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Abstract 

Biological microorganisms swim with flagella and cilia that execute non-reciprocal motions for low Reynolds 

number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, 

which complicates the actuation scheme needed by micro-swimmers at low Re. However, most biomedically 

important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to 

realize a micro-swimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here, 

we report a symmetric “micro-scallop”, a single-hinge micro-swimmer that can propel in shear thickening and shear 

thinning fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical 

and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity 

upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical 

micro-devices that can propel by a simple actuation scheme in non-Newtonian biological fluids. 

 

Introduction 

Motility is important for the survival of many organisms. At the length scale of primitive life-forms, such as bacteria 

and other microorganisms, locomotion presents a different set of challenges compared to those encountered by 

macroscopic organisms. Most microorganisms live in fluid environments where they experience a viscous force that 

is many orders of magnitude stronger than inertial forces. This is known as the low Reynolds number (Re) regime 
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(Re<<1) characterized by instantaneous and time-reversible flows that are described by the time-independent Stokes 

equation. A consequence of this is the “scallop theorem”, stated by Purcell in his 1976 paper on “Life at low 

Reynolds number”.1 If a low-Reynolds number swimmer executes geometrically reciprocal motion, that is a 

sequence of shape changes that are identical when reversed, then the net displacement of the swimmer must be zero, 

if the fluid is incompressible and Newtonian.2 In Purcell’s own words, “Fast, or slow, it exactly retraces its 

trajectory, and it’s back where it started”.1  

Locomotion at low Re therefore generally requires non-reciprocal actuation of the swimmer. In nature, 

microorganisms break time-reversal symmetry with rotating helices 3 and cilia that show flexible oar-like beats 4. 

Inspired by nature, similar swimming strategies have been utilized to propel artificial micro-swimmers. These 

include helically-shaped micro-propellers that use rigid chiral structures to break symmetry under non-reciprocal 

unidirectional rotation 5, 6, 7, 8, 9, 10. As a helix rotates about its long axis, the coupling between rotational and 

translational motion leads to propulsion at low Re. A few flexible micro-swimmers have also been experimentally 

demonstrated, including a micro-swimmer that is based on a chain of superparamagnetic beads and actuated by a 

magnet 11, a biohybrid elastic micro-swimmer made of elastic filament and actuated by cardiomyocytes 12, as well as 

macro-scale model swimmers that use flexible tails 13, 14, 15, 16. However, in order to break reciprocity, these 

swimmers require relatively complex fabrication processes and/or actuation mechanisms.  

Propulsion of artificial micro-swimmers has mainly been demonstrated in Newtonian fluids, while low Re 

propulsion in non-Newtonian fluids remains relatively unexplored, 17 even though most biological fluids are non-

Newtonian. In fact, most of the fluids in the human body are non-Newtonian viscoelastic media, 18 e.g. sputum, 

mucus, and vitreous humor, with many of them, e.g. saliva, blood, and synovial fluid, showing shear thinning 

behavior 19. Since the scallop theorem no longer holds in complex non-Newtonian fluids, it follows that it should be 

possible to design and build novel micro-swimmers that specifically operate in these complex fluids. 

Fluid elasticity can either enhance 16, 20, 21 or retard 22 propulsion in non-Newtonian fluids. Recent theoretical works 

on a beating flagellum in a nonlinear viscoelastic Oldroyd-B fluid 23 as well as on a reciprocal sliding sphere 

swimmer in a shear thinning fluid 24 also suggest that propulsion is achievable by reciprocal motion in which 

backward and forward strokes occur at different rates. Similarly, the elasticity of the fluid has enabled low Re 
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propulsion of oscillating asymmetric dimers. 25 However, low Re locomotion of a true reciprocal motion micro-

swimmer propelled by periodic body-shape changes has not been reported previously.  

Here, we build and actuate single-hinge micro- and macro-swimmers that move in the manner of the “scallop” 

described by Purcell.1 The dimensions of the micro-scallop are sub-millimeter, approaching the size regime of 

relevance for non-invasive exploration of, for instance, blood vessels. Even though they are restricted to reciprocal 

motion, the scallops achieve low Re propulsion by using a time-asymmetric stroke pattern, and exploiting the strain 

rate dependent viscosity of shear thickening and shear thinning fluids. Precise control over the macro-scallop 

permits quantitative comparison with our numerical modelling results and analytical theory for the propulsion 

mechanism. Excellent agreement between experiment and theory is found, confirming that the net propulsion is 

caused by the differential apparent fluid viscosity under asymmetric shearing conditions. The results demonstrate 

that, despite the scallop theorem, in biologically relevant fluids simple actuation schemes can generate propulsion. 

Results 

Design and actuation of the micro-scallop 

Our micro-scallops are constructed from PDMS, loaded with phosphorescent pigment, cast into a 3-D printed mold, 

which permits the use of different materials in a parallel fabrication process. Each micro-scallop consists of two 

thick (300 µm) shells connected by a thin (60 µm), narrow (200 µm) hinge (Fig 1(B)). Rare earth micro-magnets 

(∅200	μm ൈ 400	μm) are attached to each shell so that when exposed to an external magnetic field the two magnets 

reorient to align with the field and each other and thus close the micro-scallop (Fig 2(A) right). When the magnetic 

field is decreased, the restoring force of the PDMS hinge provides the recovery stroke, opening the micro-scallop 

(Fig 2(A) left). The thick stiff shells and compliant flexible hinge ensure that the deformation is isolated at the hinge. 

As stated by Purcell: any single-hinge structure can only exhibit reciprocal motion.1  

The opening angle α of the micro-scallop is related to the strength of the applied external field. As shown in Fig 

2(C), asymmetric actuation of the two shells is achieved by applying a periodic exponentially decaying current to 

generate the magnetic field. Typically a 0.5 Hz waveform was used with a slow ~1.9 s exponential decay, followed 

by a rapid 0.1 s ramp. Since a gradient-free field is used, the micro-magnets do not experience any pulling force, 
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which ensures the net displacement of the micro-swimmer is due to the propulsion caused by its own shape-

changing swimming motions. 

Propulsion of the micro-scallop in a shear thickening fluid 

Forward net displacement of the micro-scallop in a shear thickening fluid (fumed silica in Poly(propylene glycol)) 

was achieved by time-asymmetric actuation of the opening angle as seen in Fig 3(A). Overlaying five frames with 

the same opening angles α taken at 50 s intervals (Fig 3(A)), clearly shows net displacement in the x direction 

parallel to the magnetic field direction (movie S1 upper panel). As a control, the micro-scallop in the same fluid was 

actuated with a symmetric wave-form, and, as expected, no net displacement in the x-direction was observed (Fig 

3(B) and movie S1 lower panel). Furthermore, asymmetric actuation in a Newtonian fluid (glycerol) also yields no 

net displacement (circles in Fig 3(C)).  

