| 0.89492D+01| 0.89492D+02
0.05 | 0.50419D+00] 0.10084D+01| 0.50419D+01| 0.10084D+02| 0.10084D+03
0.1 0.50629D+00| 0.10126D+01| 0.50628D+01| 0.10126D+02| 0.10126D+03
0.2 0.50756D+00| 0.10151D+01| 0.50755D+01| 0.10151D+02| 0.10151D+03
0.4 0.50836D+00| 0.10167D+01| 0.50835D+01| 0.10167D+02| 0.10167D+03
0.5 0.50849D+00| 0.10170D+01| 0.50849D+01| 0.10170D+02| 0.10170D+03

Table 1: The dependence of the drag force from various rotatioaities at different mean
pressure values
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Figure 5:Schaeffer law: The plot of the pressure, the pseudo viscosity, the first and the fourth
component of the stress at t=0.03s
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Figure 6:Bingham law: The plot of the pressure, the pseudo viscosity, the first and the fourth
component of the stress at t=0.03s

For the Schaeffer model, Figure 5 shows that the flow is significantly indkakhy the pressure
in the material law, in contrast to the Bingham model (see Figure 6) which ipémdient of
it. To go deeper in understanding the instability phenomena we plot for @ifféimes the
average stress for both models in Figure 7 and Figure 8. These instabilitydsenexplained
by the stability analysis of Schaeffer [16] who shows the previously illtetrél-posedness
of the problem. However, since we observe that these instabilities arisetfre artificial
inflow/outflow regions, the influence of the applied boundary conditionstislear yet. Since
the inflow and outflow boundary condition supplied to the hopper do nat bhay physical
meaning, they could be the source of the appearance of the oscilation§dpwe recently
examine a new silo geometry with a long bin on the bottom and the top of the hopper to
diminish the influence of the boundary consitions onto the flow behaviour ioathstriction.

Figure 7:Schaeffer law: Snapshots of the average stress at t=0.0s, 0.012s, 0.03s and 0.06s
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Figure 8:Bingham law: Snapshots of the average stress at t=0.0s, 0.012s, 0.03s and 0.06s

SUMMARY

Our conclusion is that finite element methods together with special material l@wussea-

ful tools for the numerical simulation of incompressible granular powdecesihe complete
structure of the flow is involved, i.e. the velocity, the pressure as well asttéss. Although
our computer simulation is only two-dimensional it can confirm well-known [gay$ehav-

ior, namely the independence of the drag force from the velocity graithengropagation of a
pressure wave in the hopper which may lead to a shear banding instabilftystAflance, the
shear banding phenomenon gives the impression to be treated mathematiealig@mntinu-

ity, but this would cause severe problems for numerical algorithms. On tlee lotimd, shear
bands might not be a true physical discontinuity, rather than a changeimvtiieed physical

system which could be captured with a compressible model.

Furthermore, the proposed incompressible model for granular andepdleal presents some
other disadvantages, like for instance the wrong prediction of the flowtmadeigh a sym-
metric silo by more than a factor of 4 in comparison with experiments. This givether
motivation to proceed toward compressible granular materials which careb#ieg via the
yield conditiong(p, p) given in Table 2 (see [9] for the details).

Powder properties Non-cohesive Cohesive
Incompressible | psing psin g + ccos ¢

Compressible psing |2 — psin qsp% —

T
C(p—pf)2
0B

>
m\»—‘|"3

Table 2: Yield condition for incompressible and compressible pow@eo{ < 5 < 0.01)

Then, the flow can be described by a generalized compressible NawlarsSike equation
(38) where a mass conservation equation (39) must hold. However, tios énough because
the densityp is now a dependent variable, rather than a constant in an incompreasitble fl

Du q(p; p) ( 1 )
= _Vp+V-|——22 _(D-=-V-ul =2,3 38
"Dt PRV D Iv ] A (38)
dp
E +V' (pu) =0 (39)



In order to complete the system, an additional equation is required in the fdaha so-called
normality condition:

V-u:aq(p’p)HD—%V-uIH (40)

p

Since the presented mathematical and computational methodology in this pagss oat-
urally extended to these compressible granular and powder flow modelagxustep is to
present the corresponding results and comparisons in forthcomingspape
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