Vorlesungsverzeichnis 

Vorlesung im Detail

Advanced Engineering Mathematics

Nummer
012500, WS2122
Dozentinnen und Dozenten
Veranstaltungstyp (SWS)
Vorlesung (3+2)
Ort und Zeit
  • M/E28 Di 09:00 1h
  • M/E29 Do 14:00 2h
Modul-Zugehörigkeit (ohne Gewähr)
  • SRV:-:-:S-R100
  • DPL:F:-:1
  • DPL:A:-:-
Sprechstunde zur Veranstaltung
Anmeldung?
ohne Angabe
Gewünschte Vorkenntnisse
Introductory knowledge in: - Calculus - Linear Algebra - Ordinary Differential Equations
Erforderliche Voraussetzungen
3G
Inhalt
This lecture will prepare Engineering students with mathematical foundation with the following details: Solving LES with GA, Vector spaces, Matrix and linear maps, Linear system of equations, Gauss-algorithm and LU-decomposition, Eigenvalues and its properties, Properties of symmetric matrices, SVD, Generalised inverse problem, QR-decomposition, Norms, Numeric of eigenvalues, Errors, Best fit functions, ODE, Linear diff. eqn. with constant coeff., Linear diff. eqn. of higher order, Multivariate/Multivariable Calculus with more variables, Inverse and implicit functions, Taylor expansions, Symm. matrix and quadratic forms, Extreme values, Stability of ODE. Syllabus and homeworks are provided later on the lecture's Moodle-site. Lectures: M/E28 Di 09:00 1h M/E29 Do 14:00 2h Tutorial will be given in groups. There will be 2 or 3 Groups depends on the number of participants, and this will be announced as well in Moodle. Pandemie: for the participation in Lectures and Tutorials, you must be under 3G-rules.
Bemerkungen
Link zu den Modulbeschreibungen im Service
Empfohlene Literatur
  • will be announced

Übung zur Veranstaltung

Nummer der Übung
012501
Dozentinnen und Dozenten
Übungsgruppen
  • HGII/HS4 Mi 12:00 2h
  • M/E25 Do 10:00 2h

« (zurück) zum Vorlesungsverzeichnis