Fumed silica particle suspensions were chosen as the shear thickening fluid, because of their well-known 

characteristics 26 and relatively high viscosity. The dynamic viscosity of the fluid is in the range of 1െ22  Pa·s (Fig 

4(A)), and its density is 1051 ± 2 kg/m3. The micro-scallop swam for more than 100 µm over 10 periods, and the 

average velocity was 5.2 µm/s (3.5% body length/cycle). If we take the characteristic maximum length of the micro-

scallop as 1 mm, and the largest forward velocity as 3 mm/s, then the calculated Re =1.4 ൈ 10ିସ െ 3 ൈ 10ିଷ ≪ 1. 

Thus, the micro-swimmer operates at a very low Re 1 using only reciprocal motion. 

Propulsion of the micro-scallop in a shear thinning fluid 

Propulsion of the micro-scallop operated with a reciprocal but asymmetric actuation sequence is also achieved in 

hyaluronic acid, a shear thinning solution found in a number of biological systems. In the shear thinning fluid the 

micro-scallop only moves forward when the opening-closing cycle is opposite to that of the shear thickening fluid. 

Now, fast-opening followed by a slow-closing step gives forward propulsion. About 65 µm displacement was 

covered by the micro-scallop in 10 periods, corresponding to an average velocity of 3.8 µm/s (2.5% body 

length/cycle). As in the shear thickening medium, the micro-scallop showed no significant forward displacement 

when the opening and closing cycles were symmetric, as is expected (see movie S2).  

Analytical theory of propulsion by reciprocal motion in the shear thickening fluid 
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We consider a simple model of a flapping, Purcell scallop-like swimmer with the typical spatial dimension ݈ 

composed of two counter-rotating shells that share a common axis. For simplicity we assume that the shells open 

and close with different angular speeds, ߱௦௪ ൌ ߱	and ߱௦௧ ൌ  stand for the velocity	 and ߱௦௧	where ߱௦௪ ,߱

of the slow and fast stroke, respectively, so that   1	for all swimming gaits. The maximum rotation angle of one 

plate is 2/ߙ and the scallop completes one full cycle in period ܶ ൌ ఈ

ଶఠ
 ఈ

ଶఠ
ൌ ఈሺାଵሻ

ଶఠ
. Thus, the net force exerted 

by the tethered swimmer (i.e. pump) on the fluid can be estimated (up to an arbitrary function of the opening angle ߙ) 

as  

~ܨ
ଵ

்
ሺെ ߤ

ఈ/ଶఠ
 ݈߱ଶ݀ݐ	 	 ߤ

ఈሺାଵሻ/ଶఠ
ఈ/ଶఠ  ሻ (1)ݐଶ݈݀߱

where ߤ is an apparent (spatially averaged) viscosity of the fluid, which depends on the instantaneous shear rate, 

and the history of the flow. 

Note that for a Newtonian fluid, the net force over one cycle in equation (1) is zero, as expected from the “scallop 

theorem", i.e. no net momentum can be transferred to a fluid by a pump using geometrically reciprocal strokes 1. 

However, for a non-Newtonian fluid, the dependence of the apparent viscosity on the shear rate breaks time- 

reversibility and from equation (1) the net force over a period is   

~ܨ
ଵ

்
ቂെ̅ߤ௦௪݈߱ଶ ቀఈ

ఠ
ቁ  ߤ̅

௦௧݈߱ଶ ቀ ఈ

ఠ
ቁቃ ൌ ఠమ

ାଵ
  (2)ߤ̅∆

where ̅ߤ௦௪, ̅ߤ
௦௧ are the apparent viscosities time-averaged over respectively slow and fast strokes with ∆̅ߤ 

being their difference. 

The propulsion velocity of the force-free swimmer ௦ܸ can be estimated from ܨ ൌ  ௗ is the force to beܨ ௗ, whereܨ

applied to an inactive swimmer in order to drag it with velocity ௦ܸ . This is in accord with the duality relation 

between  pushing and swimming, i.e. െࢂ௦ ∙ ࡲ ൌ ௗܲ , where ௗܲ  is the power (rate-of-work) invested to drag the 

inactive swimmer 27. Since ௗܲ ൌ െࢂ௦ ∙ ܨ , the relationࡲ ൌ ߤ~ௗܨ ௗ follows. Assuming thatܨ ௦ܸ݈, where ߤ is the 

apparent viscosity corresponding to the typical shear rate magnitude ௦ܸ/݈. For low values of the shear rate associated 

with swimming, i.e. ௦ܸ/݈ ൏൏ ߱, it is reasonable to assume that ߤ ൎ  the rheological measurements (Fig 4(A))) ݐݏ݊ܿ

suggests that for shear rates up to 1.7 s−1 viscosity is roughly constant). 
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Equating ܨௗ and ܨ in equation (2) yields the propulsion velocity up to an unknown function of angle ߙ:  

ೞ
ఠ
~ 

ାଵ

∆ఓഥೌ
ఓబ

 (3) 

More detailed analysis of a flapping swimmer composed of two infinite plates (see SI) suggests that the major 

contribution to ∆̅ߤ	in Equation (3) is due to an abrupt rise (fall) of apparent viscosity of the shear thickening 

(shear thinning) fluid sandwiched between two close plates at small openings during the fast phase (either closing or 

opening, see SI for details).  

To model propulsion through shear thickening fluid, a power law equation 28 was applied to fit the transition-region 

of the viscosity in the shear rate range of 1.5 - 6 s−1 (dotted line in Fig 4(A)). The apparent viscosity is ̅ߤ ൌ

ሶߛ݉ ିଵ, where ݉, ݊ are constants (݉ ൌ 0.34, ݊ ൌ 3.34 as fitted in this case) and ߛሶ 	is the shear rate defined as ߛሶ ൌ

൫2ܦܦ൯
భ
మ i.e. the second invariant of the rate-of-strain tensor ܦ ൌ

ଵ

ଶ
ሺ߲ݑ  ߲ݑሻ. Obviously, in this problem the 

typical shear rate is, respectively, ߛሶ~߱ for opening and ߛሶ~߱ for closing. Thus, assuming that both (i.e. fast and 

slow) strokes fall within the shear thickening regime, ̅ߤ௦௪~݉߱ିଵ and ̅ߤ
௦௧~݉ሺ߱ሻିଵ, Equation (3) becomes  

ೞ
ఠ
~ ൬

ఓഥೌ
ೞೢ

ఓబ
൰ ሺ

షభିଵሻ

ାଵ
 (4) 

Multiplying ௦ܸ  in Equation (4) by the stroke period ܶ ൌ ఈሺାଵሻ

ఠ
 we obtain a simple expression for the scaled 

displacement-per-stroke, ܦ ݈⁄ ,  

ܦ ݈⁄ ିଵሺߚ~ െ 1ሻ (5) 

where the sign and magnitude of the dimensionless pre-factor ߚ depends on the nature of the stroke and fluid 

properties. The analytical theory therefore clearly confirms that in a shear thickening fluid, the scallop can indeed 

swim forward using fast closing and slow opening strokes. Alternatively, it can propel in the opposite direction 

using fast opening and slow closing strokes. This is a general result that permits propulsion from symmetric 

actuation in any of the abundant non-Newtonain fluids, notably those found in biological systems. In order to allow 

for quantitative comparisons between the predictions of this analytical theory and experiment, we now consider a 

millimeter-scale low Re scallop-like swimmer whose motion is controlled by on-board motors. The device, which 
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we call the “macro-scallop” (shown in Fig 1(C) and Fig S5, S6), permits rapid and precisely controlled opening and 

closing speeds of the swimmer’s shells.  

