Vorlesungsverzeichnis 

Vorlesung im Detail

Markov-Ketten

Nummer
011382, WS1617
Dozentinnen und Dozenten
Veranstaltungstyp (SWS)
Vorlesung (4+2)
Ort und Zeit
  • M/611 Mi 08:00 2h
  • M/911 Fr 08:00 2h
Modul-Zugehörigkeit (ohne Gewähr)
  • DPL:B:-:2
  • MABA:-:4:MAT-421
  • WIMABA:-:4:MAT-421
  • TMABA:-:4:MAT-421
  • MAMA:-:4:MAT-421
  • WIMAMA:-:4:MAT-421
  • TMAMA:-:4:MAT-421
  • DPL:E:-:-
Sprechstunde zur Veranstaltung
Dienstag, 13.30 - 15.00
Anmeldung?
Erforderlich!
Erforderliche Voraussetzungen
Stochastik I
Inhalt
Einführung in die Theorie der Markov-Ketten in diskreter und kontinuierlicher Zeit auf diskreten Zustandsräumen. Im Detail: Konstruktion und Beispiele von Markov-Ketten; algebraische Theorie von stochastischen Matrizen; stationäre Verteilungen; Markov-Ketten-Monte-Carlo-Methode; schwache und starke Markov-Eigenschaft; Transienz und Rekurrenz; Erneuerungstheorie.
Bemerkungen
Link zum Modulhandbuch Mathematik, Technomathematik, Wirtschaftsmathematik
Nachfolgeveranstaltungen
keine
Leistungsnachweis
mündliche Modulprüfung. Studienleistung: 40% der Hausaufgabenpunkte in 1. und 2. Semesterhälfte plus jeweils mind. einmal Vorrechnen
Empfohlene Literatur
  • D. Aldous, J.A. Fill: Reversible Markov Chains and Random Walks on Graphs. Skript unter www.stat.Berkely.edu/users/aldous/book.html
  • E. Behrends, Introduction to Markov Chains, Vieweg 2000.
  • P. Bremaud: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer 1988.
  • D. Revuz: Markov Chains. North-Holland 1984.

Übung zur Veranstaltung

Nummer der Übung
011383
Übungsgruppen
  • n.V.

« (zurück) zum Vorlesungsverzeichnis