Tests of the analytical theory were conducted in shear thickening fluid in two regimes: i) fixed opening speed ߱ 

over a range of closing speeds ߱  ߱ (Fig 4(B)) and ii) fixed closing speed ߱ at different opening speeds ߱ 

߱ (Fig 4(C)). When the closing speeds are larger than the opening speed ( ൌ ఠ
ఠ

), the net displacement ܦ/݈	 is 

larger than 0 and the macro-scallop moves in the forward direction (hinge leading). On the other hand, when the 

opening speeds (hollow triangles) are larger than the closing velocities (solid squares,  ൌ ఠ
ఠ

), the swimmer moves 

in the opposite direction with a negative net displacement ܦ/݈ ൏ 0 (hinge trailing). Both experimental results are in 

excellent agreement with the theory of equation (5) based on scaling arguments. It follows that a symmetric scallop 

can indeed move, provided time-reversal symmetry is broken by the asymmetric actuation speeds of opening and 

closing in a non-Newtonian fluid. Note that the two actuation gaits (i.e. fast opening/slow closing vs. fast 

closing/slow opening) resulted in a different displacement for the same value of  due to viscosity hysteresis (see SI). 

Numerical model of propulsion by reciprocal motion in the shear thickening fluid 

We have also employed numerical simulations to study the propulsion mechanism of reciprocal motion in non-

Newtonian fluids using the open-source Computational Fluid Dynamics (CFD) package FeatFlow (detailed method 

in the SI). Figure 5(A) and Movie S4 show the fluid velocity and viscosity fields at 6 frames through the complete 4 

s propulsion cycle of the macro-scallop swimming in a shear thickening fluid. The net displacement in one cycle is 

clear from the difference in swimmer position between the start (0 s) and finish (4 s) of the cycle. The propulsion 

mechanism is illustrated by comparing the field maps at 0.3 s and 2.4 s; these frames both correspond to the same 

ߙ ൌ 115°, however the higher closing angular velocity of the shells leads to a much higher velocity gradient (shear 

rate) of the fluid at 0.3 s, which results in larger viscosity between the two shells relative to that during the opening 

stroke (at 2.4 s). Therefore, the forward displacement during the fast closing half-cycle (upper panels in Fig 5(A)) is 

larger than the backward displacement in the slow opening half-cycle (lower panel in Fig 5(A)), which leads to the 

net displacement over one period. The displacement curves (Fig 5(B)) of the simulation show excellent quantitative 

agreement with the experimental data in both the Newtonian and shear thickening cases. The simulation results 

demonstrate that the net propulsion is a result of the viscosity differences during the two half-cycles, which is caused 
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by differential apparent fluid viscosity under asymmetric shearing conditions. Importantly, consistent results were 

achieved using only the simple shear thickening relationship between fluid viscosity and instantaneous shear rate. 

This suggests that the dominant factor leading to net propulsion in our experiment is differential viscosity rather than 

fluid energy storage mechanisms like fluid elasticity or viscosity hysteresis (thixotropy/rheopecty). 

Discussion 

We have shown that low-Re propulsion of a scallop is possible in shear thickening and shear thinning fluids. The 

devices are true swimmers, propelled by periodic body-shape changes.17 Differences in the opening and closing rates 

give rise to differences in the corresponding shear rates and hence the viscosities of the non-Newtonian fluid. The 

result is net propulsion despite the reciprocal stroke. Unlike reference 25, fluid elasticity plays only a minor role; 

rheological measurements (Fig S7, S8) show that the first normal stress difference of our shear thickening medium 

is two orders of magnitude smaller than the Boger fluid used in 25. Furthermore the numerical simulations, which do 

not include elasticity effects, accurately reproduce the motion, and experiments with a time symmetric stroke ( ൌ 1) 

produce no net propulsion. In summary, our swimmer fulfills three conditions necessary for propulsion by reciprocal 

motion at low Re in the absence of elasticity: 1) absence of mirror symmetry in the direction of motion (i.e. a clear 

fore-aft asymmetry) 2) time-asymmetric actuation and 3) the coupling of such an actuation to a non-Newtonian fluid 

rheology. Because the time asymmetry of the stroke is responsible for the net displacement, the direction of 

propulsion can be reversed by inverting the opening and closing speeds.  This is a potential benefit over other micro 

propulsion schemes where the direction of motion is dictated by the fixed spatial asymmetry of the device 16, 25. 

We found that the average velocity of the micro-scallop in the shear thickening fluid is faster than that in the shear 

thinning one, because for the same difference in shear rates the change in fluid viscosity is larger in the shear 

thickening fluid. This is apparent from the differences in the ݊ exponents in the power law models. The swimming 

velocity can be increased by maximizing the difference in the opening and closing speeds, up to the point where the 

viscosity plateaus at ~7 s-1. Optimizing the shape of the swimmer can also be expected to improve performance. The 

viscosity is highly dependent on the shear rate, which is not only determined by the speed of opening and closing, 

but is also a function of the swimmer shape. Optimizing the geometric shape of the swimmer (and the morphology 

of its surfaces) may thus have a significant effect on propulsion speed of a non-Newtonian micro-swimmer.  
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A simple theory that relies on scaling arguments has been derived that captures the essential underlying physical 

mechanism of the locomotion, i.e. via shear rate modulation of the viscosity. The highest shear rate is achieved 

when the fluid is sandwiched between the two shells at small openings during the fast stroke phase and the 

corresponding abrupt change of the apparent viscosity controls the net displacement over a stroke. The weakly 

thixotropic property of the shear thickening fluid also plays a minor role in the propulsion. In our case the viscosity 

hysteresis provides a speed advantage to those gaits where the ߱  ߱ versus those where ߱  ߱. In principle, 

large viscosity hysteresis could be used to generate net displacement even for time-symmetric strokes. 

Micro-swimmers have the potential to be useful in biomedical applications or as rheological probes in vivo. 

Swimming in biological fluids is a first step to achieve these goals. Halyoronic acid is found in connective, epithelial, 

and neural tissues 29; and it is one of the main components of the extracellular matrix, which contributes 

significantly to cell proliferation and migration 30. Many biological media including saliva, blood, vitreous and 

synovial fluid exhibit shear thinning properties, and as we show here this can be exploited in the design and 

operation of a micro-swimmer that is simpler to operate than many other microrobots. From an engineering point of 

view, reciprocal motion can be achieved with much simpler actuation schemes compared to non-reciprocal actuators. 

Most existing (miniaturized) actuators are reciprocal, including piezoelectric, bimetal stripes, shape memory alloy, 

heat or light actuated polymers, which can all potentially be used as actuators for the micro-swimmer demonstrated 

here. Thus, the reciprocal swimming mechanism of the micro-scallop reported in this paper may provide a general 

scheme for micro-swimming in biological fluids.  

 

Methods 

3-D printing and molding process for the micro-scallop 

The negative mold of the micro-scallop (shown in Fig S1) was printed with a high temperature material (RGD 525) 

using a 3-D printer (Objet260 Connex, Stratasys, Israel). The support-material was removed by magnetic stirring in 

KOH solution (0.03 g/ml) for 12 hours. 2 g of Ultra Green V10 Glow powder (2-8 micron, Glow Inc., MD) was 

mixed with 15 ml ethanol by sonication for 1 hour, and the supernatant was collected and dried under vacuum. 2 g 

base agent of Polydimethylsiloxane (PDMS, Sylgard® 184, Dow Corning) was added to the dried Glow powder, 
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mixed thoroughly under sonication for 1 hour. 100 µl curing agent was then added, and the solution was thoroughly 

mixed and degassed for 1 hour. The 3-D printed mold was filled with the prepared PDMS solution and degassed for 

0.5 h and cured at 65 °C for 1.5 h. Finally, the PDMS shell was released from the mold and two Neodymium micro-

magnets ( ∅0.2	mm ൈ 0.4	mm , GMB Magnete Bitterfeld GmbH, Germany) were stuck to the shells using 

Cyanoacrylate (Ultra Gel, Pattex) under a stereoscope with the help of an external macro-magnet as illustrated in Fig 

S3. 

Preparation of the fluids and rheological measurements 

Fumed silica suspensions (8% w/w) were used as the shear thickening fluid.26 Fumed silica powder (Aerosil® 150, 

Evonik, Germany) was mixed thoroughly with poly(propylene glycol) (PPG, Mw=725, Sigma-Aldrich). The solution 

was then degassed for 3 h. 

Hyaluronic acid (6 mg/ml) was used as the shear thinning fluid. Hyaluronic acid powder (53747, Sigma-aldrich) was 

mixed in PBS (Gibco®, Life Technologies) and stirred under room temperature for 48 hours. 

Glycerol (99.5%, 1410 mPa·s at 20 °C, VWR, France) and Silicone oil (Dow Corning 200/12,500 cSt, VWR, UK) 

were used as Newtonian fluids for micro-scallop and macro-scallop, respectively. 

The viscosities were measured using shear rate ramp experiments on a rheometer (Kinexus Pro, Malven, UK) using 

a plate to plate (40 mm in diameter) setup. The temperature was set to 25 °C. The viscosity was measured in the 

range of 0.05-300 s-1 with a 4 min ramp time. The data shown in Fig 5 and S9 are the average of three independent 

measurements of two fluids, respectively. 

Actuation setup and video analysis of the micro-scallop 

The micro-scallop was actuated by an external magnetic field, generated by a Helmholtz coil which can produce 

homogeneous magnetic fields of up to approximately 300 G in the swimming direction of the micro-scallop 

(indicated by the red arrow in Fig 2(A)). Detail about the setup is drawn in Fig S4 and discussed in the SI. 

Videos of the micro-scallop were taken under a stereoscope (MZ95, Leica, Germany) with a CCD camera (DFC490, 

Leica, Germany) at 20 frames/s, with UV illumination by a LED (peak wavelength at 365 nm, Roithner Laser 

Technik GmbH, Germany) and a colored-glass filter (485-565 nm, VG9, Schott, Germany). Every frame of the 
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video was extracted using ffmpeg and the sequential images were analyzed by customized Matlab script to extract 

the coordinates of the mid-point of the hinge and the angle between the two shells in every frame. The frames, in 

which the angle α reaches its minimum value of 40°, are selected from each period and are used to deduce the 

displacement. Five selected frames between 0-200 s with interval of 50 s were overlapped in Fig 3(A) and 3(B) 

using ImageJ (NIH), and for comparison the micro-scallop was aligned at the same y-axis position. Each experiment 

was repeated five times. 

Numerical simulation and analytical analysis 

The numerical simulations were conducted using the CFD package FeatFlow (www.featflow.de) as a solver for the 

incompressible Navier-Stokes equations. A quasi 2D approach was used in such way that the thickness of the 

computational domain was set to a small value. The rheological properties of the non-Newtonian fluid were modeled 

by a piecewise continuous approximation to the measured viscosity profile (Fig S12). The simulations were 

conducted over three complete opening/closing cycles. The simulation volume was 45 mm × 90 mm × 1 mm, using 

60000 timesteps with dt=0.0002 s. Meshes were generated by a grid-adaptation technique that concentrates vertices 

at the fluid-solid interface. The methods for the numerical simulation and analytical analysis are discussed in more 

details in the SI. 
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Fig 1. Schematic drawing of the scallop swimmers. (A) Schematic drawing of Purcell’s scallop with reciprocal 
motion.1 (B) 3-D model of the sub-millimeter size “micro-scallop”. (C) 3-D model of the centimeter size “macro-
scallop” for quantitative comparison with theory. 
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Fig 2. Actuation mechanism of the micro-scallop. (A) Schematic drawing of the micro-scallop from top view. The 
green shapes illustrate the opening and closing shape change of the micro-scallop when actuated by an external 
magnetic field. The shape is a function of the magnetic force aligning the magnetic axes of the two permanent 
micro-magnets and a restoring force due to the induced stress in the PDMS structure. The angle between the two 
shells α can therefore be controlled by the magnitude of the external field. (B) Top view (microscope image) of the 
micro-scallop under UV illumination. The positions of the micro-magnets are illustrated by white dashed circles. (C) 
Time-asymmetric actuation of the micro-scallop. The slow opening and the fast closing cycles are controlled by the 
external magnetic field, which is generated by an exponentially decaying current (inset). Corresponding images of 
the micro-scallop during the opening and closing cycle are shown. 
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Fig 3. Displacement of the micro-scallop in a shear thickening and a shear thinning fluid. (A) Forward net 
displacement of the micro-scallop in a shear thickening fluid and asymmetric actuation (blue curve). The image is a 
time lapse composite-picture of 5 frames at an interval of 50 s, with the net displacement indicated along the x 
direction (see movie S1 upper panel). (B) Corresponding image of the micro-scallop in shear thickening fluid with 
symmetric actuation (blue curve) and no discernable net displacement (see movie S1 lower panel). (C) 
Corresponding displacement curves in the shear thickening, shear thinning and Newtonian fluids respectively. ߱ 
and ߱  are the average angular velocity of closing and opening, respectively. Asymmetric actuations ( ൌ
߱௦௧/߱௦௪ ൌ ߱ ߱⁄  1	 solid squares and  ൌ ߱௦௧/߱௦௪ ൌ ߱ ߱⁄  1  solid triangles) result in net 

displacement in non-Newtonian fluids, while symmetric actuations ( ൌ ߱௦௧ ߱௦௪⁄ ൌ 1, hollow squares and 

triangles) result in no net displacement in the same fluids (see Movie S2 for swimming in shear thinning fluid). 
Asymmetric actuations ( ൌ ߱௦௧/߱௦௪ ൌ ߱ ߱⁄  1	, circles) result in no net displacement in the Newtonian 

fluid (see Movie S3), as stated by the scallop theorem. The error bars correspond to the standard deviation of 
repeated trials.   
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Fig 4. Comparison between theoretical predictions and experimental measurements of scallop swimming. (A) 
Apparent dynamic viscosity of the shear thickening fluid. The dotted line shows the power law used to fit the 
transition of the experimental shear thickening data (solid squares). (B) Dimensionless net displacement over one 
period is plotted against the ratio of angular velocities. When the closing velocities (solid squares) are larger than the 
opening velocity (hollow triangle),  ൌ ߱௦௧/߱௦௪ ൌ ߱ ߱⁄  1 , the swimmer exhibits positive net 

displacements, as predicted the scaling theory. (C) When the opening velocities (hollow triangles) are larger than the 
closing velocity (solid square),  ൌ ߱௦௧/߱௦௪ ൌ ߱ ߱⁄  1, the swimmer exhibits negative net displacements. 

In (B) and (C), ܦ and ݈ are the displacement over one stroke and characteristic length, respectively. The error bars 
correspond to the standard deviations. 
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Fig 5. Numerical simulation of propulsion by reciprocal motion in a shear thickening fluid. (A) Fluid velocity and 
viscosity fields around the swimmer in shear thickening fluid (see also Movie S4). The three images in the upper 
panel correspond to the fast closing half-cycle (~0.8 s) and the images in the lower panel correspond to the slow 
opening half-cycle (~3.2 s). The simulation result verifies that the net displacement is a result of the viscosity 
differences during the two half-cycles, which is caused by the differences in fluid shear rate (velocity gradient) 
under asymmetric actuation. (B) The displacement curves of the asymmetric actuated macro-scallop in shear 
thickening (blue) and Newtonian fluid (green) for 3 cycles. Simulation results (dashed lines) are consistent with 
experimental data (solid lines), where the macro-scallop exhibits net displacement in the shear thickening fluid but 
no net displacement in the Newtonian fluid.  
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Supplementary Information 

Design and fabrication process of the micro-scallop 

The micro-scallop was readily realized by 3-D printing and micro-molding technique, shown in Fig S1. Fig S2 

shows the detailed dimensions of the micro-scallop. The hinge is both narrow (200 µm) and thin (60 µm) to 

decrease the elastic force against the magnetic force, while the two shells are much thicker (300 µm) to avoid any 

deformation during the actuation. This ensures the motion is reciprocal, as stated by Purcell that any single-hinge 

structure can only result in a reciprocal motion. The shells (800 µm) are also wider than the hinge (200 µm), which 

enables larger contact area with the fluid and results in better propulsion. 

After the PDMS part was released from the mold, two Neodymium micro-magnets (∅0.2 mm×0.4 mm, GMB 

Magnete Bitterfeld GmbH, Germany) were attached to the shells by glue (Ultra Gel, Pattex) in two steps. As 

illustrated in Fig S3(A), one macro-magnet was first used on the left side and the micro-magnet on the left was glued 

to the PDMS at the right orientation under the stereoscope. After the fixation of the first micro-magnet, the macro-

magnet was moved to the right, and the second micro-magnet on the right was glued to the PDMS (Fig S3(B)). 

During the second step, the local field dominated by the field of the macro-magnet, so the orientation of the second 

micro-magnet was kept in the opposite direction of the first one. 

Actuation setup of the micro-scallop 

Because the micro-magnets have much higher density (~7400 kg/m3) than the fluids (~1000 kg/m3), it will sink to 

the bottom in an upright 5 mm-height container within 30 s and then the friction between the micro-scallop and the 

bottom will severely affect the propulsion of the micro-scallop. Therefore, the fluidic channel was placed in a 

reversed manner to minimize the friction and the micro-scallop was held on the interface of fluid and air by 

interfacial force while the micro-scallop was immersed in the fluid, as illustrated in Fig S4. The width and height of 

the fluidic channel are 5 mm and 3 mm, which are about 8 and 4 times of the corresponding size of the micro-

scallop to minimize the boundary effect of swimming at low Re. The Helmholtz coil (yellow rings in Fig S4) 

provided a homogeneous magnetic field up to 300 G. 

 



Macro-scallop design and experimental setup 

Fig S5 is the 3-D model of the macro-scallop model swimmer. It was designed to be the smallest size as possible for 

a low Re using commercially available motors. Two brushless DC-motors (0308H with a 03A gear head, total size 

3.4 mm in diameter and 12.6 mm in length, Faulhaber, Germany) were used and the speed and the rotational 

direction are controlled by a controller (SC1801F, Faulhaber, Germany) with analog input 0.5 V- 12 V to set speed 

value. One full period of the macro-scallop was set to 4 s, with about 0.8 s for fast closing half-cycle and 3.2 s for 

slow opening half-cycle (Fig 5(A) and Fig S6(B)). 

The shells are made of carbon fiber sheet (0.3 mm thick, Conrad, Germany). Two sizes were used for the 

experiment, i.e.16 mm ൈ14 mm (LengthൈWidth) for the illustration of swimming and compare to numerical 

simulation result; and 8 mm ൈ7 mm (LengthൈWidth) to test the theory of the scaling argument. Small area of the 

shell decreases the power needed for rotation in very viscous fluid, thus the motors can provide higher rotating 

velocity and achieve higher ratio 	of closing and opening angular velocities. 

As illustrated in Fig S6(A), a linear air track (Edu-lab, UK) was used to balance the gravity of the macro-scallop to 

make it swim in a force-free situation. For imaging, green phosphorescent tape (Conrad, Germany) was stuck to the 

bottom of the shells and the body. A UV lamp (peak wavelength at 365 nm) illuminated from the side of the tank 

and the video was taken by a digital camera at 25 frames/s with a colored-glass filter (485-565 nm, VG9, Schott, 

Germany). Fig S6(B) is a series of time-lapse pictures showing one cycle of slow-open-fast-close asymmetric 

actuation of the macro-scallop and the resulted net displacement in shear thickening fluid (also see Movie S4), while 

there was no net displacement by symmetric actuation in the same fluid (see Movie S5).  

Numerical simulation of the macro-scallop 

The numerical simulations of the macro-scallop in non-Newtonian and Newtonian fluids were conducted using the 

open-source CFD (Computational Fluid Dynamics) package FeatFlow (www.featflow.de). We configured the 3D 

simulation to use a pseudo 2D setup which means that the thickness of the swimmer and the computational domain 

are reduced. Thus the number of degrees of freedom in the simulation is significantly reduced as is the 

computational cost. In the following we will briefly explain the numerical methods used to simulate the macro-



scallop swimmers in Newtonian and non-Newtonian fluids. In our FeatFlow software the fluid is modelled by the 

incompressible Navier-Stokes equations which can be formulated as 

 (1) 

 ॺ ൌ Ԧݒሺߤ   Ԧ்ሻ (2)ݒ

where we denote the constant density by ߩ, the shear dependent viscosity by ߤ, the unknown velocity and pressure 

by the pair ሺݒԦ, ሻ, and the viscous stress tensor by ॺ ൌ  . is the rate-of-strain tensorܦ , in whichܦߤ2

This system of equations is discretized using the Finite Element Method (FEM) which is implemented in our 

FeatFlow CFD package together with the recent extensions of non-Newtonian fluids and dynamic mesh-adaptation 

for moving boundaries. 

Discretization in time is handled by the basic one-step ߆-scheme (3), which in general allows the selection of Crank-

Nicolson (߆ ൌ 0.5) or the fully implicit Backward Euler-Scheme (߆ ൌ 1). The time discretization scheme in general 

can be represented by the following system: 

For given ݒԦିଵ, ݐ∆ and	ିଵ ൌ ݐ െ Ԧ|௧ݒିଵ, lets approximate ߲௧ݐ ൎ
௩ሬԦି௩ሬԦషభ

∆௧
 

 (3) 

The system is then discretized in space using the Galerkin variational formulation of the Navier-Stokes equations. In 

our FEM framework we use the higher order ܳଶ/ ଵܲ element pair for the spatial discretization, further aspects of the 

FEM approach are described in more detail in our previous work 1. Concerning the physical properties of the fluid, 

the density ߩ is assumed to be constant, wheareas the viscosity ߤ is calculated at each cubature point according to 

the given shear-dependent rheological model. The system needs additional adjustment because of the presence of 

moving boundaries (the macro-scallop). These are treated by the so-called Fictitious Boundary Method (FBM) 1 

which is a simple filter technique that decomposes the computational domain into a fluid and a solid subdomain in 

terms of the classification of the degrees of freedom. The fluid domain is then treated as if no FBM were applied, the 

solid subdomain interacts with the fluid subdomain by the imposed velocity Dirichlet boundary conditions (i.e. the 



rotational and translational velocity of the macro-scallop). The velocity of the macro-scallop is calculated by 

determining the hydrodynamic forces 1 that arise from the movement of the scallop. In order to improve the 

accuracy of the hydrodynamic force calculation we employ a grid-adaptation technique that is based on Laplacian 

smoothing using weights that force the vertices of the mesh to be concentrated at the fluid-solid interface (Fig S11). 

 
Test of the theory by scaling argument 

The macro-scallop with shells of 8 mm ൈ7 mm (LengthൈWidth) were used to test the theory of the scaling 

argument. The closing half-cycle and the opening half-cycle were tested separately at various angular velocities. The 

largest opening angle ߙ ൌ 295° and the smallest closing angle ߙ ൌ 10° were kept the same among all the tests by 

mechanical limit. Each closing and opening velocity was repeated for at least three times. 

The time of shell closing or opening and the resulted displacements were calculated from the recorded video. Every 

frame of the video was extracted by ffmpeg. The first frame in which the swimmer moved was labeled as the start 

frame. The last frame in which the swimmer stopped moving was labeled as the end frame. In the start and end 

frame, the frame number ଵܰ and ଶܰ, x and y coordinates of the body tip ሺݔଵ, ,ଶݔଵሻ and ሺݕ  ଶሻ, were measured inݕ

ImageJ (NIH) respectively, so that the following parameters were calculated: 

Time of the half-cycle, ݐ ൌ
ேమି	ேభ


, where ݂= 25 frames/s is the frame rate; 

Average angular velocity, ߱ ൌ
ଶଽହ°ିଵ°

௧
ൌ

ଶ଼ହ°

௧
; 

Displacement over half-cycle, ܦ ൌ ඥሺݔଶെݔଵሻଶ  ሺݕଶെݕଵሻଶ for the forward displacement in the closing half-

cycle, and ܦ ൌ െඥሺݔଶെݔଵሻଶ  ሺݕଶെݕଵሻଶ for the backward displacement in the opening half-cycle. 

The scaled displacement-per-stroke, ܦ/݈ were calculated, where the characteristic length of the micro-scallop ݈ ൌ

7	݉݉, and it is plotted against the ratio  of average angular velocities in Fig 4(B) and 4(C) to compare with the 

theory by scaling argument. 

Modulation of viscosity as underlying mechanism of propulsion 



Let us consider an idealized tethered “scallop” (pump) composed of two infinite plates forming an angle ߙ	between 

them. The plates are co-rotating on a common axis with an arbitrary angular velocity ߱. For simplicity we assume 

that the suspending medium is a Newtonian fluid. It is possible, however, to extend this solution and construct the 

asymptotic expansion corresponding to weakly non-Newtonian fluid (e.g. shear thinning or thickening) by the 

method of perturbations 2, however for our qualitative purposes the leading order solution suffices.      

We consider the problem in the polar coordinates ሺݎ, ߮ሻ.	The solutions for the streamfunction ߰ሺݎ, ߮ሻ in the Stokes 

approximation satisfy ସ߰ ൌ 0. Following 3 and using an ansatz ߰ ൌ  ’ଶ݂ሺ߮ሻ we find the solution for ߰ the ‘innerݎ

(in between plates) and ‘outer’ regions, respectively: 

߰ሺݎ, ߮ሻ ൌ െ
ଶݎ߱

2
sin 2߮ െ 2߮ cos ߙ2
sin ߙ2 െ ߙ2 cos ߙ2

ൌ െ
ଶݎ߱

ܣ2
ሾsin 2߮ െ 2߮ cos  ሺ4ሻ				ሿ,ߙ2

߰ሺݎ, ߮ሻ ൌ െ
ଶݎ߱

2
sin 2߮  2ሺߨ െ ߮ሻ cos ߙ2
sin ߙ2  2ሺߨ െ ሻߙ cos ߙ2

ൌ െ
ଶݎ߱

ܣ2
ሾsin 2߮ െ 2ሺߨ െ ߮ሻ cos  ሺ5ሻ			ሿ,ߙ2

where ܣ  and ܣ  are the functions of ߙ.  The velocity components ݒ ൌ
ଵ


߲߰ ߲߮⁄ 	and ݒఝ ൌ െ

ଵ


߲߰ ⁄	ݎ߲ can be 

readily obtained from the Equations (4-5); for the inner region we have: 

ݒ ൌ െ ఠ


ሾcos 2߮ െ cos ,ሿߙ2 ఝݒ			 ൌ

ఠ


ሾsin 2߮െ2߮	cos  ሿ.  (6)ߙ2

On the plates at ߮ ൌ േߙ,  the boundary conditions are satisfied, i.e. ݒሺݎ, േߙሻ ൌ 0, ,ݎఝሺݒ			 േߙሻ ൌ േ߱ݎ.  The 

solution in the outer region has an analogous form. The streamlines (isolines of ߰) are depicted in Figs S13 (a-d) for 

four different openings, ߙ ൌ 85.7°, 60°, 30°	 and 18° . The corresponding vector velocity field is shown for 

illustration in Fig S13 (a).  Note that the inner and outer solutions in Equation (6) are singular at ߮ ≅ 129°	and	51°	, 

respectively. This singularity is probably a consequence of nonphysical geometry as infinite plate result in two 

disconnected semi-infinite fluid domains. Considering finite plates should regularize the solution, however, the 

closed-form solution in such case is not readily available. Nevertheless, the infinite plate approximation should 

provide an accurate description of the flow far from the plates’ ends at with for ߙ ൏ 50°.  

The components of the rate-of-strain tensor, ܦ, for the inner region can be found from Equations (6) as 



ܦ ൌ
ݒ߲

ݎ߲
ൌ െ߱ܣ

ିଵሾcos 2߮ െ cos  ,ሿߙ2

ఝఝܦ ൌ
1
ݎ
ቆ
ఝݒ߲

߲߮
 ቇݒ ൌ ܣ߱

ିଵሾcos 2߮ െ cos ሿߙ2 ൌ െܦ, 

ఝܦ2 ൌ
1
ݎ
ቆ
ݒ߲

߲߮
െ ఝቇݒ 

ఝݒ߲

ݎ߲
ൌ ܣ2߱

ିଵ sin 2߮. 

Next we calculate the (squared) rate-of-strain Γଶ ൌ ଵ

ଶ
ሶߛ  (the share rateܦܦ 	is defined as ߛሶ ൌ 2Γ), 

Γଶ ൌ
ଵ

ଶ
ଶܦ 

ଵ

ଶ
ఝఝଶܦ  ఝଶܦ ൌ ߱ଶܣ

ିଶሾ1 െ 2 cos 2߮ cos ߙ2  cosଶ  ሿ. (7)ߙ2

The result in Equation (7) holds for the outer region with ܣ being replaced with ܣ. Note that for an infinite scallop 

Γ is not a function of ݎ and depends solely on ߮ i.e. for an arbitrary opening Γ has a constant (but not equal!) values 

along the plates inside and outside.  

The corresponding plots of Γ/߱	are given in Fig S14(a-d) for the same four openings ߙ as in Fig S13. This figure 

illustrates the underlying physics of the phenomenon, i.e., the plates play a role of the concentrator of the strain rate. 

Similarly to the electric capacitor concentrating the energy of the electric field in between two oppositely charged 

plates, the flapping plates concentrate the strain rate of the liquid sandwiched between the plates at small ߙ's. For 

Newtonian liquids this phenomenon is not important as both swimming and pumping are purely geometric, i.e. 

independent of time parameterization. Indeed, the fluid viscosity ߤ does not depend on the strain rate and remains 

constant so that over a full stroke such “scallop” would neither pump nor swim. For the non-Newtonian liquid, 

however, this phenomenon determines the essence of the effect. Since the apparent fluid viscosity ߤ	is a function 

of the strain rate Γ, then the “scallop” modulates the viscosity of the suspending medium depending on contrast of 

the opening/closing frequencies. For shear thickening liquids the viscosity in the inner region could be considerably 

higher than that outside (compare Γ in Fig S14 (c)-(d) inside vs. outside). The dependence of the apparent viscosity 

on the strain rate distinguishes the liquid inside and outside the shells and results eventually in the free swimmer's 

locomotion or net momentum flux for a tethered pump. 



To understand the origin of the motility heuristically (vs. arguments based on duality relation in the main text), 

consider the fundamental solution for the low-Re flow driven by a point force of magnitude ࡲߜሺ࢞ሻ exerted on the 

fluid at the origin (this solution is known as Stokeslet 4). One can argue that far from the object the origin of the 

force is not important – it equally can be submerged jet or flapping tethered “scallop”. The properties of the source 

enters the solution integrally as a net momentum flux of magnitude ܨ. If now the “scallop” becomes untethered, it 

will start moving with the characteristic speed, ௦ܸ~ ܨ ⁄ߤ . The crucial property of the swimmer is that it is propelled 

in the ‘outer’ liquid with low (approx. constant) viscosity ߤ, as in the outer region Γ is always small, see Fig S14 

(a)-(d), whereas the viscosity of the fluid sandwiched between the two plates ̅ߤୟ୮୮ scales with the angular velocity of 

the fast (either closing or opening) stroke. The value of this internal viscosity determines the ‘power’ ܨ of the 

source, ܨ~̅ߤୟ୮୮߱, whereas major contribution to  ̅ߤୟ୮୮	occurs at small opening ߙ during the fast phase. Thus, the 

swimmer velocity ௦ܸ reduces to ௦ܸ ݈߱~⁄ ୟ୮୮ߤ̅ ⁄ߤ .	This relation is in agreement with the estimate based on scaling 

arguments in the main text. The finite net displacement over a full stroke is due to modulation of the source strength, 

  .ୟ୮୮ሺ߱ሻߤ̅ , which depends on angular velocity ߱ in a nonlinear fashion viaܨ

Hysteresis of viscosity in shear thickening liquids 

To understand the difference in the experimentally measured pre-factors ߚ we re-write the power-law rheological 

model at low- and intermediate shear rates ߛሶ  as 

ߤ ൎ 0.7 ቀ ఊ
ሶ

ఊሶ
ቁ
ି.ଵ

,   0.1	sିଵ  ሶߛ	  1.5	sିଵ	, 

ߤ ൎ 0.8 ቀ ఊ
ሶ

ఊሶ
ቁ
ଶ.ଷସ

,   1.5	sିଵ  ሶߛ	  6.5	sିଵ	, 

where ߛሶ ൌ 1.5	sିଵ  is the critical shear rate at steady conditions 5.  

It has been found  first in 5, then in 5, 6, 7 that the transition taking place at at	ߛሶ ൌ ሶߛ  possesses the properties of the 

phase transition of the first order. Namely, the transition is characterized by the hysteresis of viscosity upon varying 

the shear rate. In particular, in experiment with transient shear rate the value of viscosity depends on the prehistory 

of shear rate ramp: if the shear rate grows from a low viscosity state the transition occurs at a higher critical shear 



rate than in steady state (ߛሶ  ሶߛ ). Analogously, if the shear rate decreases from a high viscosity state, the transition 

takes place at a lower values of transient shear rate comparing to the steady state (ߛሶ ൏ ሶߛ ) 5. 

The hysteresis of viscosity explains the asymmetry in propulsion upon exchanging between (fast) closing and 

opening strokes. Since opening and closing strokes are not identical (at opening the angle between plates changes 

from  10° up to 295° they are different in the interval of 10°-65° For (fast) opening, the shear rate decreases from a 

high viscosity state, and for the (fast) closing cycle the shear rate increases. In agreement with the hysteresis 

described in 5 the “scallop” propelled by (fast) opening stroke swims better than the one than relies on (fast) closing 

stroke. 

It has been found in 5, 6, 7 that the transition taking place at ߛሶ ൌ ሶߛ 	possesses the properties of the phase transition of 

the first order. Namely, the transition is characterized by the hysteresis of viscosity upon varying the shear rate. In 

particular, in experiment with transient shear rate the value of viscosity depends on the prehistory of shear rate ramp: 

if the shear rate increasesfrom a low viscosity state the transition occurs at a higher critical shear rate than in steady 

state (ߛሶ  ሶߛ ). Analogously, if the shear rate decreases from a high viscosity state, the transition takes place at a 

lower values of transient shear rate comparing to the steady state (ߛሶ ൏ ሶߛ ) 5.The hysteresis of the shear thickening 

fluid was measured via a shear rate ramp loop test first from 1	ିݏଵ up to 15	ିݏଵ and then immediately from 15	ିݏଵ 

down to 1	ିݏଵ. The loop was repeated for three times and the average is plotted in Fig S10. In agreement with the 

previsous works, the transition occurs at a higher critical shear rate when the shear rate increases from a low 

viscosity (blue squares), and vice versa a lower critical shear rate when decreasing (red triangles). 

This hysteresis explains the reason that the average displacement per cycle of the backward stroke is larger than that 

of the forward stroke, under the same ratio of closing and opening (the absolute value of pre-factor ߚ ൌ െ0.014 in 

Fig 4(C) is larger than 	ߚ ൌ 0.008 in Fig 4(B)). Specifically, the closing and opening strokes of the macro-scallop 

are not identical: at closing, as the gap between the shells changes from large to small, the shear rate increases and 

thus the transition of shear thickening occurs at a higher critical shear rate; vice versa at opening, the gap increases, 

the shear rate decreases, and the critical shear rate is lower. Therefore, in the opening half-cycle, the swimmer 

exhibits higher average viscosity than that in the closing half-cycle, and consequently results in better propulsion.



 

Fig S1. Fabrication process of the micro-scallop. (A) The negative mold of the micro-scallop is made by 3-D 
printing. The mold for the hinge is much shallower and narrower than the two shells. Shown in the inset is an 
enlargement of one mold. (B) As-printed molds filled with PDMS polymer containing green fluorescent powder 
imaged under UV light (scale bar is 1 mm). (C) 3-D model of the resultant micro-scallop. The PDMS part (green) is 
released after curing and two micro-magnets are attached in the orientation indicated in the schematic. A more 
detailed description of the fabrication procedure is illustrated in Fig S3. 

 

Fig S2. Detailed dimensions of the micro-scallop. Important dimensions of the micro-scallop are drawn in the figure 
in the unit of millimeter. 



 

Fig S3. Illustration of the micro-magnets attachment process. (A) Step 1, the first micro-magnet (left) is attached to 
the PDMS by glue, while its orientation is kept by the macro-magnet. (B) Step 2, after the fixation of the first 
magnet, the second micro-magnet (right) is attached to the PDMS by glue. The local field is dominated by the 
macro-magnet on the right, so the orientation of the second micro-magnet is kept in the opposite direction of the 
first. The macro-magnet is not drawn to scale. 



 

Fig S4. The actuation setup for the micro-scallop. The micro-scallop is not drawn to scale. 

 



 

Fig S5. Macro-scallop 3-D model and its top view illustrating the closing motion of the two shells. 



 

Fig S6. Propulsion experiments of the macro-scallop. (A) An illustration of the experimental setup for the macro-
scallop. (B) Time-lapse pictures of asymmetric actuation of the macro-scallop in shear thickening fluid. The three 
pictures in the first line correspond to the slow opening half-cycle (~3 s) and the pictures in the second line 
correspond to the fast closing half-cycle (<1 s). The net displacement is observed by comparing the pictures at 0 s 
and 4 s with the dashed line aligned with the tip of the macro-scallop at 0 s. 

 

  



 

Fig S7. Apparent dynamic viscosity of the shear thickening fluid. Power law model (dotted line) is used to fit the 
viscosity (black squares) in the shear rate range of 1.5~6 s-1. The change of first normal stress difference N1 of our 
shear thickening medium is two orders of magnitude smaller than the Boger fluid used in 8. Thus, the viscosity 
change is dominant during the swimming process. The error bars represent standard deviations. 

 

Fig S8. Oscillation test of the shear thickening fluid. The viscous modulus G’’ is more than 2 times larger than the 
elastic modulus G’ over the frequency range of 0.1~20 Hz, and the phase angle is 70º ~80º, which both indicate that 
the viscosity is dominant over elasticity for the shear thickening fluid. 



 

Fig S9. Apparent dynamic viscosity of the shear thinning fluid. Power law model (dotted line) is used to fit the data 
in the shear rate range of 1~100 s-1. The error bars represent standard deviations. 

 

Fig S10. Hysteresis of viscosity of the shear thickening fluid. When the shear rate increases from a low viscosity 
(blue squares), the transition occurs at a higher critical shear rate, while when the shear rate decreases from a high 
viscosity (red triangles), the transition takes place at a lower shear rate. The error bars represent standard deviations. 

 



 

Fig S11. The vertices of the computational mesh are concentrated near the surface of the macro-scallop to improve 
resolution of the liquid-solid interface. The color in the lower half shows the velocity field of the fluid. 

 

Fig S12. Approximation of the viscosity for shear thickening fluid for convergence in numerical simulation. Red 
circles are measured data points in experiment, blue line is the trend line, and the black line is the approximation 
used in numerical simulation. 



 

Fig S13. Flow pattern (streamlines) due to a 2D tethered infinite “scallop” (pump) upon varying the opening 
 60°(b), 30°(c) and 18°(d); position of the plates are marked by thick red lines. The corresponding vector ,(a)°85.7=ࢻ
velocity field is in (a) for the closing stroke. 

 

 

Fig S14. The scaled strain rate ડ/࣓	for the 2D infinite tethered “scallop” (pump) vs. a polar angle ࣐	for the same 
openings ࢻ as in Fig S13 (shown in radians). Solid lines stand for the inner region and the dashed lines stand for the 
outer region. 

  



List of Supplementary Movies 

Supplementary Movie 1 

Micro-scallop in shear thickening fluid. Net displacement in x direction was achieved by asymmetric actuation of 
slow-open-fast-close (upper panel), in comparison, no net displacement in x direction by symmetric actuation (lower 
panel). The movie was for 4-times speeded up. 

Supplementary Movie 2 

Micro-scallop in shear thinning fluid. Net displacement in x direction was achieved by asymmetric actuation of fast-
open-slow-close (upper panel), in comparison, no net displacement in x direction by symmetric actuation (lower 
panel). The movie was for 4-times speeded up. 

Supplementary Movie 3 

Micro-scallop in Newtonian fluid. An asymmetric actuation of slow-open-fast-close was applied to the micro-
scallop and no net displacement in x direction was observed. The movie was for 4-times speeded up. 

Supplementary Movie 4 

Numerical simulation results of the velocity fields around the macro-scallop under asymmetric slow-open-fast-close 
actuation. Upper panel: the swimmer in Newtonian fluid results in no net displacement; lower panel: the swimmer in 
shear thickening fluid results in net displacement. 

Supplementary Movie 5 

Numerical simulation shows the velocity (upper panel) and viscosity fields (lower panel) of the shear thickening 
fluid around the macro-scallop under asymmetric slow-open-fast-close actuation. 

Supplementary Movie 6 

Experimental video shows asymmetric slow-open-fast-close actuation of the macro-scallop resulted in net 
displacement in shear thickening fluid. The movie was for 2-times speeded up. 

Supplementary Movie 7 

Experimental video shows symmetric actuation of the macro-scallop resulted in no net displacement in shear 
thickening fluid. The movie was for 2-times speeded up. 

Supplementary Movie 8 

Experimental video shows asymmetric slow-open-fast-close actuation of the macro-scallop resulted in no net 
displacement in a Newtonian fluid. The movie was for 2-times speeded up. 
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